File: number_types.py

package info (click to toggle)
golang-github-google-flatbuffers 24.12.23-1
  • links: PTS, VCS
  • area: main
  • in suites: experimental, forky, sid, trixie
  • size: 17,704 kB
  • sloc: cpp: 53,217; python: 6,900; cs: 5,566; java: 4,370; php: 1,460; javascript: 1,061; xml: 1,016; sh: 886; makefile: 13
file content (181 lines) | stat: -rw-r--r-- 3,955 bytes parent folder | download | duplicates (27)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
# Copyright 2014 Google Inc. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import collections
import struct

from . import packer
from .compat import import_numpy, NumpyRequiredForThisFeature

np = import_numpy()

# For reference, see:
# https://docs.python.org/2/library/ctypes.html#ctypes-fundamental-data-types-2

# These classes could be collections.namedtuple instances, but those are new
# in 2.6 and we want to work towards 2.5 compatability.

class BoolFlags(object):
    bytewidth = 1
    min_val = False
    max_val = True
    py_type = bool
    name = "bool"
    packer_type = packer.boolean


class Uint8Flags(object):
    bytewidth = 1
    min_val = 0
    max_val = (2**8) - 1
    py_type = int
    name = "uint8"
    packer_type = packer.uint8


class Uint16Flags(object):
    bytewidth = 2
    min_val = 0
    max_val = (2**16) - 1
    py_type = int
    name = "uint16"
    packer_type = packer.uint16


class Uint32Flags(object):
    bytewidth = 4
    min_val = 0
    max_val = (2**32) - 1
    py_type = int
    name = "uint32"
    packer_type = packer.uint32


class Uint64Flags(object):
    bytewidth = 8
    min_val = 0
    max_val = (2**64) - 1
    py_type = int
    name = "uint64"
    packer_type = packer.uint64


class Int8Flags(object):
    bytewidth = 1
    min_val = -(2**7)
    max_val = (2**7) - 1
    py_type = int
    name = "int8"
    packer_type = packer.int8


class Int16Flags(object):
    bytewidth = 2
    min_val = -(2**15)
    max_val = (2**15) - 1
    py_type = int
    name = "int16"
    packer_type = packer.int16


class Int32Flags(object):
    bytewidth = 4
    min_val = -(2**31)
    max_val = (2**31) - 1
    py_type = int
    name = "int32"
    packer_type = packer.int32


class Int64Flags(object):
    bytewidth = 8
    min_val = -(2**63)
    max_val = (2**63) - 1
    py_type = int
    name = "int64"
    packer_type = packer.int64


class Float32Flags(object):
    bytewidth = 4
    min_val = None
    max_val = None
    py_type = float
    name = "float32"
    packer_type = packer.float32


class Float64Flags(object):
    bytewidth = 8
    min_val = None
    max_val = None
    py_type = float
    name = "float64"
    packer_type = packer.float64


class SOffsetTFlags(Int32Flags):
    pass


class UOffsetTFlags(Uint32Flags):
    pass


class VOffsetTFlags(Uint16Flags):
    pass


def valid_number(n, flags):
    if flags.min_val is None and flags.max_val is None:
        return True
    return flags.min_val <= n <= flags.max_val


def enforce_number(n, flags):
    if flags.min_val is None and flags.max_val is None:
        return
    if not flags.min_val <= n <= flags.max_val:
        raise TypeError("bad number %s for type %s" % (str(n), flags.name))


def float32_to_uint32(n):
    packed = struct.pack("<1f", n)
    (converted,) = struct.unpack("<1L", packed)
    return converted


def uint32_to_float32(n):
    packed = struct.pack("<1L", n)
    (unpacked,) = struct.unpack("<1f", packed)
    return unpacked


def float64_to_uint64(n):
    packed = struct.pack("<1d", n)
    (converted,) = struct.unpack("<1Q", packed)
    return converted


def uint64_to_float64(n):
    packed = struct.pack("<1Q", n)
    (unpacked,) = struct.unpack("<1d", packed)
    return unpacked


def to_numpy_type(number_type):
    if np is not None:
        return np.dtype(number_type.name).newbyteorder('<')
    else:
        raise NumpyRequiredForThisFeature('Numpy was not found.')