1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
|
#include <glog/logging.h>
#include <gtest/gtest.h>
#include <openssl/bn.h>
#include <sys/resource.h>
#include <algorithm>
#include <map>
#include <random>
#include <string>
#include "merkletree/sparse_merkle_tree.h"
#include "util/openssl_scoped_types.h"
#include "util/testing.h"
#include "util/util.h"
namespace {
using cert_trans::ScopedBIGNUM;
using std::fill;
using std::lower_bound;
using std::map;
using std::mt19937;
using std::ostringstream;
using std::pair;
using std::random_device;
using std::reverse;
using std::string;
using std::to_string;
using std::unique_ptr;
using std::vector;
using util::ToBase64;
const char kEmptyRootHashB64[] =
"xmifEIEqCYCXbZUz2Dh1KCFmFZVn7DUVVxbBQTr1PWo=";
struct KeyComp {
const BIGNUM* AsBN(const ScopedBIGNUM& a) const {
return a.get();
}
const BIGNUM* AsBN(const BIGNUM* a) const {
return a;
}
const BIGNUM* AsBN(const pair<ScopedBIGNUM, string>& a) const {
return a.first.get();
}
};
struct KeyEq : public KeyComp {
template <class A, class B>
bool operator()(const A& a, const B& b) const {
return BN_cmp(AsBN(a), AsBN(b)) == 0;
}
};
struct KeyLess : public KeyComp {
template <class A, class B>
bool operator()(const A& a, const B& b) const {
return BN_cmp(AsBN(a), AsBN(b)) < 0;
}
};
typedef vector<pair<ScopedBIGNUM, string>> ValueList;
pair<ScopedBIGNUM, string> Value(uint64_t n, const string& v) {
pair<ScopedBIGNUM, string> ret;
ret.second = v;
ret.first.reset(BN_new());
BN_set_word(ret.first.get(), n);
return ret;
}
// Implements (more-or-less) the reference python code given in the
// revocation transparency paper for calculating the root-hash of a sparse
// tree with a given set of leaf nodes.
class Reference {
public:
Reference(SerialHasher* hasher)
: tree_hasher_(unique_ptr<SerialHasher>(CHECK_NOTNULL(hasher))),
hStarEmptyCache_{tree_hasher_.HashLeaf("")} {
}
// Calculates the root hash of a sparse merkle tree of depth |n|, containing
// the leaf values in |values|.
string HStar2(size_t n, ValueList* values) {
// values should be sorted
std::sort(values->begin(), values->end(), KeyLess());
// and without dupes
values->erase(std::unique(values->begin(), values->end(), KeyEq()),
values->end());
// Sounds a lot like a map to me, but I've left it as a list because:
// a) it's just reference code, and
// b) I want it to be as similar as possible to the code in the paper.
ScopedBIGNUM offset(BN_new());
BN_zero(offset.get());
const string ret(
HStar2b(n, *values, values->begin(), values->end(), offset.get()));
return ret;
}
private:
// Calculates & caches the 'null' node at depth |n|
string HStarEmpty(size_t n) {
if (hStarEmptyCache_.size() <= n) {
const string t(
tree_hasher_.HashChildren(HStarEmpty(n - 1), HStarEmpty(n - 1)));
CHECK_EQ(n, hStarEmptyCache_.size());
hStarEmptyCache_.push_back(t);
}
CHECK_LT(n, hStarEmptyCache_.size());
return hStarEmptyCache_[n];
}
// Calculates an internal subtree.
string HStar2b(size_t n, const ValueList& values,
ValueList::const_iterator lo, ValueList::const_iterator hi,
BIGNUM* offset) {
if (n == 0) {
if (lo == hi) {
// DIFF: return the null leaf hash, rather than "0" as in the paper.
return hStarEmptyCache_[0];
}
CHECK_EQ(1, hi - lo);
// DIFF: return H(\x00||value) rather than "1" as in the paper.
return tree_hasher_.HashLeaf(lo->second);
}
if (lo == hi) {
return HStarEmpty(n);
}
// DIFF: use BIGNUM, 'cos we'll get to values of O(1 << 256) here (!)
ScopedBIGNUM split(BN_new());
CHECK_EQ(1, BN_set_word(split.get(), 1));
CHECK_EQ(1, BN_lshift(split.get(), split.get(), n - 1));
CHECK_EQ(1, BN_add(split.get(), split.get(), offset));
auto i(lower_bound(lo, hi, split, KeyLess()));
const string ret(
tree_hasher_.HashChildren(HStar2b(n - 1, values, lo, i, offset),
HStar2b(n - 1, values, i, hi, split.get())));
return ret;
}
TreeHasher tree_hasher_;
vector<string> hStarEmptyCache_;
};
class SparseMerkleTreeTest : public testing::Test {
public:
SparseMerkleTreeTest()
: tree_hasher_(unique_ptr<Sha256Hasher>(new Sha256Hasher)),
tree_(new Sha256Hasher),
rand_({1234}) {
}
protected:
// Returns a Path with the high 64 bits set to |high|
SparseMerkleTree::Path PathHigh(uint64_t high) {
SparseMerkleTree::Path ret;
ret.fill(0);
for (size_t i(0); i < 8; ++i) {
ret[7 - i] = high & 0xff;
high >>= 8;
}
return ret;
}
// Returns a Path with the low 64 bits set to |high|
SparseMerkleTree::Path PathLow(uint64_t low) {
SparseMerkleTree::Path ret;
ret.fill(0);
for (size_t i(0); i < 8; ++i) {
ret[ret.size() - 1 - i] = low & 0xff;
low >>= 8;
}
return ret;
}
// Returns a random Path.
SparseMerkleTree::Path RandomPath() {
SparseMerkleTree::Path ret;
for (SparseMerkleTree::Path::size_type i(0); i < ret.size(); ++i) {
ret[i] = rand_() & 0xff;
}
return ret;
}
SparseMerkleTree::Path PathFromString(const string& s) {
SparseMerkleTree::Path ret;
CHECK_LE(s.size(), ret.size());
fill(copy(s.begin(), s.end(), ret.begin()), ret.end(), 0);
return ret;
}
TreeHasher tree_hasher_;
SparseMerkleTree tree_;
mt19937 rand_;
};
TEST_F(SparseMerkleTreeTest, PathBitAndPathStreamOperatorAgree) {
ostringstream os;
const SparseMerkleTree::Path p(RandomPath());
os << p;
string b;
for (size_t i(0); i < SparseMerkleTree::kDigestSizeBits; ++i) {
b += PathBit(p, i) == 0 ? '0' : '1';
}
EXPECT_EQ(os.str(), b);
}
TEST_F(SparseMerkleTreeTest, ReferenceEmptyTreeRootKAT) {
Reference ref(new Sha256Hasher);
ValueList empty_values;
EXPECT_EQ(kEmptyRootHashB64, ToBase64(ref.HStar2(256, &empty_values)));
}
TEST_F(SparseMerkleTreeTest, EmptyTreeRootKAT) {
tree_.CurrentRoot();
EXPECT_EQ(kEmptyRootHashB64, ToBase64(tree_.CurrentRoot()));
}
TEST_F(SparseMerkleTreeTest, SimpleTest) {
Reference ref(new Sha256Hasher);
ValueList values;
for (auto r : vector<uint64_t>{1, 5, 10}) {
const string value(to_string(r));
values.emplace_back(std::move(Value(r, value)));
SparseMerkleTree::Path p(PathLow(r));
tree_.SetLeaf(p, value);
}
const string ref_root(
ref.HStar2(SparseMerkleTree::kDigestSizeBits, &values));
const string smt_root(tree_.CurrentRoot());
EXPECT_EQ(ToBase64(ref_root), ToBase64(smt_root));
}
TEST_F(SparseMerkleTreeTest, RandomReferenceTest) {
Reference ref(new Sha256Hasher);
ValueList values;
LOG(INFO) << "Setup";
for (int i(0); i < 10000; ++i) {
uint64_t r(rand_() + i);
const string value(to_string(r));
values.emplace_back(std::move(Value(r, value)));
const SparseMerkleTree::Path p(PathLow(r));
tree_.SetLeaf(p, value);
}
LOG(INFO) << "Calculating SMT Root";
const string smt_root(tree_.CurrentRoot());
LOG(INFO) << "Calculating Reference Root";
const string ref_root(ref.HStar2(256, &values));
LOG(INFO) << "Comparing";
EXPECT_EQ(ToBase64(ref_root), ToBase64(smt_root));
}
TEST_F(SparseMerkleTreeTest, DISABLED_RefMemTest) {
Reference ref(new Sha256Hasher);
ValueList values;
struct rusage ru;
getrusage(RUSAGE_SELF, &ru);
long max_rss_before = ru.ru_maxrss;
uint64_t time_before = util::TimeInMilliseconds();
LOG(INFO) << "Setup";
for (int i(0); i < 10000000; ++i) {
uint64_t r(rand_() + i);
const string value(to_string(r));
values.emplace_back(std::move(Value(r, value)));
}
LOG(INFO) << "Calculating Root";
const string ref_root(ref.HStar2(256, &values));
LOG(INFO) << "Done";
uint64_t time_after = util::TimeInMilliseconds();
getrusage(RUSAGE_SELF, &ru);
LOG(INFO) << "Peak RSS delta (as reported by getrusage()) was "
<< ru.ru_maxrss - max_rss_before << " kB";
LOG(INFO) << "Elapsed time: " << time_after - time_before << " ms";
}
TEST_F(SparseMerkleTreeTest, DISABLED_SMTMemTest) {
struct rusage ru;
getrusage(RUSAGE_SELF, &ru);
long max_rss_before = ru.ru_maxrss;
uint64_t time_before = util::TimeInMilliseconds();
LOG(INFO) << "Setup";
for (int i(0); i < 10000000; ++i) {
uint64_t r(rand_() + i);
const string value(to_string(r));
const SparseMerkleTree::Path p(PathLow(r));
tree_.SetLeaf(p, value);
}
LOG(INFO) << "Calculating Root";
const string smt_root(tree_.CurrentRoot());
LOG(INFO) << "Done";
uint64_t time_after = util::TimeInMilliseconds();
getrusage(RUSAGE_SELF, &ru);
LOG(INFO) << "Peak RSS delta (as reported by getrusage()) was "
<< ru.ru_maxrss - max_rss_before << " kB";
LOG(INFO) << "Elapsed time: " << time_after - time_before << " ms";
}
TEST_F(SparseMerkleTreeTest, TestSetLeaf) {
tree_.CurrentRoot();
LOG(INFO) << "Tree@0:";
LOG(INFO) << tree_.Dump();
tree_.SetLeaf(PathFromString("one"), "one");
tree_.CurrentRoot();
LOG(INFO) << "Tree@1:";
LOG(INFO) << tree_.Dump();
tree_.SetLeaf(PathFromString("two"), "two");
tree_.CurrentRoot();
LOG(INFO) << "Tree@2:";
LOG(INFO) << tree_.Dump();
tree_.SetLeaf(PathFromString("three"), "three");
tree_.CurrentRoot();
LOG(INFO) << "Tree@3:";
LOG(INFO) << tree_.Dump();
}
// TODO(alcutter): Lots and lots more tests.
} // namespace
int main(int argc, char** argv) {
cert_trans::test::InitTesting(argv[0], &argc, &argv, true);
return RUN_ALL_TESTS();
}
|