1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
|
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package x509
import (
"errors"
"syscall"
"unsafe"
)
// Creates a new *syscall.CertContext representing the leaf certificate in an in-memory
// certificate store containing itself and all of the intermediate certificates specified
// in the opts.Intermediates CertPool.
//
// A pointer to the in-memory store is available in the returned CertContext's Store field.
// The store is automatically freed when the CertContext is freed using
// syscall.CertFreeCertificateContext.
func createStoreContext(leaf *Certificate, opts *VerifyOptions) (*syscall.CertContext, error) {
var storeCtx *syscall.CertContext
leafCtx, err := syscall.CertCreateCertificateContext(syscall.X509_ASN_ENCODING|syscall.PKCS_7_ASN_ENCODING, &leaf.Raw[0], uint32(len(leaf.Raw)))
if err != nil {
return nil, err
}
defer syscall.CertFreeCertificateContext(leafCtx)
handle, err := syscall.CertOpenStore(syscall.CERT_STORE_PROV_MEMORY, 0, 0, syscall.CERT_STORE_DEFER_CLOSE_UNTIL_LAST_FREE_FLAG, 0)
if err != nil {
return nil, err
}
defer syscall.CertCloseStore(handle, 0)
err = syscall.CertAddCertificateContextToStore(handle, leafCtx, syscall.CERT_STORE_ADD_ALWAYS, &storeCtx)
if err != nil {
return nil, err
}
if opts.Intermediates != nil {
for _, intermediate := range opts.Intermediates.certs {
ctx, err := syscall.CertCreateCertificateContext(syscall.X509_ASN_ENCODING|syscall.PKCS_7_ASN_ENCODING, &intermediate.Raw[0], uint32(len(intermediate.Raw)))
if err != nil {
return nil, err
}
err = syscall.CertAddCertificateContextToStore(handle, ctx, syscall.CERT_STORE_ADD_ALWAYS, nil)
syscall.CertFreeCertificateContext(ctx)
if err != nil {
return nil, err
}
}
}
return storeCtx, nil
}
// extractSimpleChain extracts the final certificate chain from a CertSimpleChain.
func extractSimpleChain(simpleChain **syscall.CertSimpleChain, count int) (chain []*Certificate, err error) {
if simpleChain == nil || count == 0 {
return nil, errors.New("x509: invalid simple chain")
}
simpleChains := (*[1 << 20]*syscall.CertSimpleChain)(unsafe.Pointer(simpleChain))[:count:count]
lastChain := simpleChains[count-1]
elements := (*[1 << 20]*syscall.CertChainElement)(unsafe.Pointer(lastChain.Elements))[:lastChain.NumElements:lastChain.NumElements]
for i := 0; i < int(lastChain.NumElements); i++ {
// Copy the buf, since ParseCertificate does not create its own copy.
cert := elements[i].CertContext
encodedCert := (*[1 << 20]byte)(unsafe.Pointer(cert.EncodedCert))[:cert.Length:cert.Length]
buf := make([]byte, cert.Length)
copy(buf, encodedCert)
parsedCert, err := ParseCertificate(buf)
if err != nil {
return nil, err
}
chain = append(chain, parsedCert)
}
return chain, nil
}
// checkChainTrustStatus checks the trust status of the certificate chain, translating
// any errors it finds into Go errors in the process.
func checkChainTrustStatus(c *Certificate, chainCtx *syscall.CertChainContext) error {
if chainCtx.TrustStatus.ErrorStatus != syscall.CERT_TRUST_NO_ERROR {
status := chainCtx.TrustStatus.ErrorStatus
switch status {
case syscall.CERT_TRUST_IS_NOT_TIME_VALID:
return CertificateInvalidError{c, Expired, ""}
default:
return UnknownAuthorityError{c, nil, nil}
}
}
return nil
}
// checkChainSSLServerPolicy checks that the certificate chain in chainCtx is valid for
// use as a certificate chain for a SSL/TLS server.
func checkChainSSLServerPolicy(c *Certificate, chainCtx *syscall.CertChainContext, opts *VerifyOptions) error {
servernamep, err := syscall.UTF16PtrFromString(opts.DNSName)
if err != nil {
return err
}
sslPara := &syscall.SSLExtraCertChainPolicyPara{
AuthType: syscall.AUTHTYPE_SERVER,
ServerName: servernamep,
}
sslPara.Size = uint32(unsafe.Sizeof(*sslPara))
para := &syscall.CertChainPolicyPara{
ExtraPolicyPara: convertToPolicyParaType(unsafe.Pointer(sslPara)),
}
para.Size = uint32(unsafe.Sizeof(*para))
status := syscall.CertChainPolicyStatus{}
err = syscall.CertVerifyCertificateChainPolicy(syscall.CERT_CHAIN_POLICY_SSL, chainCtx, para, &status)
if err != nil {
return err
}
// TODO(mkrautz): use the lChainIndex and lElementIndex fields
// of the CertChainPolicyStatus to provide proper context, instead
// using c.
if status.Error != 0 {
switch status.Error {
case syscall.CERT_E_EXPIRED:
return CertificateInvalidError{c, Expired, ""}
case syscall.CERT_E_CN_NO_MATCH:
return HostnameError{c, opts.DNSName}
case syscall.CERT_E_UNTRUSTEDROOT:
return UnknownAuthorityError{c, nil, nil}
default:
return UnknownAuthorityError{c, nil, nil}
}
}
return nil
}
// systemVerify is like Verify, except that it uses CryptoAPI calls
// to build certificate chains and verify them.
func (c *Certificate) systemVerify(opts *VerifyOptions) (chains [][]*Certificate, err error) {
hasDNSName := opts != nil && len(opts.DNSName) > 0
storeCtx, err := createStoreContext(c, opts)
if err != nil {
return nil, err
}
defer syscall.CertFreeCertificateContext(storeCtx)
para := new(syscall.CertChainPara)
para.Size = uint32(unsafe.Sizeof(*para))
// If there's a DNSName set in opts, assume we're verifying
// a certificate from a TLS server.
if hasDNSName {
oids := []*byte{
&syscall.OID_PKIX_KP_SERVER_AUTH[0],
// Both IE and Chrome allow certificates with
// Server Gated Crypto as well. Some certificates
// in the wild require them.
&syscall.OID_SERVER_GATED_CRYPTO[0],
&syscall.OID_SGC_NETSCAPE[0],
}
para.RequestedUsage.Type = syscall.USAGE_MATCH_TYPE_OR
para.RequestedUsage.Usage.Length = uint32(len(oids))
para.RequestedUsage.Usage.UsageIdentifiers = &oids[0]
} else {
para.RequestedUsage.Type = syscall.USAGE_MATCH_TYPE_AND
para.RequestedUsage.Usage.Length = 0
para.RequestedUsage.Usage.UsageIdentifiers = nil
}
var verifyTime *syscall.Filetime
if opts != nil && !opts.CurrentTime.IsZero() {
ft := syscall.NsecToFiletime(opts.CurrentTime.UnixNano())
verifyTime = &ft
}
// CertGetCertificateChain will traverse Windows's root stores
// in an attempt to build a verified certificate chain. Once
// it has found a verified chain, it stops. MSDN docs on
// CERT_CHAIN_CONTEXT:
//
// When a CERT_CHAIN_CONTEXT is built, the first simple chain
// begins with an end certificate and ends with a self-signed
// certificate. If that self-signed certificate is not a root
// or otherwise trusted certificate, an attempt is made to
// build a new chain. CTLs are used to create the new chain
// beginning with the self-signed certificate from the original
// chain as the end certificate of the new chain. This process
// continues building additional simple chains until the first
// self-signed certificate is a trusted certificate or until
// an additional simple chain cannot be built.
//
// The result is that we'll only get a single trusted chain to
// return to our caller.
var chainCtx *syscall.CertChainContext
err = syscall.CertGetCertificateChain(syscall.Handle(0), storeCtx, verifyTime, storeCtx.Store, para, 0, 0, &chainCtx)
if err != nil {
return nil, err
}
defer syscall.CertFreeCertificateChain(chainCtx)
err = checkChainTrustStatus(c, chainCtx)
if err != nil {
return nil, err
}
if hasDNSName {
err = checkChainSSLServerPolicy(c, chainCtx, opts)
if err != nil {
return nil, err
}
}
chain, err := extractSimpleChain(chainCtx.Chains, int(chainCtx.ChainCount))
if err != nil {
return nil, err
}
if len(chain) < 1 {
return nil, errors.New("x509: internal error: system verifier returned an empty chain")
}
// Mitigate CVE-2020-0601, where the Windows system verifier might be
// tricked into using custom curve parameters for a trusted root, by
// double-checking all ECDSA signatures. If the system was tricked into
// using spoofed parameters, the signature will be invalid for the correct
// ones we parsed. (We don't support custom curves ourselves.)
for i, parent := range chain[1:] {
if parent.PublicKeyAlgorithm != ECDSA {
continue
}
if err := parent.CheckSignature(chain[i].SignatureAlgorithm,
chain[i].RawTBSCertificate, chain[i].Signature); err != nil {
return nil, err
}
}
return [][]*Certificate{chain}, nil
}
func loadSystemRoots() (*CertPool, error) {
// TODO: restore this functionality on Windows. We tried to do
// it in Go 1.8 but had to revert it. See Issue 18609.
// Returning (nil, nil) was the old behavior, prior to CL 30578.
// The if statement here avoids vet complaining about
// unreachable code below.
if true {
return nil, nil
}
const CRYPT_E_NOT_FOUND = 0x80092004
store, err := syscall.CertOpenSystemStore(0, syscall.StringToUTF16Ptr("ROOT"))
if err != nil {
return nil, err
}
defer syscall.CertCloseStore(store, 0)
roots := NewCertPool()
var cert *syscall.CertContext
for {
cert, err = syscall.CertEnumCertificatesInStore(store, cert)
if err != nil {
if errno, ok := err.(syscall.Errno); ok {
if errno == CRYPT_E_NOT_FOUND {
break
}
}
return nil, err
}
if cert == nil {
break
}
// Copy the buf, since ParseCertificate does not create its own copy.
buf := (*[1 << 20]byte)(unsafe.Pointer(cert.EncodedCert))[:cert.Length:cert.Length]
buf2 := make([]byte, cert.Length)
copy(buf2, buf)
if c, err := ParseCertificate(buf2); err == nil {
roots.AddCert(c)
}
}
return roots, nil
}
|