File: monster_test.cpp

package info (click to toggle)
golang-github-google-flatbuffers 24.12.23-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 17,704 kB
  • sloc: cpp: 53,217; python: 6,900; cs: 5,566; java: 4,370; php: 1,460; javascript: 1,061; xml: 1,016; sh: 886; makefile: 13
file content (901 lines) | stat: -rw-r--r-- 36,024 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
#include "monster_test.h"

#include <limits>
#include <vector>

#include "flatbuffers/base.h"
#include "flatbuffers/flatbuffer_builder.h"
#include "flatbuffers/flatbuffers.h"
#include "flatbuffers/idl.h"
#include "flatbuffers/registry.h"
#include "flatbuffers/verifier.h"
#include "is_quiet_nan.h"
#include "monster_extra_generated.h"
#include "monster_test_generated.h"
#include "test_assert.h"

namespace flatbuffers {
namespace tests {

// Shortcuts for the infinity.
static const auto infinity_f = std::numeric_limits<float>::infinity();
static const auto infinity_d = std::numeric_limits<double>::infinity();

using namespace MyGame::Example;

// example of how to build up a serialized buffer algorithmically:
flatbuffers::DetachedBuffer CreateFlatBufferTest(std::string &buffer) {
  flatbuffers::FlatBufferBuilder builder;

  auto vec = Vec3(1, 2, 3, 0, Color_Red, Test(10, 20));

  auto name = builder.CreateString("MyMonster");

  // Use the initializer_list specialization of CreateVector.
  auto inventory =
      builder.CreateVector<uint8_t>({ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 });

  // Alternatively, create the vector first, and fill in data later:
  // unsigned char *inv_buf = nullptr;
  // auto inventory = builder.CreateUninitializedVector<unsigned char>(
  //                                                              10, &inv_buf);
  // memcpy(inv_buf, inv_data, 10);

  Test tests[] = { Test(10, 20), Test(30, 40) };
  auto testv = builder.CreateVectorOfStructs(tests, 2);

  // Create a vector of structures from a lambda.
  auto testv2 = builder.CreateVectorOfStructs<Test>(
      2, [&](size_t i, Test *s) -> void { *s = tests[i]; });

  // create monster with very few fields set:
  // (same functionality as CreateMonster below, but sets fields manually)
  flatbuffers::Offset<Monster> mlocs[3];
  auto fred = builder.CreateString("Fred");
  auto barney = builder.CreateString("Barney");
  auto wilma = builder.CreateString("Wilma");
  MonsterBuilder mb1(builder);
  mb1.add_name(fred);
  mlocs[0] = mb1.Finish();
  MonsterBuilder mb2(builder);
  mb2.add_name(barney);
  mb2.add_hp(1000);
  mlocs[1] = mb2.Finish();
  MonsterBuilder mb3(builder);
  mb3.add_name(wilma);
  mlocs[2] = mb3.Finish();

  // Create an array of strings. Also test string pooling, and lambdas.
  auto vecofstrings =
      builder.CreateVector<flatbuffers::Offset<flatbuffers::String>>(
          4,
          [](size_t i, flatbuffers::FlatBufferBuilder *b)
              -> flatbuffers::Offset<flatbuffers::String> {
            static const char *names[] = { "bob", "fred", "bob", "fred" };
            return b->CreateSharedString(names[i]);
          },
          &builder);

  // Creating vectors of strings in one convenient call.
  std::vector<std::string> names2;
  names2.push_back("jane");
  names2.push_back("mary");
  auto vecofstrings2 = builder.CreateVectorOfStrings(names2);

  // Creating vectors from types that are different from std::string
  std::vector<const char *> names3;
  names3.push_back("foo");
  names3.push_back("bar");
  builder.CreateVectorOfStrings(names3);  // Also an accepted type

#ifdef FLATBUFFERS_HAS_STRING_VIEW
  std::vector<flatbuffers::string_view> names4;
  names3.push_back("baz");
  names3.push_back("quux");
  builder.CreateVectorOfStrings(names4);  // Also an accepted type
#endif

  // Make sure the template deduces an initializer as std::vector<std::string>
  builder.CreateVectorOfStrings({ "hello", "world" });

  // Create many vectors of strings
  std::vector<std::string> manyNames;
  for (auto i = 0; i < 100; i++) { manyNames.push_back("john_doe"); }
  auto manyNamesVec = builder.CreateVectorOfStrings(manyNames);
  TEST_EQ(false, manyNamesVec.IsNull());
  auto manyNamesVec2 =
      builder.CreateVectorOfStrings(manyNames.cbegin(), manyNames.cend());
  TEST_EQ(false, manyNamesVec2.IsNull());

  // Create an array of sorted tables, can be used with binary search when read:
  auto vecoftables = builder.CreateVectorOfSortedTables(mlocs, 3);

  // Create an array of sorted structs,
  // can be used with binary search when read:
  std::vector<Ability> abilities;
  abilities.push_back(Ability(4, 40));
  abilities.push_back(Ability(3, 30));
  abilities.push_back(Ability(2, 20));
  abilities.push_back(Ability(0, 0));
  auto vecofstructs = builder.CreateVectorOfSortedStructs(&abilities);

  flatbuffers::Offset<Stat> mlocs_stats[1];
  auto miss = builder.CreateString("miss");
  StatBuilder mb_miss(builder);
  mb_miss.add_id(miss);
  mb_miss.add_val(0);
  mb_miss.add_count(0);  // key
  mlocs_stats[0] = mb_miss.Finish();
  auto vec_of_stats = builder.CreateVectorOfSortedTables(mlocs_stats, 1);

  // Create a nested FlatBuffer.
  // Nested FlatBuffers are stored in a ubyte vector, which can be convenient
  // since they can be memcpy'd around much easier than other FlatBuffer
  // values. They have little overhead compared to storing the table directly.
  // As a test, create a mostly empty Monster buffer:
  flatbuffers::FlatBufferBuilder nested_builder;
  auto nmloc = CreateMonster(nested_builder, nullptr, 0, 0,
                             nested_builder.CreateString("NestedMonster"));
  FinishMonsterBuffer(nested_builder, nmloc);
  // Now we can store the buffer in the parent. Note that by default, vectors
  // are only aligned to their elements or size field, so in this case if the
  // buffer contains 64-bit elements, they may not be correctly aligned. We fix
  // that with:
  builder.ForceVectorAlignment(nested_builder.GetSize(), sizeof(uint8_t),
                               nested_builder.GetBufferMinAlignment());
  // If for whatever reason you don't have the nested_builder available, you
  // can substitute flatbuffers::largest_scalar_t (64-bit) for the alignment, or
  // the largest force_align value in your schema if you're using it.
  auto nested_flatbuffer_vector = builder.CreateVector(
      nested_builder.GetBufferPointer(), nested_builder.GetSize());

  // Test a nested FlexBuffer:
  flexbuffers::Builder flexbuild;
  flexbuild.Int(1234);
  flexbuild.Finish();
  auto flex = builder.CreateVector(flexbuild.GetBuffer());
  // Test vector of enums.
  Color colors[] = { Color_Blue, Color_Green };
  // We use this special creation function because we have an array of
  // pre-C++11 (enum class) enums whose size likely is int, yet its declared
  // type in the schema is byte.
  auto vecofcolors = builder.CreateVectorScalarCast<uint8_t, Color>(colors, 2);

  // shortcut for creating monster with all fields set:
  auto mloc = CreateMonster(
      builder, &vec, 150, 80, name, inventory, Color_Blue, Any_Monster,
      mlocs[1].Union(),  // Store a union.
      testv, vecofstrings, vecoftables, 0, nested_flatbuffer_vector, 0, false,
      0, 0, 0, 0, 0, 0, 0, 0, 0, 3.14159f, 3.0f, 0.0f, vecofstrings2,
      vecofstructs, flex, testv2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
      AnyUniqueAliases_NONE, 0, AnyAmbiguousAliases_NONE, 0, vecofcolors,
      MyGame::Example::Race_None, 0, vec_of_stats);

  FinishMonsterBuffer(builder, mloc);

  // clang-format off
  #ifdef FLATBUFFERS_TEST_VERBOSE
  // print byte data for debugging:
  auto p = builder.GetBufferPointer();
  for (flatbuffers::uoffset_t i = 0; i < builder.GetSize(); i++)
    printf("%d ", p[i]);
  #endif
  // clang-format on

  // return the buffer for the caller to use.
  auto bufferpointer =
      reinterpret_cast<const char *>(builder.GetBufferPointer());
  buffer.assign(bufferpointer, bufferpointer + builder.GetSize());

  return builder.Release();
}

//  example of accessing a buffer loaded in memory:
void AccessFlatBufferTest(const uint8_t *flatbuf, size_t length, bool pooled) {
  // First, verify the buffers integrity (optional)
  flatbuffers::Verifier verifier(flatbuf, length);
  std::vector<uint8_t> flex_reuse_tracker;
  verifier.SetFlexReuseTracker(&flex_reuse_tracker);
  TEST_EQ(VerifyMonsterBuffer(verifier), true);

  // clang-format off
  #ifdef FLATBUFFERS_TRACK_VERIFIER_BUFFER_SIZE
    std::vector<uint8_t> test_buff;
    test_buff.resize(length * 2);
    std::memcpy(&test_buff[0], flatbuf, length);
    std::memcpy(&test_buff[length], flatbuf, length);

    flatbuffers::Verifier verifier1(&test_buff[0], length);
    TEST_EQ(VerifyMonsterBuffer(verifier1), true);
    TEST_EQ(verifier1.GetComputedSize(), length);

    flatbuffers::Verifier verifier2(&test_buff[length], length);
    TEST_EQ(VerifyMonsterBuffer(verifier2), true);
    TEST_EQ(verifier2.GetComputedSize(), length);
  #endif
  // clang-format on

  TEST_EQ(strcmp(MonsterIdentifier(), "MONS"), 0);
  TEST_EQ(MonsterBufferHasIdentifier(flatbuf), true);
  TEST_EQ(strcmp(MonsterExtension(), "mon"), 0);

  // Access the buffer from the root.
  auto monster = GetMonster(flatbuf);

  TEST_EQ(monster->hp(), 80);
  TEST_EQ(monster->mana(), 150);  // default
  TEST_EQ_STR(monster->name()->c_str(), "MyMonster");
  // Can't access the following field, it is deprecated in the schema,
  // which means accessors are not generated:
  // monster.friendly()

  auto pos = monster->pos();
  TEST_NOTNULL(pos);
  TEST_EQ(pos->z(), 3);
  TEST_EQ(pos->test3().a(), 10);
  TEST_EQ(pos->test3().b(), 20);

  auto inventory = monster->inventory();
  TEST_EQ(VectorLength(inventory), 10UL);  // Works even if inventory is null.
  TEST_NOTNULL(inventory);
  unsigned char inv_data[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
  // Check compatibilty of iterators with STL.
  std::vector<unsigned char> inv_vec(inventory->begin(), inventory->end());
  size_t n = 0;
  for (auto it = inventory->begin(); it != inventory->end(); ++it, ++n) {
    auto indx = it - inventory->begin();
    TEST_EQ(*it, inv_vec.at(indx));  // Use bounds-check.
    TEST_EQ(*it, inv_data[indx]);
  }
  TEST_EQ(n, inv_vec.size());

  n = 0;
  for (auto it = inventory->cbegin(); it != inventory->cend(); ++it, ++n) {
    auto indx = it - inventory->cbegin();
    TEST_EQ(*it, inv_vec.at(indx));  // Use bounds-check.
    TEST_EQ(*it, inv_data[indx]);
  }
  TEST_EQ(n, inv_vec.size());

  n = 0;
  for (auto it = inventory->rbegin(); it != inventory->rend(); ++it, ++n) {
    auto indx = inventory->rend() - it - 1;
    TEST_EQ(*it, inv_vec.at(indx));  // Use bounds-check.
    TEST_EQ(*it, inv_data[indx]);
  }
  TEST_EQ(n, inv_vec.size());

  n = 0;
  for (auto it = inventory->crbegin(); it != inventory->crend(); ++it, ++n) {
    auto indx = inventory->crend() - it - 1;
    TEST_EQ(*it, inv_vec.at(indx));  // Use bounds-check.
    TEST_EQ(*it, inv_data[indx]);
  }
  TEST_EQ(n, inv_vec.size());

  TEST_EQ(monster->color(), Color_Blue);

  // Example of accessing a union:
  TEST_EQ(monster->test_type(), Any_Monster);  // First make sure which it is.
  auto monster2 = reinterpret_cast<const Monster *>(monster->test());
  TEST_NOTNULL(monster2);
  TEST_EQ_STR(monster2->name()->c_str(), "Fred");

  // Example of accessing a vector of strings:
  auto vecofstrings = monster->testarrayofstring();
  TEST_EQ(vecofstrings->size(), 4U);
  TEST_EQ_STR(vecofstrings->Get(0)->c_str(), "bob");
  TEST_EQ_STR(vecofstrings->Get(1)->c_str(), "fred");
  if (pooled) {
    // These should have pointer equality because of string pooling.
    TEST_EQ(vecofstrings->Get(0)->c_str(), vecofstrings->Get(2)->c_str());
    TEST_EQ(vecofstrings->Get(1)->c_str(), vecofstrings->Get(3)->c_str());
  }

  auto vecofstrings2 = monster->testarrayofstring2();
  if (vecofstrings2) {
    TEST_EQ(vecofstrings2->size(), 2U);
    TEST_EQ_STR(vecofstrings2->Get(0)->c_str(), "jane");
    TEST_EQ_STR(vecofstrings2->Get(1)->c_str(), "mary");
  }

  // Example of accessing a vector of tables:
  auto vecoftables = monster->testarrayoftables();
  TEST_EQ(vecoftables->size(), 3U);
  for (auto it = vecoftables->begin(); it != vecoftables->end(); ++it) {
    TEST_EQ(strlen(it->name()->c_str()) >= 4, true);
  }
  TEST_EQ_STR(vecoftables->Get(0)->name()->c_str(), "Barney");
  TEST_EQ(vecoftables->Get(0)->hp(), 1000);
  TEST_EQ_STR(vecoftables->Get(1)->name()->c_str(), "Fred");
  TEST_EQ_STR(vecoftables->Get(2)->name()->c_str(), "Wilma");
  TEST_NOTNULL(vecoftables->LookupByKey("Barney"));
  TEST_NOTNULL(vecoftables->LookupByKey("Fred"));
  TEST_NOTNULL(vecoftables->LookupByKey("Wilma"));

  // Verify the same objects are returned for char*-based and string-based
  // lookups.
  TEST_EQ(vecoftables->LookupByKey("Barney"),
          vecoftables->LookupByKey(std::string("Barney")));
  TEST_EQ(vecoftables->LookupByKey("Fred"),
          vecoftables->LookupByKey(std::string("Fred")));
  TEST_EQ(vecoftables->LookupByKey("Wilma"),
          vecoftables->LookupByKey(std::string("Wilma")));

#ifdef FLATBUFFERS_HAS_STRING_VIEW
  // Tests for LookupByKey with a key that is a truncated
  // version of a longer, invalid key.
  const std::string invalid_key = "Barney123";
  std::string_view valid_truncated_key = invalid_key;
  valid_truncated_key.remove_suffix(3);  // "Barney"
  TEST_NOTNULL(vecoftables->LookupByKey(valid_truncated_key));
  TEST_EQ(vecoftables->LookupByKey("Barney"),
          vecoftables->LookupByKey(valid_truncated_key));

  // Tests for LookupByKey with a key that is a truncated
  // version of a longer, valid key.
  const std::string valid_key = "Barney";
  std::string_view invalid_truncated_key = valid_key;
  invalid_truncated_key.remove_suffix(3);  // "Bar"
  TEST_NULL(vecoftables->LookupByKey(invalid_truncated_key));
#endif  // FLATBUFFERS_HAS_STRING_VIEW

  // Test accessing a vector of sorted structs
  auto vecofstructs = monster->testarrayofsortedstruct();
  if (vecofstructs) {  // not filled in monster_test.bfbs
    for (flatbuffers::uoffset_t i = 0; i < vecofstructs->size() - 1; i++) {
      auto left = vecofstructs->Get(i);
      auto right = vecofstructs->Get(i + 1);
      TEST_EQ(true, (left->KeyCompareLessThan(right)));
    }
    TEST_NOTNULL(vecofstructs->LookupByKey(0));  // test default value
    TEST_NOTNULL(vecofstructs->LookupByKey(3));
    TEST_EQ(static_cast<const Ability *>(nullptr),
            vecofstructs->LookupByKey(5));
  }

  if (auto vec_of_stat = monster->scalar_key_sorted_tables()) {
    auto stat_0 = vec_of_stat->LookupByKey(static_cast<uint16_t>(0u));
    TEST_NOTNULL(stat_0);
    TEST_NOTNULL(stat_0->id());
    TEST_EQ(0, stat_0->count());
    TEST_EQ_STR("miss", stat_0->id()->c_str());
  }

  // Test nested FlatBuffers if available:
  auto nested_buffer = monster->testnestedflatbuffer();
  if (nested_buffer) {
    // nested_buffer is a vector of bytes you can memcpy. However, if you
    // actually want to access the nested data, this is a convenient
    // accessor that directly gives you the root table:
    auto nested_monster = monster->testnestedflatbuffer_nested_root();
    TEST_EQ_STR(nested_monster->name()->c_str(), "NestedMonster");
  }

  // Test flexbuffer if available:
  auto flex = monster->flex();
  // flex is a vector of bytes you can memcpy etc.
  TEST_EQ(flex->size(), 4);  // Encoded FlexBuffer bytes.
  // However, if you actually want to access the nested data, this is a
  // convenient accessor that directly gives you the root value:
  TEST_EQ(monster->flex_flexbuffer_root().AsInt16(), 1234);

  // Test vector of enums:
  auto colors = monster->vector_of_enums();
  if (colors) {
    TEST_EQ(colors->size(), 2);
    TEST_EQ(colors->Get(0), Color_Blue);
    TEST_EQ(colors->Get(1), Color_Green);
  }

  // Since Flatbuffers uses explicit mechanisms to override the default
  // compiler alignment, double check that the compiler indeed obeys them:
  // (Test consists of a short and byte):
  TEST_EQ(flatbuffers::AlignOf<Test>(), 2UL);
  TEST_EQ(sizeof(Test), 4UL);

  const flatbuffers::Vector<const Test *> *tests_array[] = {
    monster->test4(),
    monster->test5(),
  };
  for (size_t i = 0; i < sizeof(tests_array) / sizeof(tests_array[0]); ++i) {
    auto tests = tests_array[i];
    TEST_NOTNULL(tests);
    auto test_0 = tests->Get(0);
    auto test_1 = tests->Get(1);
    TEST_EQ(test_0->a(), 10);
    TEST_EQ(test_0->b(), 20);
    TEST_EQ(test_1->a(), 30);
    TEST_EQ(test_1->b(), 40);
    for (auto it = tests->begin(); it != tests->end(); ++it) {
      TEST_EQ(it->a() == 10 || it->a() == 30, true);  // Just testing iterators.
    }
  }

  // Checking for presence of fields:
  TEST_EQ(flatbuffers::IsFieldPresent(monster, Monster::VT_HP), true);
  TEST_EQ(flatbuffers::IsFieldPresent(monster, Monster::VT_MANA), false);

  // Obtaining a buffer from a root:
  TEST_EQ(GetBufferStartFromRootPointer(monster), flatbuf);
}

// Change a FlatBuffer in-place, after it has been constructed.
void MutateFlatBuffersTest(uint8_t *flatbuf, std::size_t length) {
  // Get non-const pointer to root.
  auto monster = GetMutableMonster(flatbuf);

  // Each of these tests mutates, then tests, then set back to the original,
  // so we can test that the buffer in the end still passes our original test.
  auto hp_ok = monster->mutate_hp(10);
  TEST_EQ(hp_ok, true);  // Field was present.
  TEST_EQ(monster->hp(), 10);
  // Mutate to default value
  auto hp_ok_default = monster->mutate_hp(100);
  TEST_EQ(hp_ok_default, true);  // Field was present.
  TEST_EQ(monster->hp(), 100);
  // Test that mutate to default above keeps field valid for further mutations
  auto hp_ok_2 = monster->mutate_hp(20);
  TEST_EQ(hp_ok_2, true);
  TEST_EQ(monster->hp(), 20);
  monster->mutate_hp(80);

  // Monster originally at 150 mana (default value)
  auto mana_default_ok = monster->mutate_mana(150);  // Mutate to default value.
  TEST_EQ(mana_default_ok,
          true);  // Mutation should succeed, because default value.
  TEST_EQ(monster->mana(), 150);
  auto mana_ok = monster->mutate_mana(10);
  TEST_EQ(mana_ok, false);  // Field was NOT present, because default value.
  TEST_EQ(monster->mana(), 150);

  // Mutate structs.
  auto pos = monster->mutable_pos();
  auto &test3 = pos->mutable_test3();  // Struct inside a struct.
  test3.mutate_a(50);                  // Struct fields never fail.
  TEST_EQ(test3.a(), 50);
  test3.mutate_a(10);

  // Mutate vectors.
  auto inventory = monster->mutable_inventory();
  inventory->Mutate(9, 100);
  TEST_EQ(inventory->Get(9), 100);
  inventory->Mutate(9, 9);

  auto tables = monster->mutable_testarrayoftables();
  auto first = tables->GetMutableObject(0);
  TEST_EQ(first->hp(), 1000);
  first->mutate_hp(0);
  TEST_EQ(first->hp(), 0);
  first->mutate_hp(1000);

  // Test for each loop over mutable entries
  for (auto item : *tables) {
    TEST_EQ(item->hp(), 1000);
    item->mutate_hp(0);
    TEST_EQ(item->hp(), 0);
    item->mutate_hp(1000);
    break;  // one iteration is enough, just testing compilation
  }

  // Mutate via LookupByKey
  TEST_NOTNULL(tables->MutableLookupByKey("Barney"));
  TEST_EQ(static_cast<Monster *>(nullptr),
          tables->MutableLookupByKey("DoesntExist"));
  TEST_EQ(tables->MutableLookupByKey("Barney")->hp(), 1000);
  TEST_EQ(tables->MutableLookupByKey("Barney")->mutate_hp(0), true);
  TEST_EQ(tables->LookupByKey("Barney")->hp(), 0);
  TEST_EQ(tables->MutableLookupByKey("Barney")->mutate_hp(1000), true);

  // Run the verifier and the regular test to make sure we didn't trample on
  // anything.
  AccessFlatBufferTest(flatbuf, length);
}

// Unpack a FlatBuffer into objects.
void ObjectFlatBuffersTest(uint8_t *flatbuf) {
  // Optional: we can specify resolver and rehasher functions to turn hashed
  // strings into object pointers and back, to implement remote references
  // and such.
  auto resolver = flatbuffers::resolver_function_t(
      [](void **pointer_adr, flatbuffers::hash_value_t hash) {
        (void)pointer_adr;
        (void)hash;
        // Don't actually do anything, leave variable null.
      });
  auto rehasher = flatbuffers::rehasher_function_t(
      [](void *pointer) -> flatbuffers::hash_value_t {
        (void)pointer;
        return 0;
      });

  // Turn a buffer into C++ objects.
  auto monster1 = UnPackMonster(flatbuf, &resolver);

  // Re-serialize the data.
  flatbuffers::FlatBufferBuilder fbb1;
  fbb1.Finish(CreateMonster(fbb1, monster1.get(), &rehasher),
              MonsterIdentifier());

  // Unpack again, and re-serialize again.
  auto monster2 = UnPackMonster(fbb1.GetBufferPointer(), &resolver);
  flatbuffers::FlatBufferBuilder fbb2;
  fbb2.Finish(CreateMonster(fbb2, monster2.get(), &rehasher),
              MonsterIdentifier());

  // Now we've gone full round-trip, the two buffers should match.
  const auto len1 = fbb1.GetSize();
  const auto len2 = fbb2.GetSize();
  TEST_EQ(len1, len2);
  TEST_EQ(memcmp(fbb1.GetBufferPointer(), fbb2.GetBufferPointer(), len1), 0);

  // Test it with the original buffer test to make sure all data survived.
  AccessFlatBufferTest(fbb2.GetBufferPointer(), len2, false);

  // Test accessing fields, similar to AccessFlatBufferTest above.
  CheckMonsterObject(monster2.get());

  // Test object copy.
  MonsterT monster3 = *monster2;
  flatbuffers::FlatBufferBuilder fbb3;
  fbb3.Finish(CreateMonster(fbb3, &monster3, &rehasher), MonsterIdentifier());
  const auto len3 = fbb3.GetSize();
  TEST_EQ(len2, len3);
  TEST_EQ(memcmp(fbb2.GetBufferPointer(), fbb3.GetBufferPointer(), len2), 0);
  // Delete monster1 and monster2, then test accessing fields in monster3.
  monster1.reset();
  monster2.reset();
  CheckMonsterObject(&monster3);
}

// Utility function to check a Monster object.
void CheckMonsterObject(MonsterT *monster2) {
  TEST_EQ(monster2->hp, 80);
  TEST_EQ(monster2->mana, 150);  // default
  TEST_EQ_STR(monster2->name.c_str(), "MyMonster");

  auto &pos = monster2->pos;
  TEST_NOTNULL(pos);
  TEST_EQ(pos->z(), 3);
  TEST_EQ(pos->test3().a(), 10);
  TEST_EQ(pos->test3().b(), 20);

  auto &inventory = monster2->inventory;
  TEST_EQ(inventory.size(), 10UL);
  unsigned char inv_data[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
  for (auto it = inventory.begin(); it != inventory.end(); ++it)
    TEST_EQ(*it, inv_data[it - inventory.begin()]);

  TEST_EQ(monster2->color, Color_Blue);

  auto monster3 = monster2->test.AsMonster();
  TEST_NOTNULL(monster3);
  TEST_EQ_STR(monster3->name.c_str(), "Fred");

  auto &vecofstrings = monster2->testarrayofstring;
  TEST_EQ(vecofstrings.size(), 4U);
  TEST_EQ_STR(vecofstrings[0].c_str(), "bob");
  TEST_EQ_STR(vecofstrings[1].c_str(), "fred");

  auto &vecofstrings2 = monster2->testarrayofstring2;
  TEST_EQ(vecofstrings2.size(), 2U);
  TEST_EQ_STR(vecofstrings2[0].c_str(), "jane");
  TEST_EQ_STR(vecofstrings2[1].c_str(), "mary");

  auto &vecoftables = monster2->testarrayoftables;
  TEST_EQ(vecoftables.size(), 3U);
  TEST_EQ_STR(vecoftables[0]->name.c_str(), "Barney");
  TEST_EQ(vecoftables[0]->hp, 1000);
  TEST_EQ_STR(vecoftables[1]->name.c_str(), "Fred");
  TEST_EQ_STR(vecoftables[2]->name.c_str(), "Wilma");

  auto &tests = monster2->test4;
  TEST_EQ(tests[0].a(), 10);
  TEST_EQ(tests[0].b(), 20);
  TEST_EQ(tests[1].a(), 30);
  TEST_EQ(tests[1].b(), 40);
}

// Prefix a FlatBuffer with a size field.
void SizePrefixedTest() {
  // Create size prefixed buffer.
  flatbuffers::FlatBufferBuilder fbb;
  FinishSizePrefixedMonsterBuffer(
      fbb, CreateMonster(fbb, nullptr, 200, 300, fbb.CreateString("bob")));

  // Verify it.
  flatbuffers::Verifier verifier(fbb.GetBufferPointer(), fbb.GetSize());
  TEST_EQ(VerifySizePrefixedMonsterBuffer(verifier), true);

  // The prefixed size doesn't include itself, so substract the size of the
  // prefix
  TEST_EQ(GetPrefixedSize(fbb.GetBufferPointer()),
          fbb.GetSize() - sizeof(uoffset_t));

  // Getting the buffer length does include the prefix size, so it should be the
  // full lenght.
  TEST_EQ(GetSizePrefixedBufferLength(fbb.GetBufferPointer()), fbb.GetSize());

  // Access it.
  auto m = GetSizePrefixedMonster(fbb.GetBufferPointer());
  TEST_EQ(m->mana(), 200);
  TEST_EQ(m->hp(), 300);
  TEST_EQ_STR(m->name()->c_str(), "bob");

  {
    // Verify that passing a larger size is OK, but not a smaller
    flatbuffers::Verifier verifier_larger(fbb.GetBufferPointer(),
                                          fbb.GetSize() + 10);
    TEST_EQ(VerifySizePrefixedMonsterBuffer(verifier_larger), true);

    flatbuffers::Verifier verifier_smaller(fbb.GetBufferPointer(),
                                           fbb.GetSize() - 10);
    TEST_EQ(VerifySizePrefixedMonsterBuffer(verifier_smaller), false);
  }
}

void TestMonsterExtraFloats(const std::string &tests_data_path) {
#if defined(FLATBUFFERS_HAS_NEW_STRTOD) && (FLATBUFFERS_HAS_NEW_STRTOD > 0)
  TEST_EQ(is_quiet_nan(1.0), false);
  TEST_EQ(is_quiet_nan(infinity_d), false);
  TEST_EQ(is_quiet_nan(-infinity_f), false);
  TEST_EQ(is_quiet_nan(std::numeric_limits<float>::quiet_NaN()), true);
  TEST_EQ(is_quiet_nan(std::numeric_limits<double>::quiet_NaN()), true);

  using namespace flatbuffers;
  using namespace MyGame;
  // Load FlatBuffer schema (.fbs) from disk.
  std::string schemafile;
  TEST_EQ(LoadFile((tests_data_path + "monster_extra.fbs").c_str(), false,
                   &schemafile),
          true);
  // Parse schema first, so we can use it to parse the data after.
  Parser parser;
  auto include_test_path = ConCatPathFileName(tests_data_path, "include_test");
  const char *include_directories[] = { tests_data_path.c_str(),
                                        include_test_path.c_str(), nullptr };
  TEST_EQ(parser.Parse(schemafile.c_str(), include_directories), true);
  // Create empty extra and store to json.
  parser.opts.output_default_scalars_in_json = true;
  parser.opts.output_enum_identifiers = true;
  FlatBufferBuilder builder;
  const auto def_root = MonsterExtraBuilder(builder).Finish();
  FinishMonsterExtraBuffer(builder, def_root);
  const auto def_obj = builder.GetBufferPointer();
  const auto def_extra = GetMonsterExtra(def_obj);
  TEST_NOTNULL(def_extra);
  TEST_EQ(is_quiet_nan(def_extra->f0()), true);
  TEST_EQ(is_quiet_nan(def_extra->f1()), true);
  TEST_EQ(def_extra->f2(), +infinity_f);
  TEST_EQ(def_extra->f3(), -infinity_f);
  TEST_EQ(is_quiet_nan(def_extra->d0()), true);
  TEST_EQ(is_quiet_nan(def_extra->d1()), true);
  TEST_EQ(def_extra->d2(), +infinity_d);
  TEST_EQ(def_extra->d3(), -infinity_d);
  std::string jsongen;
  auto result = GenText(parser, def_obj, &jsongen);
  TEST_NULL(result);
  // Check expected default values.
  TEST_EQ(std::string::npos != jsongen.find("f0: nan"), true);
  TEST_EQ(std::string::npos != jsongen.find("f1: nan"), true);
  TEST_EQ(std::string::npos != jsongen.find("f2: inf"), true);
  TEST_EQ(std::string::npos != jsongen.find("f3: -inf"), true);
  TEST_EQ(std::string::npos != jsongen.find("d0: nan"), true);
  TEST_EQ(std::string::npos != jsongen.find("d1: nan"), true);
  TEST_EQ(std::string::npos != jsongen.find("d2: inf"), true);
  TEST_EQ(std::string::npos != jsongen.find("d3: -inf"), true);
  // Parse 'mosterdata_extra.json'.
  const auto extra_base = tests_data_path + "monsterdata_extra";
  jsongen = "";
  TEST_EQ(LoadFile((extra_base + ".json").c_str(), false, &jsongen), true);
  TEST_EQ(parser.Parse(jsongen.c_str()), true);
  const auto test_file = parser.builder_.GetBufferPointer();
  const auto test_size = parser.builder_.GetSize();
  Verifier verifier(test_file, test_size);
  TEST_ASSERT(VerifyMonsterExtraBuffer(verifier));
  const auto extra = GetMonsterExtra(test_file);
  TEST_NOTNULL(extra);
  TEST_EQ(is_quiet_nan(extra->f0()), true);
  TEST_EQ(is_quiet_nan(extra->f1()), true);
  TEST_EQ(extra->f2(), +infinity_f);
  TEST_EQ(extra->f3(), -infinity_f);
  TEST_EQ(is_quiet_nan(extra->d0()), true);
  TEST_EQ(extra->d1(), +infinity_d);
  TEST_EQ(extra->d2(), -infinity_d);
  TEST_EQ(is_quiet_nan(extra->d3()), true);
  TEST_NOTNULL(extra->fvec());
  TEST_EQ(extra->fvec()->size(), 4);
  TEST_EQ(extra->fvec()->Get(0), 1.0f);
  TEST_EQ(extra->fvec()->Get(1), -infinity_f);
  TEST_EQ(extra->fvec()->Get(2), +infinity_f);
  TEST_EQ(is_quiet_nan(extra->fvec()->Get(3)), true);
  TEST_NOTNULL(extra->dvec());
  TEST_EQ(extra->dvec()->size(), 4);
  TEST_EQ(extra->dvec()->Get(0), 2.0);
  TEST_EQ(extra->dvec()->Get(1), +infinity_d);
  TEST_EQ(extra->dvec()->Get(2), -infinity_d);
  TEST_EQ(is_quiet_nan(extra->dvec()->Get(3)), true);
#endif
}

void EnumNamesTest() {
  TEST_EQ_STR("Red", EnumNameColor(Color_Red));
  TEST_EQ_STR("Green", EnumNameColor(Color_Green));
  TEST_EQ_STR("Blue", EnumNameColor(Color_Blue));
  // Check that Color to string don't crash while decode a mixture of Colors.
  // 1) Example::Color enum is enum with unfixed underlying type.
  // 2) Valid enum range: [0; 2^(ceil(log2(Color_ANY))) - 1].
  // Consequence: A value is out of this range will lead to UB (since C++17).
  // For details see C++17 standard or explanation on the SO:
  // stackoverflow.com/questions/18195312/what-happens-if-you-static-cast-invalid-value-to-enum-class
  TEST_EQ_STR("", EnumNameColor(static_cast<Color>(0)));
  TEST_EQ_STR("", EnumNameColor(static_cast<Color>(Color_ANY - 1)));
  TEST_EQ_STR("", EnumNameColor(static_cast<Color>(Color_ANY + 1)));
}

void TypeAliasesTest() {
  flatbuffers::FlatBufferBuilder builder;

  builder.Finish(CreateTypeAliases(
      builder, flatbuffers::numeric_limits<int8_t>::min(),
      flatbuffers::numeric_limits<uint8_t>::max(),
      flatbuffers::numeric_limits<int16_t>::min(),
      flatbuffers::numeric_limits<uint16_t>::max(),
      flatbuffers::numeric_limits<int32_t>::min(),
      flatbuffers::numeric_limits<uint32_t>::max(),
      flatbuffers::numeric_limits<int64_t>::min(),
      flatbuffers::numeric_limits<uint64_t>::max(), 2.3f, 2.3));

  auto p = builder.GetBufferPointer();
  auto ta = flatbuffers::GetRoot<TypeAliases>(p);

  TEST_EQ(ta->i8(), flatbuffers::numeric_limits<int8_t>::min());
  TEST_EQ(ta->u8(), flatbuffers::numeric_limits<uint8_t>::max());
  TEST_EQ(ta->i16(), flatbuffers::numeric_limits<int16_t>::min());
  TEST_EQ(ta->u16(), flatbuffers::numeric_limits<uint16_t>::max());
  TEST_EQ(ta->i32(), flatbuffers::numeric_limits<int32_t>::min());
  TEST_EQ(ta->u32(), flatbuffers::numeric_limits<uint32_t>::max());
  TEST_EQ(ta->i64(), flatbuffers::numeric_limits<int64_t>::min());
  TEST_EQ(ta->u64(), flatbuffers::numeric_limits<uint64_t>::max());
  TEST_EQ(ta->f32(), 2.3f);
  TEST_EQ(ta->f64(), 2.3);
  using namespace flatbuffers;  // is_same
  static_assert(is_same<decltype(ta->i8()), int8_t>::value, "invalid type");
  static_assert(is_same<decltype(ta->i16()), int16_t>::value, "invalid type");
  static_assert(is_same<decltype(ta->i32()), int32_t>::value, "invalid type");
  static_assert(is_same<decltype(ta->i64()), int64_t>::value, "invalid type");
  static_assert(is_same<decltype(ta->u8()), uint8_t>::value, "invalid type");
  static_assert(is_same<decltype(ta->u16()), uint16_t>::value, "invalid type");
  static_assert(is_same<decltype(ta->u32()), uint32_t>::value, "invalid type");
  static_assert(is_same<decltype(ta->u64()), uint64_t>::value, "invalid type");
  static_assert(is_same<decltype(ta->f32()), float>::value, "invalid type");
  static_assert(is_same<decltype(ta->f64()), double>::value, "invalid type");
}

// example of parsing text straight into a buffer, and generating
// text back from it:
void ParseAndGenerateTextTest(const std::string &tests_data_path, bool binary) {
  // load FlatBuffer schema (.fbs) and JSON from disk
  std::string schemafile;
  std::string jsonfile;
  TEST_EQ(flatbuffers::LoadFile(
              (tests_data_path + "monster_test." + (binary ? "bfbs" : "fbs"))
                  .c_str(),
              binary, &schemafile),
          true);
  TEST_EQ(flatbuffers::LoadFile(
              (tests_data_path + "monsterdata_test.golden").c_str(), false,
              &jsonfile),
          true);

  auto include_test_path =
      flatbuffers::ConCatPathFileName(tests_data_path, "include_test");
  const char *include_directories[] = { tests_data_path.c_str(),
                                        include_test_path.c_str(), nullptr };

  // parse schema first, so we can use it to parse the data after
  flatbuffers::Parser parser;
  if (binary) {
    flatbuffers::Verifier verifier(
        reinterpret_cast<const uint8_t *>(schemafile.c_str()),
        schemafile.size());
    TEST_EQ(reflection::VerifySchemaBuffer(verifier), true);
    // auto schema = reflection::GetSchema(schemafile.c_str());
    TEST_EQ(parser.Deserialize(
                reinterpret_cast<const uint8_t *>(schemafile.c_str()),
                schemafile.size()),
            true);
  } else {
    TEST_EQ(parser.Parse(schemafile.c_str(), include_directories), true);
  }
  TEST_EQ(parser.ParseJson(jsonfile.c_str()), true);

  // here, parser.builder_ contains a binary buffer that is the parsed data.

  // First, verify it, just in case:
  flatbuffers::Verifier verifier(parser.builder_.GetBufferPointer(),
                                 parser.builder_.GetSize());
  TEST_EQ(VerifyMonsterBuffer(verifier), true);

  AccessFlatBufferTest(parser.builder_.GetBufferPointer(),
                       parser.builder_.GetSize(), false);

  // to ensure it is correct, we now generate text back from the binary,
  // and compare the two:
  std::string jsongen;
  auto result = GenText(parser, parser.builder_.GetBufferPointer(), &jsongen);
  TEST_NULL(result);
  TEST_EQ_STR(jsongen.c_str(), jsonfile.c_str());

  // We can also do the above using the convenient Registry that knows about
  // a set of file_identifiers mapped to schemas.
  flatbuffers::Registry registry;
  // Make sure schemas can find their includes.
  registry.AddIncludeDirectory(tests_data_path.c_str());
  registry.AddIncludeDirectory(include_test_path.c_str());
  // Call this with many schemas if possible.
  registry.Register(MonsterIdentifier(),
                    (tests_data_path + "monster_test.fbs").c_str());
  // Now we got this set up, we can parse by just specifying the identifier,
  // the correct schema will be loaded on the fly:
  auto buf = registry.TextToFlatBuffer(jsonfile.c_str(), MonsterIdentifier());
  // If this fails, check registry.lasterror_.
  TEST_NOTNULL(buf.data());
  // Test the buffer, to be sure:
  AccessFlatBufferTest(buf.data(), buf.size(), false);
  // We can use the registry to turn this back into text, in this case it
  // will get the file_identifier from the binary:
  std::string text;
  auto ok = registry.FlatBufferToText(buf.data(), buf.size(), &text);
  // If this fails, check registry.lasterror_.
  TEST_EQ(ok, true);
  TEST_EQ_STR(text.c_str(), jsonfile.c_str());

  // Generate text for UTF-8 strings without escapes.
  std::string jsonfile_utf8;
  TEST_EQ(flatbuffers::LoadFile((tests_data_path + "unicode_test.json").c_str(),
                                false, &jsonfile_utf8),
          true);
  TEST_EQ(parser.Parse(jsonfile_utf8.c_str(), include_directories), true);
  // To ensure it is correct, generate utf-8 text back from the binary.
  std::string jsongen_utf8;
  // request natural printing for utf-8 strings
  parser.opts.natural_utf8 = true;
  parser.opts.strict_json = true;
  TEST_NULL(GenText(parser, parser.builder_.GetBufferPointer(), &jsongen_utf8));
  TEST_EQ_STR(jsongen_utf8.c_str(), jsonfile_utf8.c_str());
}

void UnPackTo(const uint8_t *flatbuf) {
  // Get a monster that has a name and no enemy
  auto orig_monster = GetMonster(flatbuf);
  TEST_EQ_STR(orig_monster->name()->c_str(), "MyMonster");
  TEST_ASSERT(orig_monster->enemy() == nullptr);

  // Create an enemy
  MonsterT *enemy = new MonsterT();
  enemy->name = "Enemy";

  // And create another monster owning the enemy,
  MonsterT mon;
  mon.name = "I'm monster 1";
  mon.enemy.reset(enemy);
  TEST_ASSERT(mon.enemy != nullptr);

  // Assert that all the Monster objects are correct.
  TEST_EQ_STR(mon.name.c_str(), "I'm monster 1");
  TEST_EQ_STR(enemy->name.c_str(), "Enemy");
  TEST_EQ_STR(mon.enemy->name.c_str(), "Enemy");

  // Now unpack monster ("MyMonster") into monster
  orig_monster->UnPackTo(&mon);

  // Monster name should be from monster
  TEST_EQ_STR(mon.name.c_str(), "MyMonster");

  // The monster shouldn't have any enemies, because monster didn't.
  TEST_ASSERT(mon.enemy == nullptr);
}

}  // namespace tests
}  // namespace flatbuffers