1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
|
#include "monster_test.h"
#include <limits>
#include <vector>
#include "flatbuffers/base.h"
#include "flatbuffers/flatbuffer_builder.h"
#include "flatbuffers/flatbuffers.h"
#include "flatbuffers/idl.h"
#include "flatbuffers/registry.h"
#include "flatbuffers/verifier.h"
#include "is_quiet_nan.h"
#include "monster_extra_generated.h"
#include "monster_test_generated.h"
#include "test_assert.h"
namespace flatbuffers {
namespace tests {
// Shortcuts for the infinity.
static const auto infinity_f = std::numeric_limits<float>::infinity();
static const auto infinity_d = std::numeric_limits<double>::infinity();
using namespace MyGame::Example;
// example of how to build up a serialized buffer algorithmically:
flatbuffers::DetachedBuffer CreateFlatBufferTest(std::string &buffer) {
flatbuffers::FlatBufferBuilder builder;
auto vec = Vec3(1, 2, 3, 0, Color_Red, Test(10, 20));
auto name = builder.CreateString("MyMonster");
// Use the initializer_list specialization of CreateVector.
auto inventory =
builder.CreateVector<uint8_t>({ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 });
// Alternatively, create the vector first, and fill in data later:
// unsigned char *inv_buf = nullptr;
// auto inventory = builder.CreateUninitializedVector<unsigned char>(
// 10, &inv_buf);
// memcpy(inv_buf, inv_data, 10);
Test tests[] = { Test(10, 20), Test(30, 40) };
auto testv = builder.CreateVectorOfStructs(tests, 2);
// Create a vector of structures from a lambda.
auto testv2 = builder.CreateVectorOfStructs<Test>(
2, [&](size_t i, Test *s) -> void { *s = tests[i]; });
// create monster with very few fields set:
// (same functionality as CreateMonster below, but sets fields manually)
flatbuffers::Offset<Monster> mlocs[3];
auto fred = builder.CreateString("Fred");
auto barney = builder.CreateString("Barney");
auto wilma = builder.CreateString("Wilma");
MonsterBuilder mb1(builder);
mb1.add_name(fred);
mlocs[0] = mb1.Finish();
MonsterBuilder mb2(builder);
mb2.add_name(barney);
mb2.add_hp(1000);
mlocs[1] = mb2.Finish();
MonsterBuilder mb3(builder);
mb3.add_name(wilma);
mlocs[2] = mb3.Finish();
// Create an array of strings. Also test string pooling, and lambdas.
auto vecofstrings =
builder.CreateVector<flatbuffers::Offset<flatbuffers::String>>(
4,
[](size_t i, flatbuffers::FlatBufferBuilder *b)
-> flatbuffers::Offset<flatbuffers::String> {
static const char *names[] = { "bob", "fred", "bob", "fred" };
return b->CreateSharedString(names[i]);
},
&builder);
// Creating vectors of strings in one convenient call.
std::vector<std::string> names2;
names2.push_back("jane");
names2.push_back("mary");
auto vecofstrings2 = builder.CreateVectorOfStrings(names2);
// Creating vectors from types that are different from std::string
std::vector<const char *> names3;
names3.push_back("foo");
names3.push_back("bar");
builder.CreateVectorOfStrings(names3); // Also an accepted type
#ifdef FLATBUFFERS_HAS_STRING_VIEW
std::vector<flatbuffers::string_view> names4;
names3.push_back("baz");
names3.push_back("quux");
builder.CreateVectorOfStrings(names4); // Also an accepted type
#endif
// Make sure the template deduces an initializer as std::vector<std::string>
builder.CreateVectorOfStrings({ "hello", "world" });
// Create many vectors of strings
std::vector<std::string> manyNames;
for (auto i = 0; i < 100; i++) { manyNames.push_back("john_doe"); }
auto manyNamesVec = builder.CreateVectorOfStrings(manyNames);
TEST_EQ(false, manyNamesVec.IsNull());
auto manyNamesVec2 =
builder.CreateVectorOfStrings(manyNames.cbegin(), manyNames.cend());
TEST_EQ(false, manyNamesVec2.IsNull());
// Create an array of sorted tables, can be used with binary search when read:
auto vecoftables = builder.CreateVectorOfSortedTables(mlocs, 3);
// Create an array of sorted structs,
// can be used with binary search when read:
std::vector<Ability> abilities;
abilities.push_back(Ability(4, 40));
abilities.push_back(Ability(3, 30));
abilities.push_back(Ability(2, 20));
abilities.push_back(Ability(0, 0));
auto vecofstructs = builder.CreateVectorOfSortedStructs(&abilities);
flatbuffers::Offset<Stat> mlocs_stats[1];
auto miss = builder.CreateString("miss");
StatBuilder mb_miss(builder);
mb_miss.add_id(miss);
mb_miss.add_val(0);
mb_miss.add_count(0); // key
mlocs_stats[0] = mb_miss.Finish();
auto vec_of_stats = builder.CreateVectorOfSortedTables(mlocs_stats, 1);
// Create a nested FlatBuffer.
// Nested FlatBuffers are stored in a ubyte vector, which can be convenient
// since they can be memcpy'd around much easier than other FlatBuffer
// values. They have little overhead compared to storing the table directly.
// As a test, create a mostly empty Monster buffer:
flatbuffers::FlatBufferBuilder nested_builder;
auto nmloc = CreateMonster(nested_builder, nullptr, 0, 0,
nested_builder.CreateString("NestedMonster"));
FinishMonsterBuffer(nested_builder, nmloc);
// Now we can store the buffer in the parent. Note that by default, vectors
// are only aligned to their elements or size field, so in this case if the
// buffer contains 64-bit elements, they may not be correctly aligned. We fix
// that with:
builder.ForceVectorAlignment(nested_builder.GetSize(), sizeof(uint8_t),
nested_builder.GetBufferMinAlignment());
// If for whatever reason you don't have the nested_builder available, you
// can substitute flatbuffers::largest_scalar_t (64-bit) for the alignment, or
// the largest force_align value in your schema if you're using it.
auto nested_flatbuffer_vector = builder.CreateVector(
nested_builder.GetBufferPointer(), nested_builder.GetSize());
// Test a nested FlexBuffer:
flexbuffers::Builder flexbuild;
flexbuild.Int(1234);
flexbuild.Finish();
auto flex = builder.CreateVector(flexbuild.GetBuffer());
// Test vector of enums.
Color colors[] = { Color_Blue, Color_Green };
// We use this special creation function because we have an array of
// pre-C++11 (enum class) enums whose size likely is int, yet its declared
// type in the schema is byte.
auto vecofcolors = builder.CreateVectorScalarCast<uint8_t, Color>(colors, 2);
// shortcut for creating monster with all fields set:
auto mloc = CreateMonster(
builder, &vec, 150, 80, name, inventory, Color_Blue, Any_Monster,
mlocs[1].Union(), // Store a union.
testv, vecofstrings, vecoftables, 0, nested_flatbuffer_vector, 0, false,
0, 0, 0, 0, 0, 0, 0, 0, 0, 3.14159f, 3.0f, 0.0f, vecofstrings2,
vecofstructs, flex, testv2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
AnyUniqueAliases_NONE, 0, AnyAmbiguousAliases_NONE, 0, vecofcolors,
MyGame::Example::Race_None, 0, vec_of_stats);
FinishMonsterBuffer(builder, mloc);
// clang-format off
#ifdef FLATBUFFERS_TEST_VERBOSE
// print byte data for debugging:
auto p = builder.GetBufferPointer();
for (flatbuffers::uoffset_t i = 0; i < builder.GetSize(); i++)
printf("%d ", p[i]);
#endif
// clang-format on
// return the buffer for the caller to use.
auto bufferpointer =
reinterpret_cast<const char *>(builder.GetBufferPointer());
buffer.assign(bufferpointer, bufferpointer + builder.GetSize());
return builder.Release();
}
// example of accessing a buffer loaded in memory:
void AccessFlatBufferTest(const uint8_t *flatbuf, size_t length, bool pooled) {
// First, verify the buffers integrity (optional)
flatbuffers::Verifier verifier(flatbuf, length);
std::vector<uint8_t> flex_reuse_tracker;
verifier.SetFlexReuseTracker(&flex_reuse_tracker);
TEST_EQ(VerifyMonsterBuffer(verifier), true);
// clang-format off
#ifdef FLATBUFFERS_TRACK_VERIFIER_BUFFER_SIZE
std::vector<uint8_t> test_buff;
test_buff.resize(length * 2);
std::memcpy(&test_buff[0], flatbuf, length);
std::memcpy(&test_buff[length], flatbuf, length);
flatbuffers::Verifier verifier1(&test_buff[0], length);
TEST_EQ(VerifyMonsterBuffer(verifier1), true);
TEST_EQ(verifier1.GetComputedSize(), length);
flatbuffers::Verifier verifier2(&test_buff[length], length);
TEST_EQ(VerifyMonsterBuffer(verifier2), true);
TEST_EQ(verifier2.GetComputedSize(), length);
#endif
// clang-format on
TEST_EQ(strcmp(MonsterIdentifier(), "MONS"), 0);
TEST_EQ(MonsterBufferHasIdentifier(flatbuf), true);
TEST_EQ(strcmp(MonsterExtension(), "mon"), 0);
// Access the buffer from the root.
auto monster = GetMonster(flatbuf);
TEST_EQ(monster->hp(), 80);
TEST_EQ(monster->mana(), 150); // default
TEST_EQ_STR(monster->name()->c_str(), "MyMonster");
// Can't access the following field, it is deprecated in the schema,
// which means accessors are not generated:
// monster.friendly()
auto pos = monster->pos();
TEST_NOTNULL(pos);
TEST_EQ(pos->z(), 3);
TEST_EQ(pos->test3().a(), 10);
TEST_EQ(pos->test3().b(), 20);
auto inventory = monster->inventory();
TEST_EQ(VectorLength(inventory), 10UL); // Works even if inventory is null.
TEST_NOTNULL(inventory);
unsigned char inv_data[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
// Check compatibilty of iterators with STL.
std::vector<unsigned char> inv_vec(inventory->begin(), inventory->end());
size_t n = 0;
for (auto it = inventory->begin(); it != inventory->end(); ++it, ++n) {
auto indx = it - inventory->begin();
TEST_EQ(*it, inv_vec.at(indx)); // Use bounds-check.
TEST_EQ(*it, inv_data[indx]);
}
TEST_EQ(n, inv_vec.size());
n = 0;
for (auto it = inventory->cbegin(); it != inventory->cend(); ++it, ++n) {
auto indx = it - inventory->cbegin();
TEST_EQ(*it, inv_vec.at(indx)); // Use bounds-check.
TEST_EQ(*it, inv_data[indx]);
}
TEST_EQ(n, inv_vec.size());
n = 0;
for (auto it = inventory->rbegin(); it != inventory->rend(); ++it, ++n) {
auto indx = inventory->rend() - it - 1;
TEST_EQ(*it, inv_vec.at(indx)); // Use bounds-check.
TEST_EQ(*it, inv_data[indx]);
}
TEST_EQ(n, inv_vec.size());
n = 0;
for (auto it = inventory->crbegin(); it != inventory->crend(); ++it, ++n) {
auto indx = inventory->crend() - it - 1;
TEST_EQ(*it, inv_vec.at(indx)); // Use bounds-check.
TEST_EQ(*it, inv_data[indx]);
}
TEST_EQ(n, inv_vec.size());
TEST_EQ(monster->color(), Color_Blue);
// Example of accessing a union:
TEST_EQ(monster->test_type(), Any_Monster); // First make sure which it is.
auto monster2 = reinterpret_cast<const Monster *>(monster->test());
TEST_NOTNULL(monster2);
TEST_EQ_STR(monster2->name()->c_str(), "Fred");
// Example of accessing a vector of strings:
auto vecofstrings = monster->testarrayofstring();
TEST_EQ(vecofstrings->size(), 4U);
TEST_EQ_STR(vecofstrings->Get(0)->c_str(), "bob");
TEST_EQ_STR(vecofstrings->Get(1)->c_str(), "fred");
if (pooled) {
// These should have pointer equality because of string pooling.
TEST_EQ(vecofstrings->Get(0)->c_str(), vecofstrings->Get(2)->c_str());
TEST_EQ(vecofstrings->Get(1)->c_str(), vecofstrings->Get(3)->c_str());
}
auto vecofstrings2 = monster->testarrayofstring2();
if (vecofstrings2) {
TEST_EQ(vecofstrings2->size(), 2U);
TEST_EQ_STR(vecofstrings2->Get(0)->c_str(), "jane");
TEST_EQ_STR(vecofstrings2->Get(1)->c_str(), "mary");
}
// Example of accessing a vector of tables:
auto vecoftables = monster->testarrayoftables();
TEST_EQ(vecoftables->size(), 3U);
for (auto it = vecoftables->begin(); it != vecoftables->end(); ++it) {
TEST_EQ(strlen(it->name()->c_str()) >= 4, true);
}
TEST_EQ_STR(vecoftables->Get(0)->name()->c_str(), "Barney");
TEST_EQ(vecoftables->Get(0)->hp(), 1000);
TEST_EQ_STR(vecoftables->Get(1)->name()->c_str(), "Fred");
TEST_EQ_STR(vecoftables->Get(2)->name()->c_str(), "Wilma");
TEST_NOTNULL(vecoftables->LookupByKey("Barney"));
TEST_NOTNULL(vecoftables->LookupByKey("Fred"));
TEST_NOTNULL(vecoftables->LookupByKey("Wilma"));
// Verify the same objects are returned for char*-based and string-based
// lookups.
TEST_EQ(vecoftables->LookupByKey("Barney"),
vecoftables->LookupByKey(std::string("Barney")));
TEST_EQ(vecoftables->LookupByKey("Fred"),
vecoftables->LookupByKey(std::string("Fred")));
TEST_EQ(vecoftables->LookupByKey("Wilma"),
vecoftables->LookupByKey(std::string("Wilma")));
#ifdef FLATBUFFERS_HAS_STRING_VIEW
// Tests for LookupByKey with a key that is a truncated
// version of a longer, invalid key.
const std::string invalid_key = "Barney123";
std::string_view valid_truncated_key = invalid_key;
valid_truncated_key.remove_suffix(3); // "Barney"
TEST_NOTNULL(vecoftables->LookupByKey(valid_truncated_key));
TEST_EQ(vecoftables->LookupByKey("Barney"),
vecoftables->LookupByKey(valid_truncated_key));
// Tests for LookupByKey with a key that is a truncated
// version of a longer, valid key.
const std::string valid_key = "Barney";
std::string_view invalid_truncated_key = valid_key;
invalid_truncated_key.remove_suffix(3); // "Bar"
TEST_NULL(vecoftables->LookupByKey(invalid_truncated_key));
#endif // FLATBUFFERS_HAS_STRING_VIEW
// Test accessing a vector of sorted structs
auto vecofstructs = monster->testarrayofsortedstruct();
if (vecofstructs) { // not filled in monster_test.bfbs
for (flatbuffers::uoffset_t i = 0; i < vecofstructs->size() - 1; i++) {
auto left = vecofstructs->Get(i);
auto right = vecofstructs->Get(i + 1);
TEST_EQ(true, (left->KeyCompareLessThan(right)));
}
TEST_NOTNULL(vecofstructs->LookupByKey(0)); // test default value
TEST_NOTNULL(vecofstructs->LookupByKey(3));
TEST_EQ(static_cast<const Ability *>(nullptr),
vecofstructs->LookupByKey(5));
}
if (auto vec_of_stat = monster->scalar_key_sorted_tables()) {
auto stat_0 = vec_of_stat->LookupByKey(static_cast<uint16_t>(0u));
TEST_NOTNULL(stat_0);
TEST_NOTNULL(stat_0->id());
TEST_EQ(0, stat_0->count());
TEST_EQ_STR("miss", stat_0->id()->c_str());
}
// Test nested FlatBuffers if available:
auto nested_buffer = monster->testnestedflatbuffer();
if (nested_buffer) {
// nested_buffer is a vector of bytes you can memcpy. However, if you
// actually want to access the nested data, this is a convenient
// accessor that directly gives you the root table:
auto nested_monster = monster->testnestedflatbuffer_nested_root();
TEST_EQ_STR(nested_monster->name()->c_str(), "NestedMonster");
}
// Test flexbuffer if available:
auto flex = monster->flex();
// flex is a vector of bytes you can memcpy etc.
TEST_EQ(flex->size(), 4); // Encoded FlexBuffer bytes.
// However, if you actually want to access the nested data, this is a
// convenient accessor that directly gives you the root value:
TEST_EQ(monster->flex_flexbuffer_root().AsInt16(), 1234);
// Test vector of enums:
auto colors = monster->vector_of_enums();
if (colors) {
TEST_EQ(colors->size(), 2);
TEST_EQ(colors->Get(0), Color_Blue);
TEST_EQ(colors->Get(1), Color_Green);
}
// Since Flatbuffers uses explicit mechanisms to override the default
// compiler alignment, double check that the compiler indeed obeys them:
// (Test consists of a short and byte):
TEST_EQ(flatbuffers::AlignOf<Test>(), 2UL);
TEST_EQ(sizeof(Test), 4UL);
const flatbuffers::Vector<const Test *> *tests_array[] = {
monster->test4(),
monster->test5(),
};
for (size_t i = 0; i < sizeof(tests_array) / sizeof(tests_array[0]); ++i) {
auto tests = tests_array[i];
TEST_NOTNULL(tests);
auto test_0 = tests->Get(0);
auto test_1 = tests->Get(1);
TEST_EQ(test_0->a(), 10);
TEST_EQ(test_0->b(), 20);
TEST_EQ(test_1->a(), 30);
TEST_EQ(test_1->b(), 40);
for (auto it = tests->begin(); it != tests->end(); ++it) {
TEST_EQ(it->a() == 10 || it->a() == 30, true); // Just testing iterators.
}
}
// Checking for presence of fields:
TEST_EQ(flatbuffers::IsFieldPresent(monster, Monster::VT_HP), true);
TEST_EQ(flatbuffers::IsFieldPresent(monster, Monster::VT_MANA), false);
// Obtaining a buffer from a root:
TEST_EQ(GetBufferStartFromRootPointer(monster), flatbuf);
}
// Change a FlatBuffer in-place, after it has been constructed.
void MutateFlatBuffersTest(uint8_t *flatbuf, std::size_t length) {
// Get non-const pointer to root.
auto monster = GetMutableMonster(flatbuf);
// Each of these tests mutates, then tests, then set back to the original,
// so we can test that the buffer in the end still passes our original test.
auto hp_ok = monster->mutate_hp(10);
TEST_EQ(hp_ok, true); // Field was present.
TEST_EQ(monster->hp(), 10);
// Mutate to default value
auto hp_ok_default = monster->mutate_hp(100);
TEST_EQ(hp_ok_default, true); // Field was present.
TEST_EQ(monster->hp(), 100);
// Test that mutate to default above keeps field valid for further mutations
auto hp_ok_2 = monster->mutate_hp(20);
TEST_EQ(hp_ok_2, true);
TEST_EQ(monster->hp(), 20);
monster->mutate_hp(80);
// Monster originally at 150 mana (default value)
auto mana_default_ok = monster->mutate_mana(150); // Mutate to default value.
TEST_EQ(mana_default_ok,
true); // Mutation should succeed, because default value.
TEST_EQ(monster->mana(), 150);
auto mana_ok = monster->mutate_mana(10);
TEST_EQ(mana_ok, false); // Field was NOT present, because default value.
TEST_EQ(monster->mana(), 150);
// Mutate structs.
auto pos = monster->mutable_pos();
auto &test3 = pos->mutable_test3(); // Struct inside a struct.
test3.mutate_a(50); // Struct fields never fail.
TEST_EQ(test3.a(), 50);
test3.mutate_a(10);
// Mutate vectors.
auto inventory = monster->mutable_inventory();
inventory->Mutate(9, 100);
TEST_EQ(inventory->Get(9), 100);
inventory->Mutate(9, 9);
auto tables = monster->mutable_testarrayoftables();
auto first = tables->GetMutableObject(0);
TEST_EQ(first->hp(), 1000);
first->mutate_hp(0);
TEST_EQ(first->hp(), 0);
first->mutate_hp(1000);
// Test for each loop over mutable entries
for (auto item : *tables) {
TEST_EQ(item->hp(), 1000);
item->mutate_hp(0);
TEST_EQ(item->hp(), 0);
item->mutate_hp(1000);
break; // one iteration is enough, just testing compilation
}
// Mutate via LookupByKey
TEST_NOTNULL(tables->MutableLookupByKey("Barney"));
TEST_EQ(static_cast<Monster *>(nullptr),
tables->MutableLookupByKey("DoesntExist"));
TEST_EQ(tables->MutableLookupByKey("Barney")->hp(), 1000);
TEST_EQ(tables->MutableLookupByKey("Barney")->mutate_hp(0), true);
TEST_EQ(tables->LookupByKey("Barney")->hp(), 0);
TEST_EQ(tables->MutableLookupByKey("Barney")->mutate_hp(1000), true);
// Run the verifier and the regular test to make sure we didn't trample on
// anything.
AccessFlatBufferTest(flatbuf, length);
}
// Unpack a FlatBuffer into objects.
void ObjectFlatBuffersTest(uint8_t *flatbuf) {
// Optional: we can specify resolver and rehasher functions to turn hashed
// strings into object pointers and back, to implement remote references
// and such.
auto resolver = flatbuffers::resolver_function_t(
[](void **pointer_adr, flatbuffers::hash_value_t hash) {
(void)pointer_adr;
(void)hash;
// Don't actually do anything, leave variable null.
});
auto rehasher = flatbuffers::rehasher_function_t(
[](void *pointer) -> flatbuffers::hash_value_t {
(void)pointer;
return 0;
});
// Turn a buffer into C++ objects.
auto monster1 = UnPackMonster(flatbuf, &resolver);
// Re-serialize the data.
flatbuffers::FlatBufferBuilder fbb1;
fbb1.Finish(CreateMonster(fbb1, monster1.get(), &rehasher),
MonsterIdentifier());
// Unpack again, and re-serialize again.
auto monster2 = UnPackMonster(fbb1.GetBufferPointer(), &resolver);
flatbuffers::FlatBufferBuilder fbb2;
fbb2.Finish(CreateMonster(fbb2, monster2.get(), &rehasher),
MonsterIdentifier());
// Now we've gone full round-trip, the two buffers should match.
const auto len1 = fbb1.GetSize();
const auto len2 = fbb2.GetSize();
TEST_EQ(len1, len2);
TEST_EQ(memcmp(fbb1.GetBufferPointer(), fbb2.GetBufferPointer(), len1), 0);
// Test it with the original buffer test to make sure all data survived.
AccessFlatBufferTest(fbb2.GetBufferPointer(), len2, false);
// Test accessing fields, similar to AccessFlatBufferTest above.
CheckMonsterObject(monster2.get());
// Test object copy.
MonsterT monster3 = *monster2;
flatbuffers::FlatBufferBuilder fbb3;
fbb3.Finish(CreateMonster(fbb3, &monster3, &rehasher), MonsterIdentifier());
const auto len3 = fbb3.GetSize();
TEST_EQ(len2, len3);
TEST_EQ(memcmp(fbb2.GetBufferPointer(), fbb3.GetBufferPointer(), len2), 0);
// Delete monster1 and monster2, then test accessing fields in monster3.
monster1.reset();
monster2.reset();
CheckMonsterObject(&monster3);
}
// Utility function to check a Monster object.
void CheckMonsterObject(MonsterT *monster2) {
TEST_EQ(monster2->hp, 80);
TEST_EQ(monster2->mana, 150); // default
TEST_EQ_STR(monster2->name.c_str(), "MyMonster");
auto &pos = monster2->pos;
TEST_NOTNULL(pos);
TEST_EQ(pos->z(), 3);
TEST_EQ(pos->test3().a(), 10);
TEST_EQ(pos->test3().b(), 20);
auto &inventory = monster2->inventory;
TEST_EQ(inventory.size(), 10UL);
unsigned char inv_data[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
for (auto it = inventory.begin(); it != inventory.end(); ++it)
TEST_EQ(*it, inv_data[it - inventory.begin()]);
TEST_EQ(monster2->color, Color_Blue);
auto monster3 = monster2->test.AsMonster();
TEST_NOTNULL(monster3);
TEST_EQ_STR(monster3->name.c_str(), "Fred");
auto &vecofstrings = monster2->testarrayofstring;
TEST_EQ(vecofstrings.size(), 4U);
TEST_EQ_STR(vecofstrings[0].c_str(), "bob");
TEST_EQ_STR(vecofstrings[1].c_str(), "fred");
auto &vecofstrings2 = monster2->testarrayofstring2;
TEST_EQ(vecofstrings2.size(), 2U);
TEST_EQ_STR(vecofstrings2[0].c_str(), "jane");
TEST_EQ_STR(vecofstrings2[1].c_str(), "mary");
auto &vecoftables = monster2->testarrayoftables;
TEST_EQ(vecoftables.size(), 3U);
TEST_EQ_STR(vecoftables[0]->name.c_str(), "Barney");
TEST_EQ(vecoftables[0]->hp, 1000);
TEST_EQ_STR(vecoftables[1]->name.c_str(), "Fred");
TEST_EQ_STR(vecoftables[2]->name.c_str(), "Wilma");
auto &tests = monster2->test4;
TEST_EQ(tests[0].a(), 10);
TEST_EQ(tests[0].b(), 20);
TEST_EQ(tests[1].a(), 30);
TEST_EQ(tests[1].b(), 40);
}
// Prefix a FlatBuffer with a size field.
void SizePrefixedTest() {
// Create size prefixed buffer.
flatbuffers::FlatBufferBuilder fbb;
FinishSizePrefixedMonsterBuffer(
fbb, CreateMonster(fbb, nullptr, 200, 300, fbb.CreateString("bob")));
// Verify it.
flatbuffers::Verifier verifier(fbb.GetBufferPointer(), fbb.GetSize());
TEST_EQ(VerifySizePrefixedMonsterBuffer(verifier), true);
// The prefixed size doesn't include itself, so substract the size of the
// prefix
TEST_EQ(GetPrefixedSize(fbb.GetBufferPointer()),
fbb.GetSize() - sizeof(uoffset_t));
// Getting the buffer length does include the prefix size, so it should be the
// full lenght.
TEST_EQ(GetSizePrefixedBufferLength(fbb.GetBufferPointer()), fbb.GetSize());
// Access it.
auto m = GetSizePrefixedMonster(fbb.GetBufferPointer());
TEST_EQ(m->mana(), 200);
TEST_EQ(m->hp(), 300);
TEST_EQ_STR(m->name()->c_str(), "bob");
{
// Verify that passing a larger size is OK, but not a smaller
flatbuffers::Verifier verifier_larger(fbb.GetBufferPointer(),
fbb.GetSize() + 10);
TEST_EQ(VerifySizePrefixedMonsterBuffer(verifier_larger), true);
flatbuffers::Verifier verifier_smaller(fbb.GetBufferPointer(),
fbb.GetSize() - 10);
TEST_EQ(VerifySizePrefixedMonsterBuffer(verifier_smaller), false);
}
}
void TestMonsterExtraFloats(const std::string &tests_data_path) {
#if defined(FLATBUFFERS_HAS_NEW_STRTOD) && (FLATBUFFERS_HAS_NEW_STRTOD > 0)
TEST_EQ(is_quiet_nan(1.0), false);
TEST_EQ(is_quiet_nan(infinity_d), false);
TEST_EQ(is_quiet_nan(-infinity_f), false);
TEST_EQ(is_quiet_nan(std::numeric_limits<float>::quiet_NaN()), true);
TEST_EQ(is_quiet_nan(std::numeric_limits<double>::quiet_NaN()), true);
using namespace flatbuffers;
using namespace MyGame;
// Load FlatBuffer schema (.fbs) from disk.
std::string schemafile;
TEST_EQ(LoadFile((tests_data_path + "monster_extra.fbs").c_str(), false,
&schemafile),
true);
// Parse schema first, so we can use it to parse the data after.
Parser parser;
auto include_test_path = ConCatPathFileName(tests_data_path, "include_test");
const char *include_directories[] = { tests_data_path.c_str(),
include_test_path.c_str(), nullptr };
TEST_EQ(parser.Parse(schemafile.c_str(), include_directories), true);
// Create empty extra and store to json.
parser.opts.output_default_scalars_in_json = true;
parser.opts.output_enum_identifiers = true;
FlatBufferBuilder builder;
const auto def_root = MonsterExtraBuilder(builder).Finish();
FinishMonsterExtraBuffer(builder, def_root);
const auto def_obj = builder.GetBufferPointer();
const auto def_extra = GetMonsterExtra(def_obj);
TEST_NOTNULL(def_extra);
TEST_EQ(is_quiet_nan(def_extra->f0()), true);
TEST_EQ(is_quiet_nan(def_extra->f1()), true);
TEST_EQ(def_extra->f2(), +infinity_f);
TEST_EQ(def_extra->f3(), -infinity_f);
TEST_EQ(is_quiet_nan(def_extra->d0()), true);
TEST_EQ(is_quiet_nan(def_extra->d1()), true);
TEST_EQ(def_extra->d2(), +infinity_d);
TEST_EQ(def_extra->d3(), -infinity_d);
std::string jsongen;
auto result = GenText(parser, def_obj, &jsongen);
TEST_NULL(result);
// Check expected default values.
TEST_EQ(std::string::npos != jsongen.find("f0: nan"), true);
TEST_EQ(std::string::npos != jsongen.find("f1: nan"), true);
TEST_EQ(std::string::npos != jsongen.find("f2: inf"), true);
TEST_EQ(std::string::npos != jsongen.find("f3: -inf"), true);
TEST_EQ(std::string::npos != jsongen.find("d0: nan"), true);
TEST_EQ(std::string::npos != jsongen.find("d1: nan"), true);
TEST_EQ(std::string::npos != jsongen.find("d2: inf"), true);
TEST_EQ(std::string::npos != jsongen.find("d3: -inf"), true);
// Parse 'mosterdata_extra.json'.
const auto extra_base = tests_data_path + "monsterdata_extra";
jsongen = "";
TEST_EQ(LoadFile((extra_base + ".json").c_str(), false, &jsongen), true);
TEST_EQ(parser.Parse(jsongen.c_str()), true);
const auto test_file = parser.builder_.GetBufferPointer();
const auto test_size = parser.builder_.GetSize();
Verifier verifier(test_file, test_size);
TEST_ASSERT(VerifyMonsterExtraBuffer(verifier));
const auto extra = GetMonsterExtra(test_file);
TEST_NOTNULL(extra);
TEST_EQ(is_quiet_nan(extra->f0()), true);
TEST_EQ(is_quiet_nan(extra->f1()), true);
TEST_EQ(extra->f2(), +infinity_f);
TEST_EQ(extra->f3(), -infinity_f);
TEST_EQ(is_quiet_nan(extra->d0()), true);
TEST_EQ(extra->d1(), +infinity_d);
TEST_EQ(extra->d2(), -infinity_d);
TEST_EQ(is_quiet_nan(extra->d3()), true);
TEST_NOTNULL(extra->fvec());
TEST_EQ(extra->fvec()->size(), 4);
TEST_EQ(extra->fvec()->Get(0), 1.0f);
TEST_EQ(extra->fvec()->Get(1), -infinity_f);
TEST_EQ(extra->fvec()->Get(2), +infinity_f);
TEST_EQ(is_quiet_nan(extra->fvec()->Get(3)), true);
TEST_NOTNULL(extra->dvec());
TEST_EQ(extra->dvec()->size(), 4);
TEST_EQ(extra->dvec()->Get(0), 2.0);
TEST_EQ(extra->dvec()->Get(1), +infinity_d);
TEST_EQ(extra->dvec()->Get(2), -infinity_d);
TEST_EQ(is_quiet_nan(extra->dvec()->Get(3)), true);
#endif
}
void EnumNamesTest() {
TEST_EQ_STR("Red", EnumNameColor(Color_Red));
TEST_EQ_STR("Green", EnumNameColor(Color_Green));
TEST_EQ_STR("Blue", EnumNameColor(Color_Blue));
// Check that Color to string don't crash while decode a mixture of Colors.
// 1) Example::Color enum is enum with unfixed underlying type.
// 2) Valid enum range: [0; 2^(ceil(log2(Color_ANY))) - 1].
// Consequence: A value is out of this range will lead to UB (since C++17).
// For details see C++17 standard or explanation on the SO:
// stackoverflow.com/questions/18195312/what-happens-if-you-static-cast-invalid-value-to-enum-class
TEST_EQ_STR("", EnumNameColor(static_cast<Color>(0)));
TEST_EQ_STR("", EnumNameColor(static_cast<Color>(Color_ANY - 1)));
TEST_EQ_STR("", EnumNameColor(static_cast<Color>(Color_ANY + 1)));
}
void TypeAliasesTest() {
flatbuffers::FlatBufferBuilder builder;
builder.Finish(CreateTypeAliases(
builder, flatbuffers::numeric_limits<int8_t>::min(),
flatbuffers::numeric_limits<uint8_t>::max(),
flatbuffers::numeric_limits<int16_t>::min(),
flatbuffers::numeric_limits<uint16_t>::max(),
flatbuffers::numeric_limits<int32_t>::min(),
flatbuffers::numeric_limits<uint32_t>::max(),
flatbuffers::numeric_limits<int64_t>::min(),
flatbuffers::numeric_limits<uint64_t>::max(), 2.3f, 2.3));
auto p = builder.GetBufferPointer();
auto ta = flatbuffers::GetRoot<TypeAliases>(p);
TEST_EQ(ta->i8(), flatbuffers::numeric_limits<int8_t>::min());
TEST_EQ(ta->u8(), flatbuffers::numeric_limits<uint8_t>::max());
TEST_EQ(ta->i16(), flatbuffers::numeric_limits<int16_t>::min());
TEST_EQ(ta->u16(), flatbuffers::numeric_limits<uint16_t>::max());
TEST_EQ(ta->i32(), flatbuffers::numeric_limits<int32_t>::min());
TEST_EQ(ta->u32(), flatbuffers::numeric_limits<uint32_t>::max());
TEST_EQ(ta->i64(), flatbuffers::numeric_limits<int64_t>::min());
TEST_EQ(ta->u64(), flatbuffers::numeric_limits<uint64_t>::max());
TEST_EQ(ta->f32(), 2.3f);
TEST_EQ(ta->f64(), 2.3);
using namespace flatbuffers; // is_same
static_assert(is_same<decltype(ta->i8()), int8_t>::value, "invalid type");
static_assert(is_same<decltype(ta->i16()), int16_t>::value, "invalid type");
static_assert(is_same<decltype(ta->i32()), int32_t>::value, "invalid type");
static_assert(is_same<decltype(ta->i64()), int64_t>::value, "invalid type");
static_assert(is_same<decltype(ta->u8()), uint8_t>::value, "invalid type");
static_assert(is_same<decltype(ta->u16()), uint16_t>::value, "invalid type");
static_assert(is_same<decltype(ta->u32()), uint32_t>::value, "invalid type");
static_assert(is_same<decltype(ta->u64()), uint64_t>::value, "invalid type");
static_assert(is_same<decltype(ta->f32()), float>::value, "invalid type");
static_assert(is_same<decltype(ta->f64()), double>::value, "invalid type");
}
// example of parsing text straight into a buffer, and generating
// text back from it:
void ParseAndGenerateTextTest(const std::string &tests_data_path, bool binary) {
// load FlatBuffer schema (.fbs) and JSON from disk
std::string schemafile;
std::string jsonfile;
TEST_EQ(flatbuffers::LoadFile(
(tests_data_path + "monster_test." + (binary ? "bfbs" : "fbs"))
.c_str(),
binary, &schemafile),
true);
TEST_EQ(flatbuffers::LoadFile(
(tests_data_path + "monsterdata_test.golden").c_str(), false,
&jsonfile),
true);
auto include_test_path =
flatbuffers::ConCatPathFileName(tests_data_path, "include_test");
const char *include_directories[] = { tests_data_path.c_str(),
include_test_path.c_str(), nullptr };
// parse schema first, so we can use it to parse the data after
flatbuffers::Parser parser;
if (binary) {
flatbuffers::Verifier verifier(
reinterpret_cast<const uint8_t *>(schemafile.c_str()),
schemafile.size());
TEST_EQ(reflection::VerifySchemaBuffer(verifier), true);
// auto schema = reflection::GetSchema(schemafile.c_str());
TEST_EQ(parser.Deserialize(
reinterpret_cast<const uint8_t *>(schemafile.c_str()),
schemafile.size()),
true);
} else {
TEST_EQ(parser.Parse(schemafile.c_str(), include_directories), true);
}
TEST_EQ(parser.ParseJson(jsonfile.c_str()), true);
// here, parser.builder_ contains a binary buffer that is the parsed data.
// First, verify it, just in case:
flatbuffers::Verifier verifier(parser.builder_.GetBufferPointer(),
parser.builder_.GetSize());
TEST_EQ(VerifyMonsterBuffer(verifier), true);
AccessFlatBufferTest(parser.builder_.GetBufferPointer(),
parser.builder_.GetSize(), false);
// to ensure it is correct, we now generate text back from the binary,
// and compare the two:
std::string jsongen;
auto result = GenText(parser, parser.builder_.GetBufferPointer(), &jsongen);
TEST_NULL(result);
TEST_EQ_STR(jsongen.c_str(), jsonfile.c_str());
// We can also do the above using the convenient Registry that knows about
// a set of file_identifiers mapped to schemas.
flatbuffers::Registry registry;
// Make sure schemas can find their includes.
registry.AddIncludeDirectory(tests_data_path.c_str());
registry.AddIncludeDirectory(include_test_path.c_str());
// Call this with many schemas if possible.
registry.Register(MonsterIdentifier(),
(tests_data_path + "monster_test.fbs").c_str());
// Now we got this set up, we can parse by just specifying the identifier,
// the correct schema will be loaded on the fly:
auto buf = registry.TextToFlatBuffer(jsonfile.c_str(), MonsterIdentifier());
// If this fails, check registry.lasterror_.
TEST_NOTNULL(buf.data());
// Test the buffer, to be sure:
AccessFlatBufferTest(buf.data(), buf.size(), false);
// We can use the registry to turn this back into text, in this case it
// will get the file_identifier from the binary:
std::string text;
auto ok = registry.FlatBufferToText(buf.data(), buf.size(), &text);
// If this fails, check registry.lasterror_.
TEST_EQ(ok, true);
TEST_EQ_STR(text.c_str(), jsonfile.c_str());
// Generate text for UTF-8 strings without escapes.
std::string jsonfile_utf8;
TEST_EQ(flatbuffers::LoadFile((tests_data_path + "unicode_test.json").c_str(),
false, &jsonfile_utf8),
true);
TEST_EQ(parser.Parse(jsonfile_utf8.c_str(), include_directories), true);
// To ensure it is correct, generate utf-8 text back from the binary.
std::string jsongen_utf8;
// request natural printing for utf-8 strings
parser.opts.natural_utf8 = true;
parser.opts.strict_json = true;
TEST_NULL(GenText(parser, parser.builder_.GetBufferPointer(), &jsongen_utf8));
TEST_EQ_STR(jsongen_utf8.c_str(), jsonfile_utf8.c_str());
}
void UnPackTo(const uint8_t *flatbuf) {
// Get a monster that has a name and no enemy
auto orig_monster = GetMonster(flatbuf);
TEST_EQ_STR(orig_monster->name()->c_str(), "MyMonster");
TEST_ASSERT(orig_monster->enemy() == nullptr);
// Create an enemy
MonsterT *enemy = new MonsterT();
enemy->name = "Enemy";
// And create another monster owning the enemy,
MonsterT mon;
mon.name = "I'm monster 1";
mon.enemy.reset(enemy);
TEST_ASSERT(mon.enemy != nullptr);
// Assert that all the Monster objects are correct.
TEST_EQ_STR(mon.name.c_str(), "I'm monster 1");
TEST_EQ_STR(enemy->name.c_str(), "Enemy");
TEST_EQ_STR(mon.enemy->name.c_str(), "Enemy");
// Now unpack monster ("MyMonster") into monster
orig_monster->UnPackTo(&mon);
// Monster name should be from monster
TEST_EQ_STR(mon.name.c_str(), "MyMonster");
// The monster shouldn't have any enemies, because monster didn't.
TEST_ASSERT(mon.enemy == nullptr);
}
} // namespace tests
} // namespace flatbuffers
|