1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
|
// Copyright 2016 Google LLC. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package tls implements functionality for dealing with TLS-encoded data,
// as defined in RFC 5246. This includes parsing and generation of TLS-encoded
// data, together with utility functions for dealing with the DigitallySigned
// TLS type.
package tls
import (
"bytes"
"encoding/binary"
"fmt"
"reflect"
"strconv"
"strings"
)
// This file holds utility functions for TLS encoding/decoding data
// as per RFC 5246 section 4.
// A structuralError suggests that the TLS data is valid, but the Go type
// which is receiving it doesn't match.
type structuralError struct {
field string
msg string
}
func (e structuralError) Error() string {
var prefix string
if e.field != "" {
prefix = e.field + ": "
}
return "tls: structure error: " + prefix + e.msg
}
// A syntaxError suggests that the TLS data is invalid.
type syntaxError struct {
field string
msg string
}
func (e syntaxError) Error() string {
var prefix string
if e.field != "" {
prefix = e.field + ": "
}
return "tls: syntax error: " + prefix + e.msg
}
// Uint24 is an unsigned 3-byte integer.
type Uint24 uint32
// Enum is an unsigned integer.
type Enum uint64
var (
uint8Type = reflect.TypeOf(uint8(0))
uint16Type = reflect.TypeOf(uint16(0))
uint24Type = reflect.TypeOf(Uint24(0))
uint32Type = reflect.TypeOf(uint32(0))
uint64Type = reflect.TypeOf(uint64(0))
enumType = reflect.TypeOf(Enum(0))
)
// Unmarshal parses the TLS-encoded data in b and uses the reflect package to
// fill in an arbitrary value pointed at by val. Because Unmarshal uses the
// reflect package, the structs being written to must use exported fields
// (upper case names).
//
// The mappings between TLS types and Go types is as follows; some fields
// must have tags (to indicate their encoded size).
//
// TLS Go Required Tags
// opaque byte / uint8
// uint8 byte / uint8
// uint16 uint16
// uint24 tls.Uint24
// uint32 uint32
// uint64 uint64
// enum tls.Enum size:S or maxval:N
// Type<N,M> []Type minlen:N,maxlen:M
// opaque[N] [N]byte / [N]uint8
// uint8[N] [N]byte / [N]uint8
// struct { } struct { }
// select(T) {
// case e1: Type *T selector:Field,val:e1
// }
//
// TLS variants (RFC 5246 s4.6.1) are only supported when the value of the
// associated enumeration type is available earlier in the same enclosing
// struct, and each possible variant is marked with a selector tag (to
// indicate which field selects the variants) and a val tag (to indicate
// what value of the selector picks this particular field).
//
// For example, a TLS structure:
//
// enum { e1(1), e2(2) } EnumType;
// struct {
// EnumType sel;
// select(sel) {
// case e1: uint16
// case e2: uint32
// } data;
// } VariantItem;
//
// would have a corresponding Go type:
//
// type VariantItem struct {
// Sel tls.Enum `tls:"maxval:2"`
// Data16 *uint16 `tls:"selector:Sel,val:1"`
// Data32 *uint32 `tls:"selector:Sel,val:2"`
// }
//
// TLS fixed-length vectors of types other than opaque or uint8 are not supported.
//
// For TLS variable-length vectors that are themselves used in other vectors,
// create a single-field structure to represent the inner type. For example, for:
//
// opaque InnerType<1..65535>;
// struct {
// InnerType inners<1,65535>;
// } Something;
//
// convert to:
//
// type InnerType struct {
// Val []byte `tls:"minlen:1,maxlen:65535"`
// }
// type Something struct {
// Inners []InnerType `tls:"minlen:1,maxlen:65535"`
// }
//
// If the encoded value does not fit in the Go type, Unmarshal returns a parse error.
func Unmarshal(b []byte, val interface{}) ([]byte, error) {
return UnmarshalWithParams(b, val, "")
}
// UnmarshalWithParams allows field parameters to be specified for the
// top-level element. The form of the params is the same as the field tags.
func UnmarshalWithParams(b []byte, val interface{}, params string) ([]byte, error) {
info, err := fieldTagToFieldInfo(params, "")
if err != nil {
return nil, err
}
// The passed in interface{} is a pointer (to allow the value to be written
// to); extract the pointed-to object as a reflect.Value, so parseField
// can do various introspection things.
v := reflect.ValueOf(val).Elem()
offset, err := parseField(v, b, 0, info)
if err != nil {
return nil, err
}
return b[offset:], nil
}
// Return the number of bytes needed to encode values up to (and including) x.
func byteCount(x uint64) uint {
switch {
case x < 0x100:
return 1
case x < 0x10000:
return 2
case x < 0x1000000:
return 3
case x < 0x100000000:
return 4
case x < 0x10000000000:
return 5
case x < 0x1000000000000:
return 6
case x < 0x100000000000000:
return 7
default:
return 8
}
}
type fieldInfo struct {
count uint // Number of bytes
countSet bool
minlen uint64 // Only relevant for slices
maxlen uint64 // Only relevant for slices
selector string // Only relevant for select sub-values
val uint64 // Only relevant for select sub-values
name string // Used for better error messages
}
func (i *fieldInfo) fieldName() string {
if i == nil {
return ""
}
return i.name
}
// Given a tag string, return a fieldInfo describing the field.
func fieldTagToFieldInfo(str string, name string) (*fieldInfo, error) {
var info *fieldInfo
// Iterate over clauses in the tag, ignoring any that don't parse properly.
for _, part := range strings.Split(str, ",") {
switch {
case strings.HasPrefix(part, "maxval:"):
if v, err := strconv.ParseUint(part[7:], 10, 64); err == nil {
info = &fieldInfo{count: byteCount(v), countSet: true}
}
case strings.HasPrefix(part, "size:"):
if sz, err := strconv.ParseUint(part[5:], 10, 32); err == nil {
info = &fieldInfo{count: uint(sz), countSet: true}
}
case strings.HasPrefix(part, "maxlen:"):
v, err := strconv.ParseUint(part[7:], 10, 64)
if err != nil {
continue
}
if info == nil {
info = &fieldInfo{}
}
info.count = byteCount(v)
info.countSet = true
info.maxlen = v
case strings.HasPrefix(part, "minlen:"):
v, err := strconv.ParseUint(part[7:], 10, 64)
if err != nil {
continue
}
if info == nil {
info = &fieldInfo{}
}
info.minlen = v
case strings.HasPrefix(part, "selector:"):
if info == nil {
info = &fieldInfo{}
}
info.selector = part[9:]
case strings.HasPrefix(part, "val:"):
v, err := strconv.ParseUint(part[4:], 10, 64)
if err != nil {
continue
}
if info == nil {
info = &fieldInfo{}
}
info.val = v
}
}
if info != nil {
info.name = name
if info.selector == "" {
if info.count < 1 {
return nil, structuralError{name, "field of unknown size in " + str}
} else if info.count > 8 {
return nil, structuralError{name, "specified size too large in " + str}
} else if info.minlen > info.maxlen {
return nil, structuralError{name, "specified length range inverted in " + str}
} else if info.val > 0 {
return nil, structuralError{name, "specified selector value but not field in " + str}
}
}
} else if name != "" {
info = &fieldInfo{name: name}
}
return info, nil
}
// Check that a value fits into a field described by a fieldInfo structure.
func (i fieldInfo) check(val uint64, fldName string) error {
if val >= (1 << (8 * i.count)) {
return structuralError{fldName, fmt.Sprintf("value %d too large for size", val)}
}
if i.maxlen != 0 {
if val < i.minlen {
return structuralError{fldName, fmt.Sprintf("value %d too small for minimum %d", val, i.minlen)}
}
if val > i.maxlen {
return structuralError{fldName, fmt.Sprintf("value %d too large for maximum %d", val, i.maxlen)}
}
}
return nil
}
// readVarUint reads an big-endian unsigned integer of the given size in
// bytes.
func readVarUint(data []byte, info *fieldInfo) (uint64, error) {
if info == nil || !info.countSet {
return 0, structuralError{info.fieldName(), "no field size information available"}
}
if len(data) < int(info.count) {
return 0, syntaxError{info.fieldName(), "truncated variable-length integer"}
}
var result uint64
for i := uint(0); i < info.count; i++ {
result = (result << 8) | uint64(data[i])
}
if err := info.check(result, info.name); err != nil {
return 0, err
}
return result, nil
}
// parseField is the main parsing function. Given a byte slice and an offset
// (in bytes) into the data, it will try to parse a suitable ASN.1 value out
// and store it in the given Value.
func parseField(v reflect.Value, data []byte, initOffset int, info *fieldInfo) (int, error) {
offset := initOffset
rest := data[offset:]
fieldType := v.Type()
// First look for known fixed types.
switch fieldType {
case uint8Type:
if len(rest) < 1 {
return offset, syntaxError{info.fieldName(), "truncated uint8"}
}
v.SetUint(uint64(rest[0]))
offset++
return offset, nil
case uint16Type:
if len(rest) < 2 {
return offset, syntaxError{info.fieldName(), "truncated uint16"}
}
v.SetUint(uint64(binary.BigEndian.Uint16(rest)))
offset += 2
return offset, nil
case uint24Type:
if len(rest) < 3 {
return offset, syntaxError{info.fieldName(), "truncated uint24"}
}
v.SetUint(uint64(data[0])<<16 | uint64(data[1])<<8 | uint64(data[2]))
offset += 3
return offset, nil
case uint32Type:
if len(rest) < 4 {
return offset, syntaxError{info.fieldName(), "truncated uint32"}
}
v.SetUint(uint64(binary.BigEndian.Uint32(rest)))
offset += 4
return offset, nil
case uint64Type:
if len(rest) < 8 {
return offset, syntaxError{info.fieldName(), "truncated uint64"}
}
v.SetUint(uint64(binary.BigEndian.Uint64(rest)))
offset += 8
return offset, nil
}
// Now deal with user-defined types.
switch v.Kind() {
case enumType.Kind():
// Assume that anything of the same kind as Enum is an Enum, so that
// users can alias types of their own to Enum.
val, err := readVarUint(rest, info)
if err != nil {
return offset, err
}
v.SetUint(val)
offset += int(info.count)
return offset, nil
case reflect.Struct:
structType := fieldType
// TLS includes a select(Enum) {..} construct, where the value of an enum
// indicates which variant field is present (like a C union). We require
// that the enum value be an earlier field in the same structure (the selector),
// and that each of the possible variant destination fields be pointers.
// So the Go mapping looks like:
// type variantType struct {
// Which tls.Enum `tls:"size:1"` // this is the selector
// Val1 *type1 `tls:"selector:Which,val:1"` // this is a destination
// Val2 *type2 `tls:"selector:Which,val:1"` // this is a destination
// }
// To deal with this, we track any enum-like fields and their values...
enums := make(map[string]uint64)
// .. and we track which selector names we've seen (in the destination field tags),
// and whether a destination for that selector has been chosen.
selectorSeen := make(map[string]bool)
for i := 0; i < structType.NumField(); i++ {
// Find information about this field.
tag := structType.Field(i).Tag.Get("tls")
fieldInfo, err := fieldTagToFieldInfo(tag, structType.Field(i).Name)
if err != nil {
return offset, err
}
destination := v.Field(i)
if fieldInfo.selector != "" {
// This is a possible select(Enum) destination, so first check that the referenced
// selector field has already been seen earlier in the struct.
choice, ok := enums[fieldInfo.selector]
if !ok {
return offset, structuralError{fieldInfo.name, "selector not seen: " + fieldInfo.selector}
}
if structType.Field(i).Type.Kind() != reflect.Ptr {
return offset, structuralError{fieldInfo.name, "choice field not a pointer type"}
}
// Is this the first mention of the selector field name? If so, remember it.
seen, ok := selectorSeen[fieldInfo.selector]
if !ok {
selectorSeen[fieldInfo.selector] = false
}
if choice != fieldInfo.val {
// This destination field was not the chosen one, so make it nil (we checked
// it was a pointer above).
v.Field(i).Set(reflect.Zero(structType.Field(i).Type))
continue
}
if seen {
// We already saw a different destination field receive the value for this
// selector value, which indicates a badly annotated structure.
return offset, structuralError{fieldInfo.name, "duplicate selector value for " + fieldInfo.selector}
}
selectorSeen[fieldInfo.selector] = true
// Make an object of the pointed-to type and parse into that.
v.Field(i).Set(reflect.New(structType.Field(i).Type.Elem()))
destination = v.Field(i).Elem()
}
offset, err = parseField(destination, data, offset, fieldInfo)
if err != nil {
return offset, err
}
// Remember any possible tls.Enum values encountered in case they are selectors.
if structType.Field(i).Type.Kind() == enumType.Kind() {
enums[structType.Field(i).Name] = v.Field(i).Uint()
}
}
// Now we have seen all fields in the structure, check that all select(Enum) {..} selector
// fields found a destination to put their data in.
for selector, seen := range selectorSeen {
if !seen {
return offset, syntaxError{info.fieldName(), selector + ": unhandled value for selector"}
}
}
return offset, nil
case reflect.Array:
datalen := v.Len()
if datalen > len(rest) {
return offset, syntaxError{info.fieldName(), "truncated array"}
}
inner := rest[:datalen]
offset += datalen
if fieldType.Elem().Kind() != reflect.Uint8 {
// Only byte/uint8 arrays are supported
return offset, structuralError{info.fieldName(), "unsupported array type: " + v.Type().String()}
}
reflect.Copy(v, reflect.ValueOf(inner))
return offset, nil
case reflect.Slice:
sliceType := fieldType
// Slices represent variable-length vectors, which are prefixed by a length field.
// The fieldInfo indicates the size of that length field.
varlen, err := readVarUint(rest, info)
if err != nil {
return offset, err
}
datalen := int(varlen)
offset += int(info.count)
rest = rest[info.count:]
if datalen > len(rest) {
return offset, syntaxError{info.fieldName(), "truncated slice"}
}
inner := rest[:datalen]
offset += datalen
if fieldType.Elem().Kind() == reflect.Uint8 {
// Fast version for []byte
v.Set(reflect.MakeSlice(sliceType, datalen, datalen))
reflect.Copy(v, reflect.ValueOf(inner))
return offset, nil
}
v.Set(reflect.MakeSlice(sliceType, 0, datalen))
single := reflect.New(sliceType.Elem())
for innerOffset := 0; innerOffset < len(inner); {
var err error
innerOffset, err = parseField(single.Elem(), inner, innerOffset, nil)
if err != nil {
return offset, err
}
v.Set(reflect.Append(v, single.Elem()))
}
return offset, nil
default:
return offset, structuralError{info.fieldName(), fmt.Sprintf("unsupported type: %s of kind %s", fieldType, v.Kind())}
}
}
// Marshal returns the TLS encoding of val.
func Marshal(val interface{}) ([]byte, error) {
return MarshalWithParams(val, "")
}
// MarshalWithParams returns the TLS encoding of val, and allows field
// parameters to be specified for the top-level element. The form
// of the params is the same as the field tags.
func MarshalWithParams(val interface{}, params string) ([]byte, error) {
info, err := fieldTagToFieldInfo(params, "")
if err != nil {
return nil, err
}
var out bytes.Buffer
v := reflect.ValueOf(val)
if err := marshalField(&out, v, info); err != nil {
return nil, err
}
return out.Bytes(), err
}
func marshalField(out *bytes.Buffer, v reflect.Value, info *fieldInfo) error {
var prefix string
if info != nil && len(info.name) > 0 {
prefix = info.name + ": "
}
fieldType := v.Type()
// First look for known fixed types.
switch fieldType {
case uint8Type:
out.WriteByte(byte(v.Uint()))
return nil
case uint16Type:
scratch := make([]byte, 2)
binary.BigEndian.PutUint16(scratch, uint16(v.Uint()))
out.Write(scratch)
return nil
case uint24Type:
i := v.Uint()
if i > 0xffffff {
return structuralError{info.fieldName(), fmt.Sprintf("uint24 overflow %d", i)}
}
scratch := make([]byte, 4)
binary.BigEndian.PutUint32(scratch, uint32(i))
out.Write(scratch[1:])
return nil
case uint32Type:
scratch := make([]byte, 4)
binary.BigEndian.PutUint32(scratch, uint32(v.Uint()))
out.Write(scratch)
return nil
case uint64Type:
scratch := make([]byte, 8)
binary.BigEndian.PutUint64(scratch, uint64(v.Uint()))
out.Write(scratch)
return nil
}
// Now deal with user-defined types.
switch v.Kind() {
case enumType.Kind():
i := v.Uint()
if info == nil {
return structuralError{info.fieldName(), "enum field tag missing"}
}
if err := info.check(i, prefix); err != nil {
return err
}
scratch := make([]byte, 8)
binary.BigEndian.PutUint64(scratch, uint64(i))
out.Write(scratch[(8 - info.count):])
return nil
case reflect.Struct:
structType := fieldType
enums := make(map[string]uint64) // Values of any Enum fields
// The comment parseField() describes the mapping of the TLS select(Enum) {..} construct;
// here we have selector and source (rather than destination) fields.
// Track which selector names we've seen (in the source field tags), and whether a source
// value for that selector has been processed.
selectorSeen := make(map[string]bool)
for i := 0; i < structType.NumField(); i++ {
// Find information about this field.
tag := structType.Field(i).Tag.Get("tls")
fieldInfo, err := fieldTagToFieldInfo(tag, structType.Field(i).Name)
if err != nil {
return err
}
source := v.Field(i)
if fieldInfo.selector != "" {
// This field is a possible source for a select(Enum) {..}. First check
// the selector field name has been seen.
choice, ok := enums[fieldInfo.selector]
if !ok {
return structuralError{fieldInfo.name, "selector not seen: " + fieldInfo.selector}
}
if structType.Field(i).Type.Kind() != reflect.Ptr {
return structuralError{fieldInfo.name, "choice field not a pointer type"}
}
// Is this the first mention of the selector field name? If so, remember it.
seen, ok := selectorSeen[fieldInfo.selector]
if !ok {
selectorSeen[fieldInfo.selector] = false
}
if choice != fieldInfo.val {
// This source was not chosen; police that it should be nil.
if v.Field(i).Pointer() != uintptr(0) {
return structuralError{fieldInfo.name, "unchosen field is non-nil"}
}
continue
}
if seen {
// We already saw a different source field generate the value for this
// selector value, which indicates a badly annotated structure.
return structuralError{fieldInfo.name, "duplicate selector value for " + fieldInfo.selector}
}
selectorSeen[fieldInfo.selector] = true
if v.Field(i).Pointer() == uintptr(0) {
return structuralError{fieldInfo.name, "chosen field is nil"}
}
// Marshal from the pointed-to source object.
source = v.Field(i).Elem()
}
var fieldData bytes.Buffer
if err := marshalField(&fieldData, source, fieldInfo); err != nil {
return err
}
out.Write(fieldData.Bytes())
// Remember any tls.Enum values encountered in case they are selectors.
if structType.Field(i).Type.Kind() == enumType.Kind() {
enums[structType.Field(i).Name] = v.Field(i).Uint()
}
}
// Now we have seen all fields in the structure, check that all select(Enum) {..} selector
// fields found a source field to get their data from.
for selector, seen := range selectorSeen {
if !seen {
return syntaxError{info.fieldName(), selector + ": unhandled value for selector"}
}
}
return nil
case reflect.Array:
datalen := v.Len()
arrayType := fieldType
if arrayType.Elem().Kind() != reflect.Uint8 {
// Only byte/uint8 arrays are supported
return structuralError{info.fieldName(), "unsupported array type"}
}
bytes := make([]byte, datalen)
for i := 0; i < datalen; i++ {
bytes[i] = uint8(v.Index(i).Uint())
}
_, err := out.Write(bytes)
return err
case reflect.Slice:
if info == nil {
return structuralError{info.fieldName(), "slice field tag missing"}
}
sliceType := fieldType
if sliceType.Elem().Kind() == reflect.Uint8 {
// Fast version for []byte: first write the length as info.count bytes.
datalen := v.Len()
scratch := make([]byte, 8)
binary.BigEndian.PutUint64(scratch, uint64(datalen))
out.Write(scratch[(8 - info.count):])
if err := info.check(uint64(datalen), prefix); err != nil {
return err
}
// Then just write the data.
bytes := make([]byte, datalen)
for i := 0; i < datalen; i++ {
bytes[i] = uint8(v.Index(i).Uint())
}
_, err := out.Write(bytes)
return err
}
// General version: use a separate Buffer to write the slice entries into.
var innerBuf bytes.Buffer
for i := 0; i < v.Len(); i++ {
if err := marshalField(&innerBuf, v.Index(i), nil); err != nil {
return err
}
}
// Now insert (and check) the size.
size := uint64(innerBuf.Len())
if err := info.check(size, prefix); err != nil {
return err
}
scratch := make([]byte, 8)
binary.BigEndian.PutUint64(scratch, size)
out.Write(scratch[(8 - info.count):])
// Then copy the data.
_, err := out.Write(innerBuf.Bytes())
return err
default:
return structuralError{info.fieldName(), fmt.Sprintf("unsupported type: %s of kind %s", fieldType, v.Kind())}
}
}
|