1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
|
#ifndef CERT_TRANS_MERKLETREE_SPARSE_MERKLE_TREE_H
#define CERT_TRANS_MERKLETREE_SPARSE_MERKLE_TREE_H
#include <glog/logging.h>
#include <stddef.h>
#include <array>
#include <string>
#include <unordered_map>
#include <vector>
#include "merkletree/merkle_tree_interface.h"
#include "merkletree/tree_hasher.h"
class SerialHasher;
// Calculates the set of "null" hashes:
// ...H(H(H("")||H(""))||H("")||(H(""))||...)...
//
// Visible out here because it's useful for testing too.
const std::vector<std::string>* GetNullHashes(const TreeHasher& hasher);
/* Implementation of a Sparse Merkle Tree.
*
* The design is inspired by the tree described in
* http://www.links.org/files/RevocationTransparency.pdf), but with some
* tweaks, most notably:
* 1) Leaf values are hashed before being incorporated into the tree.
* 2) Similar to the way it works in the CT MerkleTree, hashes are domain
* separated by prefixing the preimage with \x00 for leaves, and \x01 for
* internal nodes.
*
* These mean that level 2 nodes are of the form:
* H(\x01||H(\0x00||valueL)||H(\0x00||valueR))
* and so on.
*
* Nodes are addressed by a Path, which is a bit-string of the same length as
* the output of the hashing fuction used. This string describes a path down
* from the root to a leaf, with the 0-bits indicating the path takes the
* left-hand child branch, and 1-bits the right. e.g:
* Root
* / \
* 0/ \1
* / \
* i0 i3
* 0/ \1 0/ \1
* / \ / \
* l0 l1 l2 l3
*
* The paths to the 4 leaves would then be:
* l0: "00"
* l1: "01"
* l2: "10"
* l3: "11"
*
* To help with memory consumption, leaves inserted into the tree are stored
* at the first unused node along their path. An example is given below:
*
* * Empty tree:
* Root
*
* * Add "10" = "hi":
* Since the tree is empty, the first bit of the added path is sufficient to
* identify a unique prefix, so the leaf is stored as the "1" entry
* immediately below the root.
* Root
* |
* |_______1
* p:"10"
* v:"hi"
*
* * Add "11" = "to":
* The first bit of the added path is not enough to provide a unique
* prefix so the leaf node currently occupying the "1" node immediately below
* the root must be pushed down a level, resulting in:
* Root
* |
* |_______1
* |
* |
* 0_____|_____1
* | |
* p:"10" p:"11"
* v:"hi" v:"to"
*
* (In the case where paths are longer and multiple bits of the prefix collide,
* the existing node is repeated pushed down a level until a unique prefix is
* found.)
*
* * Add "00" = "aa":
* The first bit of the added path is unique, and so the resulting tree is:
* Root
* |
* 0_______|_______1
* | |
* p:"00" |
* v:"aa" 0_____|_____1
* | |
* p:"10" p:"11"
* v:"hi" v:"to"
*
* * Calculating the root hash
* Calculating the root of the tree is similar to a regular MerkleTree, but is
* optimised by cribbing the value of "missing" nodes from a simple cache. This
* removes the need to calculate the vast majority of nodes from scratch.
*
* TODO(alcutter): LOTS!
*
* This class is thread-compatible, but not thread-safe.
*/
class SparseMerkleTree {
public:
static const int kDigestSizeBits = 256;
// Represents a path into the SparseMerkleTree.
// The MSB of the 0th entry in the path specifies the path from the root node
// of the tree, and so on until the LSB in the final byte specifies the leaf
// itself.
//
// i.e:
// 0th 1st ...
// [76543210|76543210|76...|...|...0]
// || |_____LSB of path, identifies leaf at
// lowest level in the tree
// ||___________________________________Identifies 2nd level child node
// |____________________________________Identifies 1st level child node
//
// The reasoning behind this convention is that looked as a single
// kDigestSizeBits sized word, the value of the path is then the same as
// the index of the leaf node it identifies, this also has the advantage
// that the paths are lexographically sortable.
typedef std::array<uint8_t, kDigestSizeBits / 8> Path;
// The constructor takes a pointer to some concrete hash function
// instantiation of the SerialHasher abstract class.
// Takes ownership of the hasher.
explicit SparseMerkleTree(SerialHasher* hasher);
// Length of a node (i.e., a hash), in bytes.
virtual size_t NodeSize() const {
return treehasher_.DigestSize();
};
// Return the leaf hash, but do not append the data to the tree.
virtual std::string LeafHash(const std::string& data) const {
return treehasher_.HashLeaf(data);
}
// Add a new leaf to the hash tree. Stores the hash of the leaf data in the
// tree structure, does not store the data itself.
//
// @param data Binary input blob
// @param path Binary path of node to set.
virtual void SetLeaf(const Path& path, const std::string& data);
// Get the current root of the tree.
// Update the root to reflect the current shape of the tree,
// and return the tree digest.
//
// Returns the hash of an empty string if the tree has no leaves
// (and hence, no root).
virtual std::string CurrentRoot();
// Get the Merkle path from the leaf at |path| to the current root.
//
// Returns a vector of node hashes, ordered by levels from leaf to root.
// The first element is the sibling of the leaf hash, and the last element
// is one below the root.
// Returns an empty vector if the tree is not large enough
// or the leaf index is 0.
//
// @param path the path of the leaf whose inclusion proof to return.
std::vector<std::string> InclusionProof(const Path& path);
std::string Dump() const;
private:
// WARNING WARNING WARNING
// 64 < 256 !
// WARNING WARNING WARNING
// TODO(alcutter): BIGNUM probably.
typedef uint64_t IndexType;
struct TreeNode {
TreeNode(const std::string& hash) : type_(INTERNAL), hash_(hash) {
}
TreeNode(const Path& path, const std::string& leaf_hash)
: type_(LEAF), path_(new Path(path)), hash_(leaf_hash) {
}
std::string DebugString() const;
enum { INTERNAL, LEAF } type_;
std::unique_ptr<Path> path_;
std::string hash_;
};
std::string CalculateSubtreeHash(size_t depth, IndexType index);
void DumpTree(std::ostream* os, size_t depth, IndexType index) const;
// Get the |index|-th node at level |level|. Indexing starts at 0;
// caller is responsible for ensuring tree is sufficiently up to date.
std::string Node(size_t level, size_t index) const;
// Maybe add a new tree level.
void EnsureHaveLevel(size_t n);
TreeHasher treehasher_;
const std::vector<std::string>* const null_hashes_;
// TODO(alcutter): investigate other structures
std::vector<std::unordered_map<IndexType, TreeNode>> tree_;
std::string root_hash_;
};
// Pretty print a Path
std::ostream& operator<<(std::ostream& out,
const SparseMerkleTree::Path& path);
// Creates a Path from the bits passed in.
inline SparseMerkleTree::Path PathFromBytes(const std::string& bytes) {
SparseMerkleTree::Path path;
// Path size must be a multiple of 8 for now.
CHECK_EQ(bytes.size(), path.size());
std::copy(bytes.begin(), bytes.end(), path.begin());
return path;
}
// Extracts the |n|th most significant bit from |path|
inline int PathBit(const SparseMerkleTree::Path& path, size_t bit) {
CHECK_LT(bit, path.size() * 8);
return (path[bit / 8] & (1 << (7 - bit % 8))) == 0 ? 0 : 1;
}
struct PathHasher {
size_t operator()(const SparseMerkleTree::Path& p) const {
return std::hash<std::string>()(
std::string(reinterpret_cast<const char*>(p.data()), p.size()));
}
};
#endif // CERT_TRANS_MERKLETREE_SPARSE_MERKLE_TREE_H
|