1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
|
#include "parser_test.h"
#include <cmath>
#include <limits>
#include <string>
#include "flatbuffers/idl.h"
#include "test_assert.h"
namespace flatbuffers {
namespace tests {
namespace {
// Shortcuts for the infinity.
static const auto infinity_f = std::numeric_limits<float>::infinity();
static const auto infinity_d = std::numeric_limits<double>::infinity();
// Test that parser errors are actually generated.
static void TestError_(const char *src, const char *error_substr,
bool strict_json, const char *file, int line,
const char *func) {
flatbuffers::IDLOptions opts;
opts.strict_json = strict_json;
flatbuffers::Parser parser(opts);
if (parser.Parse(src)) {
TestFail("true", "false",
("parser.Parse(\"" + std::string(src) + "\")").c_str(), file, line,
func);
} else if (!strstr(parser.error_.c_str(), error_substr)) {
TestFail(error_substr, parser.error_.c_str(),
("parser.Parse(\"" + std::string(src) + "\")").c_str(), file, line,
func);
}
}
static void TestError_(const char *src, const char *error_substr,
const char *file, int line, const char *func) {
TestError_(src, error_substr, false, file, line, func);
}
#ifdef _WIN32
# define TestError(src, ...) \
TestError_(src, __VA_ARGS__, __FILE__, __LINE__, __FUNCTION__)
#else
# define TestError(src, ...) \
TestError_(src, __VA_ARGS__, __FILE__, __LINE__, __PRETTY_FUNCTION__)
#endif
static bool FloatCompare(float a, float b) { return fabs(a - b) < 0.001; }
} // namespace
// Test that parsing errors occur as we'd expect.
// Also useful for coverage, making sure these paths are run.
void ErrorTest() {
// In order they appear in idl_parser.cpp
TestError("table X { Y:byte; } root_type X; { Y: 999 }", "does not fit");
TestError("\"\0", "illegal");
TestError("\"\\q", "escape code");
TestError("table ///", "documentation");
TestError("@", "illegal");
TestError("table 1", "expecting");
TestError("table X { Y:[[int]]; }", "nested vector");
TestError("table X { Y:1; }", "illegal type");
TestError("table X { Y:int; Y:int; }", "field already");
TestError("table Y {} table X { Y:int; }", "same as table");
TestError("struct X { Y:string; }", "only scalar");
TestError("struct X { a:uint = 42; }", "default values");
TestError("enum Y:byte { Z = 1 } table X { y:Y; }", "not part of enum");
TestError("struct X { Y:int (deprecated); }", "deprecate");
TestError("union Z { X } table X { Y:Z; } root_type X; { Y: {}, A:1 }",
"missing type field");
TestError("union Z { X } table X { Y:Z; } root_type X; { Y_type: 99, Y: {",
"type id");
TestError("table X { Y:int; } root_type X; { Z:", "unknown field");
TestError("table X { Y:int; } root_type X; { Y:", "string constant", true);
TestError("table X { Y:int; } root_type X; { \"Y\":1, }", "string constant",
true);
TestError(
"struct X { Y:int; Z:int; } table W { V:X; } root_type W; "
"{ V:{ Y:1 } }",
"wrong number");
TestError("enum E:byte { A } table X { Y:E; } root_type X; { Y:U }",
"unknown enum value");
TestError("table X { Y:byte; } root_type X; { Y:; }", "starting");
TestError("enum X:byte { Y } enum X {", "enum already");
TestError("enum X:float {}", "underlying");
TestError("enum X:byte { Y, Y }", "value already");
TestError("enum X:byte { Y=2, Z=2 }", "unique");
TestError("enum X:byte (force_align: 4) { Y }", "force_align");
TestError("table X { Y:int; } table X {", "datatype already");
TestError("table X { } union X { }", "datatype already");
TestError("union X { } table X { }", "datatype already");
TestError("namespace A; table X { } namespace A; union X { }",
"datatype already");
TestError("namespace A; union X { } namespace A; table X { }",
"datatype already");
TestError("struct X (force_align: 7) { Y:int; }", "force_align");
TestError("struct X {}", "size 0");
TestError("{}", "no root");
TestError("table X { Y:byte; } root_type X; { Y:1 } { Y:1 }", "end of file");
TestError("table X { Y:byte; } root_type X; { Y:1 } table Y{ Z:int }",
"end of file");
TestError("root_type X;", "unknown root");
TestError("struct X { Y:int; } root_type X;", "a table");
TestError("union X { Y }", "referenced");
TestError("union Z { X } struct X { Y:int; }", "only tables");
TestError("table X { Y:[int]; YLength:int; }", "clash");
TestError("table X { Y:byte; } root_type X; { Y:1, Y:2 }", "more than once");
// float to integer conversion is forbidden
TestError("table X { Y:int; } root_type X; { Y:1.0 }", "float");
TestError("table X { Y:bool; } root_type X; { Y:1.0 }", "float");
TestError("enum X:bool { Y = true }", "must be integral");
// Array of non-scalar
TestError("table X { x:int; } struct Y { y:[X:2]; }",
"may contain only scalar or struct fields");
// Non-snake case field names
TestError("table X { Y: int; } root_type Y: {Y:1.0}", "snake_case");
// Complex defaults
TestError("table X { y: string = 1; }", "expecting: string");
TestError("table X { y: string = []; }", " Cannot assign token");
TestError("table X { y: [int] = [1]; }", "Expected `]`");
TestError("table X { y: [int] = [; }", "Expected `]`");
TestError("table X { y: [int] = \"\"; }", "type mismatch");
// An identifier can't start from sign (+|-)
TestError("table X { -Y: int; } root_type Y: {Y:1.0}", "identifier");
TestError("table X { +Y: int; } root_type Y: {Y:1.0}", "identifier");
// Offset64
TestError("table X { a:int (vector64); }", "`vector64` attribute");
TestError("table X { a:int (offset64); }", "`offset64` attribute");
TestError("table X { a:string (vector64); }", "`vector64` attribute");
TestError("table y { a:int; } table X { a:y (offset64); }",
"`offset64` attribute");
TestError("struct y { a:int; } table X { a:y (offset64); }",
"`offset64` attribute");
TestError("table y { a:int; } table X { a:y (vector64); }",
"`vector64` attribute");
TestError("union Y { } table X { ys:Y (offset64); }", "`offset64` attribute");
TestError("table Y { a:int; } table X { ys:[Y] (offset64); }",
"only vectors of scalars are allowed to be 64-bit.");
TestError("table Y { a:int; } table X { ys:[Y] (vector64); }",
"only vectors of scalars are allowed to be 64-bit.");
TestError("union Y { } table X { ys:[Y] (vector64); }",
"only vectors of scalars are allowed to be 64-bit.");
// TOOD(derekbailey): the following three could be allowed once the code gen
// supports the output.
TestError("table X { y:[string] (offset64); }",
"only vectors of scalars are allowed to be 64-bit.");
TestError("table X { y:[string] (vector64); }",
"only vectors of scalars are allowed to be 64-bit.");
TestError("enum X:byte {Z} table X { y:[X] (offset64); }",
"only vectors of scalars are allowed to be 64-bit.");
}
void EnumOutOfRangeTest() {
TestError("enum X:byte { Y = 128 }", "enum value does not fit");
TestError("enum X:byte { Y = -129 }", "enum value does not fit");
TestError("enum X:byte { Y = 126, Z0, Z1 }", "enum value does not fit");
TestError("enum X:ubyte { Y = -1 }", "enum value does not fit");
TestError("enum X:ubyte { Y = 256 }", "enum value does not fit");
TestError("enum X:ubyte { Y = 255, Z }", "enum value does not fit");
TestError("table Y{} union X { Y = -1 }", "enum value does not fit");
TestError("table Y{} union X { Y = 256 }", "enum value does not fit");
TestError("table Y{} union X { Y = 255, Z:Y }", "enum value does not fit");
TestError("enum X:int { Y = -2147483649 }", "enum value does not fit");
TestError("enum X:int { Y = 2147483648 }", "enum value does not fit");
TestError("enum X:uint { Y = -1 }", "enum value does not fit");
TestError("enum X:uint { Y = 4294967297 }", "enum value does not fit");
TestError("enum X:long { Y = 9223372036854775808 }", "does not fit");
TestError("enum X:long { Y = 9223372036854775807, Z }",
"enum value does not fit");
TestError("enum X:ulong { Y = -1 }", "does not fit");
TestError("enum X:ubyte (bit_flags) { Y=8 }", "bit flag out");
TestError("enum X:byte (bit_flags) { Y=7 }", "must be unsigned"); // -128
// bit_flgs out of range
TestError("enum X:ubyte (bit_flags) { Y0,Y1,Y2,Y3,Y4,Y5,Y6,Y7,Y8 }",
"out of range");
}
void IntegerOutOfRangeTest() {
TestError("table T { F:byte; } root_type T; { F:128 }",
"constant does not fit");
TestError("table T { F:byte; } root_type T; { F:-129 }",
"constant does not fit");
TestError("table T { F:ubyte; } root_type T; { F:256 }",
"constant does not fit");
TestError("table T { F:ubyte; } root_type T; { F:-1 }",
"constant does not fit");
TestError("table T { F:short; } root_type T; { F:32768 }",
"constant does not fit");
TestError("table T { F:short; } root_type T; { F:-32769 }",
"constant does not fit");
TestError("table T { F:ushort; } root_type T; { F:65536 }",
"constant does not fit");
TestError("table T { F:ushort; } root_type T; { F:-1 }",
"constant does not fit");
TestError("table T { F:int; } root_type T; { F:2147483648 }",
"constant does not fit");
TestError("table T { F:int; } root_type T; { F:-2147483649 }",
"constant does not fit");
TestError("table T { F:uint; } root_type T; { F:4294967296 }",
"constant does not fit");
TestError("table T { F:uint; } root_type T; { F:-1 }",
"constant does not fit");
// Check fixed width aliases
TestError("table X { Y:uint8; } root_type X; { Y: -1 }", "does not fit");
TestError("table X { Y:uint8; } root_type X; { Y: 256 }", "does not fit");
TestError("table X { Y:uint16; } root_type X; { Y: -1 }", "does not fit");
TestError("table X { Y:uint16; } root_type X; { Y: 65536 }", "does not fit");
TestError("table X { Y:uint32; } root_type X; { Y: -1 }", "");
TestError("table X { Y:uint32; } root_type X; { Y: 4294967296 }",
"does not fit");
TestError("table X { Y:uint64; } root_type X; { Y: -1 }", "");
TestError("table X { Y:uint64; } root_type X; { Y: -9223372036854775809 }",
"does not fit");
TestError("table X { Y:uint64; } root_type X; { Y: 18446744073709551616 }",
"does not fit");
TestError("table X { Y:int8; } root_type X; { Y: -129 }", "does not fit");
TestError("table X { Y:int8; } root_type X; { Y: 128 }", "does not fit");
TestError("table X { Y:int16; } root_type X; { Y: -32769 }", "does not fit");
TestError("table X { Y:int16; } root_type X; { Y: 32768 }", "does not fit");
TestError("table X { Y:int32; } root_type X; { Y: -2147483649 }", "");
TestError("table X { Y:int32; } root_type X; { Y: 2147483648 }",
"does not fit");
TestError("table X { Y:int64; } root_type X; { Y: -9223372036854775809 }",
"does not fit");
TestError("table X { Y:int64; } root_type X; { Y: 9223372036854775808 }",
"does not fit");
// check out-of-int64 as int8
TestError("table X { Y:int8; } root_type X; { Y: -9223372036854775809 }",
"does not fit");
TestError("table X { Y:int8; } root_type X; { Y: 9223372036854775808 }",
"does not fit");
// Check default values
TestError("table X { Y:int64=-9223372036854775809; } root_type X; {}",
"does not fit");
TestError("table X { Y:int64= 9223372036854775808; } root_type X; {}",
"does not fit");
TestError("table X { Y:uint64; } root_type X; { Y: -1 }", "");
TestError("table X { Y:uint64=-9223372036854775809; } root_type X; {}",
"does not fit");
TestError("table X { Y:uint64= 18446744073709551616; } root_type X; {}",
"does not fit");
}
void InvalidFloatTest() {
auto invalid_msg = "invalid number";
auto comma_msg = "expecting: ,";
TestError("table T { F:float; } root_type T; { F:1,0 }", "");
TestError("table T { F:float; } root_type T; { F:. }", "");
TestError("table T { F:float; } root_type T; { F:- }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:+ }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:-. }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:+. }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:.e }", "");
TestError("table T { F:float; } root_type T; { F:-e }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:+e }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:-.e }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:+.e }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:-e1 }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:+e1 }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:1.0e+ }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:1.0e- }", invalid_msg);
// exponent pP is mandatory for hex-float
TestError("table T { F:float; } root_type T; { F:0x0 }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:-0x. }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:0x. }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:0Xe }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:\"0Xe\" }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:\"nan(1)\" }", invalid_msg);
// eE not exponent in hex-float!
TestError("table T { F:float; } root_type T; { F:0x0.0e+ }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:0x0.0e- }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:0x0.0p }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:0x0.0p+ }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:0x0.0p- }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:0x0.0pa1 }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:0x0.0e+ }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:0x0.0e- }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:0x0.0e+0 }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:0x0.0e-0 }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:0x0.0ep+ }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:0x0.0ep- }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:1.2.3 }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:1.2.e3 }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:1.2e.3 }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:1.2e0.3 }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:1.2e3. }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:1.2e3.0 }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:+-1.0 }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:1.0e+-1 }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:\"1.0e+-1\" }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:1.e0e }", comma_msg);
TestError("table T { F:float; } root_type T; { F:0x1.p0e }", comma_msg);
TestError("table T { F:float; } root_type T; { F:\" 0x10 \" }", invalid_msg);
// floats in string
TestError("table T { F:float; } root_type T; { F:\"1,2.\" }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:\"1.2e3.\" }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:\"0x1.p0e\" }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:\"0x1.0\" }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:\" 0x1.0\" }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:\"+ 0\" }", invalid_msg);
// disable escapes for "number-in-string"
TestError("table T { F:float; } root_type T; { F:\"\\f1.2e3.\" }", "invalid");
TestError("table T { F:float; } root_type T; { F:\"\\t1.2e3.\" }", "invalid");
TestError("table T { F:float; } root_type T; { F:\"\\n1.2e3.\" }", "invalid");
TestError("table T { F:float; } root_type T; { F:\"\\r1.2e3.\" }", "invalid");
TestError("table T { F:float; } root_type T; { F:\"4\\x005\" }", "invalid");
TestError("table T { F:float; } root_type T; { F:\"\'12\'\" }", invalid_msg);
// null is not a number constant!
TestError("table T { F:float; } root_type T; { F:\"null\" }", invalid_msg);
TestError("table T { F:float; } root_type T; { F:null }", invalid_msg);
}
void UnicodeInvalidSurrogatesTest() {
TestError(
"table T { F:string; }"
"root_type T;"
"{ F:\"\\uD800\"}",
"unpaired high surrogate");
TestError(
"table T { F:string; }"
"root_type T;"
"{ F:\"\\uD800abcd\"}",
"unpaired high surrogate");
TestError(
"table T { F:string; }"
"root_type T;"
"{ F:\"\\uD800\\n\"}",
"unpaired high surrogate");
TestError(
"table T { F:string; }"
"root_type T;"
"{ F:\"\\uD800\\uD800\"}",
"multiple high surrogates");
TestError(
"table T { F:string; }"
"root_type T;"
"{ F:\"\\uDC00\"}",
"unpaired low surrogate");
}
void InvalidUTF8Test() {
// "1 byte" pattern, under min length of 2 bytes
TestError(
"table T { F:string; }"
"root_type T;"
"{ F:\"\x80\"}",
"illegal UTF-8 sequence");
// 2 byte pattern, string too short
TestError(
"table T { F:string; }"
"root_type T;"
"{ F:\"\xDF\"}",
"illegal UTF-8 sequence");
// 3 byte pattern, string too short
TestError(
"table T { F:string; }"
"root_type T;"
"{ F:\"\xEF\xBF\"}",
"illegal UTF-8 sequence");
// 4 byte pattern, string too short
TestError(
"table T { F:string; }"
"root_type T;"
"{ F:\"\xF7\xBF\xBF\"}",
"illegal UTF-8 sequence");
// "5 byte" pattern, string too short
TestError(
"table T { F:string; }"
"root_type T;"
"{ F:\"\xFB\xBF\xBF\xBF\"}",
"illegal UTF-8 sequence");
// "6 byte" pattern, string too short
TestError(
"table T { F:string; }"
"root_type T;"
"{ F:\"\xFD\xBF\xBF\xBF\xBF\"}",
"illegal UTF-8 sequence");
// "7 byte" pattern, string too short
TestError(
"table T { F:string; }"
"root_type T;"
"{ F:\"\xFE\xBF\xBF\xBF\xBF\xBF\"}",
"illegal UTF-8 sequence");
// "5 byte" pattern, over max length of 4 bytes
TestError(
"table T { F:string; }"
"root_type T;"
"{ F:\"\xFB\xBF\xBF\xBF\xBF\"}",
"illegal UTF-8 sequence");
// "6 byte" pattern, over max length of 4 bytes
TestError(
"table T { F:string; }"
"root_type T;"
"{ F:\"\xFD\xBF\xBF\xBF\xBF\xBF\"}",
"illegal UTF-8 sequence");
// "7 byte" pattern, over max length of 4 bytes
TestError(
"table T { F:string; }"
"root_type T;"
"{ F:\"\xFE\xBF\xBF\xBF\xBF\xBF\xBF\"}",
"illegal UTF-8 sequence");
// Three invalid encodings for U+000A (\n, aka NEWLINE)
TestError(
"table T { F:string; }"
"root_type T;"
"{ F:\"\xC0\x8A\"}",
"illegal UTF-8 sequence");
TestError(
"table T { F:string; }"
"root_type T;"
"{ F:\"\xE0\x80\x8A\"}",
"illegal UTF-8 sequence");
TestError(
"table T { F:string; }"
"root_type T;"
"{ F:\"\xF0\x80\x80\x8A\"}",
"illegal UTF-8 sequence");
// Two invalid encodings for U+00A9 (COPYRIGHT SYMBOL)
TestError(
"table T { F:string; }"
"root_type T;"
"{ F:\"\xE0\x81\xA9\"}",
"illegal UTF-8 sequence");
TestError(
"table T { F:string; }"
"root_type T;"
"{ F:\"\xF0\x80\x81\xA9\"}",
"illegal UTF-8 sequence");
// Invalid encoding for U+20AC (EURO SYMBOL)
TestError(
"table T { F:string; }"
"root_type T;"
"{ F:\"\xF0\x82\x82\xAC\"}",
"illegal UTF-8 sequence");
// UTF-16 surrogate values between U+D800 and U+DFFF cannot be encoded in
// UTF-8
TestError(
"table T { F:string; }"
"root_type T;"
// U+10400 "encoded" as U+D801 U+DC00
"{ F:\"\xED\xA0\x81\xED\xB0\x80\"}",
"illegal UTF-8 sequence");
// Check independence of identifier from locale.
std::string locale_ident;
locale_ident += "table T { F";
locale_ident += static_cast<char>(-32); // unsigned 0xE0
locale_ident += " :string; }";
locale_ident += "root_type T;";
locale_ident += "{}";
TestError(locale_ident.c_str(), "");
}
template<typename T>
T TestValue(const char *json, const char *type_name,
const char *decls = nullptr) {
flatbuffers::Parser parser;
parser.builder_.ForceDefaults(true); // return defaults
auto check_default = json ? false : true;
if (check_default) { parser.opts.output_default_scalars_in_json = true; }
// Simple schema.
std::string schema = std::string(decls ? decls : "") + "\n" +
"table X { y:" + std::string(type_name) +
"; } root_type X;";
auto schema_done = parser.Parse(schema.c_str());
TEST_EQ_STR(parser.error_.c_str(), "");
TEST_EQ(schema_done, true);
auto done = parser.Parse(check_default ? "{}" : json);
TEST_EQ_STR(parser.error_.c_str(), "");
TEST_EQ(done, true);
// Check with print.
std::string print_back;
parser.opts.indent_step = -1;
TEST_NULL(GenText(parser, parser.builder_.GetBufferPointer(), &print_back));
// restore value from its default
if (check_default) { TEST_EQ(parser.Parse(print_back.c_str()), true); }
auto root = flatbuffers::GetRoot<flatbuffers::Table>(
parser.builder_.GetBufferPointer());
return root->GetField<T>(flatbuffers::FieldIndexToOffset(0), 0);
}
// Additional parser testing not covered elsewhere.
void ValueTest() {
// Test scientific notation numbers.
TEST_EQ(
FloatCompare(TestValue<float>("{ y:0.0314159e+2 }", "float"), 3.14159f),
true);
// number in string
TEST_EQ(FloatCompare(TestValue<float>("{ y:\"0.0314159e+2\" }", "float"),
3.14159f),
true);
// Test conversion functions.
TEST_EQ(FloatCompare(TestValue<float>("{ y:cos(rad(180)) }", "float"), -1),
true);
// int embedded to string
TEST_EQ(TestValue<int>("{ y:\"-876\" }", "int=-123"), -876);
TEST_EQ(TestValue<int>("{ y:\"876\" }", "int=-123"), 876);
// Test negative hex constant.
TEST_EQ(TestValue<int>("{ y:-0x8ea0 }", "int=-0x8ea0"), -36512);
TEST_EQ(TestValue<int>(nullptr, "int=-0x8ea0"), -36512);
// positive hex constant
TEST_EQ(TestValue<int>("{ y:0x1abcdef }", "int=0x1"), 0x1abcdef);
// with optional '+' sign
TEST_EQ(TestValue<int>("{ y:+0x1abcdef }", "int=+0x1"), 0x1abcdef);
// hex in string
TEST_EQ(TestValue<int>("{ y:\"0x1abcdef\" }", "int=+0x1"), 0x1abcdef);
// Make sure we do unsigned 64bit correctly.
TEST_EQ(TestValue<uint64_t>("{ y:12335089644688340133 }", "ulong"),
12335089644688340133ULL);
// bool in string
TEST_EQ(TestValue<bool>("{ y:\"false\" }", "bool=true"), false);
TEST_EQ(TestValue<bool>("{ y:\"true\" }", "bool=\"true\""), true);
TEST_EQ(TestValue<bool>("{ y:'false' }", "bool=true"), false);
TEST_EQ(TestValue<bool>("{ y:'true' }", "bool=\"true\""), true);
// check comments before and after json object
TEST_EQ(TestValue<int>("/*before*/ { y:1 } /*after*/", "int"), 1);
TEST_EQ(TestValue<int>("//before \n { y:1 } //after", "int"), 1);
}
void NestedListTest() {
flatbuffers::Parser parser1;
TEST_EQ(parser1.Parse("struct Test { a:short; b:byte; } table T { F:[Test]; }"
"root_type T;"
"{ F:[ [10,20], [30,40]] }"),
true);
}
void EnumStringsTest() {
flatbuffers::Parser parser1;
TEST_EQ(parser1.Parse("enum E:byte { A, B, C } table T { F:[E]; }"
"root_type T;"
"{ F:[ A, B, \"C\", \"A B C\" ] }"),
true);
flatbuffers::Parser parser2;
TEST_EQ(parser2.Parse("enum E:byte { A, B, C } table T { F:[int]; }"
"root_type T;"
"{ F:[ \"E.C\", \"E.A E.B E.C\" ] }"),
true);
// unsigned bit_flags
flatbuffers::Parser parser3;
TEST_EQ(
parser3.Parse("enum E:uint16 (bit_flags) { F0, F07=7, F08, F14=14, F15 }"
" table T { F: E = \"F15 F08\"; }"
"root_type T;"),
true);
}
void EnumValueTest() {
// json: "{ Y:0 }", schema: table X { y: "E"}
// 0 in enum (V=0) E then Y=0 is valid.
TEST_EQ(TestValue<int>("{ y:0 }", "E", "enum E:int { V }"), 0);
TEST_EQ(TestValue<int>("{ y:V }", "E", "enum E:int { V }"), 0);
// A default value of Y is 0.
TEST_EQ(TestValue<int>("{ }", "E", "enum E:int { V }"), 0);
TEST_EQ(TestValue<int>("{ y:5 }", "E=V", "enum E:int { V=5 }"), 5);
// Generate json with defaults and check.
TEST_EQ(TestValue<int>(nullptr, "E=V", "enum E:int { V=5 }"), 5);
// 5 in enum
TEST_EQ(TestValue<int>("{ y:5 }", "E", "enum E:int { Z, V=5 }"), 5);
TEST_EQ(TestValue<int>("{ y:5 }", "E=V", "enum E:int { Z, V=5 }"), 5);
// Generate json with defaults and check.
TEST_EQ(TestValue<int>(nullptr, "E", "enum E:int { Z, V=5 }"), 0);
TEST_EQ(TestValue<int>(nullptr, "E=V", "enum E:int { Z, V=5 }"), 5);
// u84 test
TEST_EQ(TestValue<uint64_t>(nullptr, "E=V",
"enum E:ulong { V = 13835058055282163712 }"),
13835058055282163712ULL);
TEST_EQ(TestValue<uint64_t>(nullptr, "E=V",
"enum E:ulong { V = 18446744073709551615 }"),
18446744073709551615ULL);
// Assign non-enum value to enum field. Is it right?
TEST_EQ(TestValue<int>("{ y:7 }", "E", "enum E:int { V = 0 }"), 7);
// Check that non-ascending values are valid.
TEST_EQ(TestValue<int>("{ y:5 }", "E=V", "enum E:int { Z=10, V=5 }"), 5);
}
void IntegerBoundaryTest() {
// Check numerical compatibility with non-C++ languages.
// By the C++ standard, std::numerical_limits<int64_t>::min() ==
// -9223372036854775807 (-2^63+1) or less* The Flatbuffers grammar and most of
// the languages (C#, Java, Rust) expect that minimum values are: -128,
// -32768,.., -9223372036854775808. Since C++20,
// static_cast<int64>(0x8000000000000000ULL) is well-defined two's complement
// cast. Therefore -9223372036854775808 should be valid negative value.
TEST_EQ(flatbuffers::numeric_limits<int8_t>::min(), -128);
TEST_EQ(flatbuffers::numeric_limits<int8_t>::max(), 127);
TEST_EQ(flatbuffers::numeric_limits<int16_t>::min(), -32768);
TEST_EQ(flatbuffers::numeric_limits<int16_t>::max(), 32767);
TEST_EQ(flatbuffers::numeric_limits<int32_t>::min() + 1, -2147483647);
TEST_EQ(flatbuffers::numeric_limits<int32_t>::max(), 2147483647ULL);
TEST_EQ(flatbuffers::numeric_limits<int64_t>::min() + 1LL,
-9223372036854775807LL);
TEST_EQ(flatbuffers::numeric_limits<int64_t>::max(), 9223372036854775807ULL);
TEST_EQ(flatbuffers::numeric_limits<uint8_t>::max(), 255);
TEST_EQ(flatbuffers::numeric_limits<uint16_t>::max(), 65535);
TEST_EQ(flatbuffers::numeric_limits<uint32_t>::max(), 4294967295ULL);
TEST_EQ(flatbuffers::numeric_limits<uint64_t>::max(),
18446744073709551615ULL);
TEST_EQ(TestValue<int8_t>("{ y:127 }", "byte"), 127);
TEST_EQ(TestValue<int8_t>("{ y:-128 }", "byte"), -128);
TEST_EQ(TestValue<uint8_t>("{ y:255 }", "ubyte"), 255);
TEST_EQ(TestValue<uint8_t>("{ y:0 }", "ubyte"), 0);
TEST_EQ(TestValue<int16_t>("{ y:32767 }", "short"), 32767);
TEST_EQ(TestValue<int16_t>("{ y:-32768 }", "short"), -32768);
TEST_EQ(TestValue<uint16_t>("{ y:65535 }", "ushort"), 65535);
TEST_EQ(TestValue<uint16_t>("{ y:0 }", "ushort"), 0);
TEST_EQ(TestValue<int32_t>("{ y:2147483647 }", "int"), 2147483647);
TEST_EQ(TestValue<int32_t>("{ y:-2147483648 }", "int") + 1, -2147483647);
TEST_EQ(TestValue<uint32_t>("{ y:4294967295 }", "uint"), 4294967295);
TEST_EQ(TestValue<uint32_t>("{ y:0 }", "uint"), 0);
TEST_EQ(TestValue<int64_t>("{ y:9223372036854775807 }", "long"),
9223372036854775807LL);
TEST_EQ(TestValue<int64_t>("{ y:-9223372036854775808 }", "long") + 1LL,
-9223372036854775807LL);
TEST_EQ(TestValue<uint64_t>("{ y:18446744073709551615 }", "ulong"),
18446744073709551615ULL);
TEST_EQ(TestValue<uint64_t>("{ y:0 }", "ulong"), 0);
TEST_EQ(TestValue<uint64_t>("{ y: 18446744073709551615 }", "uint64"),
18446744073709551615ULL);
// check that the default works
TEST_EQ(TestValue<uint64_t>(nullptr, "uint64 = 18446744073709551615"),
18446744073709551615ULL);
}
void ValidFloatTest() {
// check rounding to infinity
TEST_EQ(TestValue<float>("{ y:+3.4029e+38 }", "float"), +infinity_f);
TEST_EQ(TestValue<float>("{ y:-3.4029e+38 }", "float"), -infinity_f);
TEST_EQ(TestValue<double>("{ y:+1.7977e+308 }", "double"), +infinity_d);
TEST_EQ(TestValue<double>("{ y:-1.7977e+308 }", "double"), -infinity_d);
TEST_EQ(
FloatCompare(TestValue<float>("{ y:0.0314159e+2 }", "float"), 3.14159f),
true);
// float in string
TEST_EQ(FloatCompare(TestValue<float>("{ y:\" 0.0314159e+2 \" }", "float"),
3.14159f),
true);
TEST_EQ(TestValue<float>("{ y:1 }", "float"), 1.0f);
TEST_EQ(TestValue<float>("{ y:1.0 }", "float"), 1.0f);
TEST_EQ(TestValue<float>("{ y:1. }", "float"), 1.0f);
TEST_EQ(TestValue<float>("{ y:+1. }", "float"), 1.0f);
TEST_EQ(TestValue<float>("{ y:-1. }", "float"), -1.0f);
TEST_EQ(TestValue<float>("{ y:1.e0 }", "float"), 1.0f);
TEST_EQ(TestValue<float>("{ y:1.e+0 }", "float"), 1.0f);
TEST_EQ(TestValue<float>("{ y:1.e-0 }", "float"), 1.0f);
TEST_EQ(TestValue<float>("{ y:0.125 }", "float"), 0.125f);
TEST_EQ(TestValue<float>("{ y:.125 }", "float"), 0.125f);
TEST_EQ(TestValue<float>("{ y:-.125 }", "float"), -0.125f);
TEST_EQ(TestValue<float>("{ y:+.125 }", "float"), +0.125f);
TEST_EQ(TestValue<float>("{ y:5 }", "float"), 5.0f);
TEST_EQ(TestValue<float>("{ y:\"5\" }", "float"), 5.0f);
#if defined(FLATBUFFERS_HAS_NEW_STRTOD) && (FLATBUFFERS_HAS_NEW_STRTOD > 0)
// Old MSVC versions may have problem with this check.
// https://www.exploringbinary.com/visual-c-plus-plus-strtod-still-broken/
TEST_EQ(TestValue<double>("{ y:6.9294956446009195e15 }", "double"),
6929495644600920.0);
// check nan's
TEST_EQ(std::isnan(TestValue<double>("{ y:nan }", "double")), true);
TEST_EQ(std::isnan(TestValue<float>("{ y:nan }", "float")), true);
TEST_EQ(std::isnan(TestValue<float>("{ y:\"nan\" }", "float")), true);
TEST_EQ(std::isnan(TestValue<float>("{ y:\"+nan\" }", "float")), true);
TEST_EQ(std::isnan(TestValue<float>("{ y:\"-nan\" }", "float")), true);
TEST_EQ(std::isnan(TestValue<float>("{ y:+nan }", "float")), true);
TEST_EQ(std::isnan(TestValue<float>("{ y:-nan }", "float")), true);
TEST_EQ(std::isnan(TestValue<float>(nullptr, "float=nan")), true);
TEST_EQ(std::isnan(TestValue<float>(nullptr, "float=-nan")), true);
// check inf
TEST_EQ(TestValue<float>("{ y:inf }", "float"), infinity_f);
TEST_EQ(TestValue<float>("{ y:\"inf\" }", "float"), infinity_f);
TEST_EQ(TestValue<float>("{ y:\"-inf\" }", "float"), -infinity_f);
TEST_EQ(TestValue<float>("{ y:\"+inf\" }", "float"), infinity_f);
TEST_EQ(TestValue<float>("{ y:+inf }", "float"), infinity_f);
TEST_EQ(TestValue<float>("{ y:-inf }", "float"), -infinity_f);
TEST_EQ(TestValue<float>(nullptr, "float=inf"), infinity_f);
TEST_EQ(TestValue<float>(nullptr, "float=-inf"), -infinity_f);
TestValue<double>(
"{ y: [0.2, .2, 1.0, -1.0, -2., 2., 1e0, -1e0, 1.0e0, -1.0e0, -3.e2, "
"3.0e2] }",
"[double]");
TestValue<float>(
"{ y: [0.2, .2, 1.0, -1.0, -2., 2., 1e0, -1e0, 1.0e0, -1.0e0, -3.e2, "
"3.0e2] }",
"[float]");
// Test binary format of float point.
// https://en.cppreference.com/w/cpp/language/floating_literal
// 0x11.12p-1 = (1*16^1 + 2*16^0 + 3*16^-1 + 4*16^-2) * 2^-1 =
TEST_EQ(TestValue<double>("{ y:0x12.34p-1 }", "double"), 9.1015625);
// hex fraction 1.2 (decimal 1.125) scaled by 2^3, that is 9.0
TEST_EQ(TestValue<float>("{ y:-0x0.2p0 }", "float"), -0.125f);
TEST_EQ(TestValue<float>("{ y:-0x.2p1 }", "float"), -0.25f);
TEST_EQ(TestValue<float>("{ y:0x1.2p3 }", "float"), 9.0f);
TEST_EQ(TestValue<float>("{ y:0x10.1p0 }", "float"), 16.0625f);
TEST_EQ(TestValue<double>("{ y:0x1.2p3 }", "double"), 9.0);
TEST_EQ(TestValue<double>("{ y:0x10.1p0 }", "double"), 16.0625);
TEST_EQ(TestValue<double>("{ y:0xC.68p+2 }", "double"), 49.625);
TestValue<double>("{ y: [0x20.4ep1, +0x20.4ep1, -0x20.4ep1] }", "[double]");
TestValue<float>("{ y: [0x20.4ep1, +0x20.4ep1, -0x20.4ep1] }", "[float]");
#else // FLATBUFFERS_HAS_NEW_STRTOD
TEST_OUTPUT_LINE("FLATBUFFERS_HAS_NEW_STRTOD tests skipped");
#endif // !FLATBUFFERS_HAS_NEW_STRTOD
}
void UnicodeTest() {
flatbuffers::Parser parser;
// Without setting allow_non_utf8 = true, we treat \x sequences as byte
// sequences which are then validated as UTF-8.
TEST_EQ(parser.Parse("table T { F:string; }"
"root_type T;"
"{ F:\"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC"
"\\u5225\\u30B5\\u30A4\\u30C8\\xE2\\x82\\xAC\\u0080\\uD8"
"3D\\uDE0E\" }"),
true);
std::string jsongen;
parser.opts.indent_step = -1;
auto result = GenText(parser, parser.builder_.GetBufferPointer(), &jsongen);
TEST_NULL(result);
TEST_EQ_STR(jsongen.c_str(),
"{F: \"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC"
"\\u5225\\u30B5\\u30A4\\u30C8\\u20AC\\u0080\\uD83D\\uDE0E\"}");
}
void UnicodeTestAllowNonUTF8() {
flatbuffers::Parser parser;
parser.opts.allow_non_utf8 = true;
TEST_EQ(
parser.Parse(
"table T { F:string; }"
"root_type T;"
"{ F:\"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC"
"\\u5225\\u30B5\\u30A4\\u30C8\\x01\\x80\\u0080\\uD83D\\uDE0E\" }"),
true);
std::string jsongen;
parser.opts.indent_step = -1;
auto result = GenText(parser, parser.builder_.GetBufferPointer(), &jsongen);
TEST_NULL(result);
TEST_EQ_STR(
jsongen.c_str(),
"{F: \"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC"
"\\u5225\\u30B5\\u30A4\\u30C8\\u0001\\x80\\u0080\\uD83D\\uDE0E\"}");
}
void UnicodeTestGenerateTextFailsOnNonUTF8() {
flatbuffers::Parser parser;
// Allow non-UTF-8 initially to model what happens when we load a binary
// flatbuffer from disk which contains non-UTF-8 strings.
parser.opts.allow_non_utf8 = true;
TEST_EQ(
parser.Parse(
"table T { F:string; }"
"root_type T;"
"{ F:\"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC"
"\\u5225\\u30B5\\u30A4\\u30C8\\x01\\x80\\u0080\\uD83D\\uDE0E\" }"),
true);
std::string jsongen;
parser.opts.indent_step = -1;
// Now, disallow non-UTF-8 (the default behavior) so GenText indicates
// failure.
parser.opts.allow_non_utf8 = false;
auto result = GenText(parser, parser.builder_.GetBufferPointer(), &jsongen);
TEST_EQ_STR(result, "string contains non-utf8 bytes");
}
void UnicodeSurrogatesTest() {
flatbuffers::Parser parser;
TEST_EQ(parser.Parse("table T { F:string (id: 0); }"
"root_type T;"
"{ F:\"\\uD83D\\uDCA9\"}"),
true);
auto root = flatbuffers::GetRoot<flatbuffers::Table>(
parser.builder_.GetBufferPointer());
auto string = root->GetPointer<flatbuffers::String *>(
flatbuffers::FieldIndexToOffset(0));
TEST_EQ_STR(string->c_str(), "\xF0\x9F\x92\xA9");
}
void UnknownFieldsTest() {
flatbuffers::IDLOptions opts;
opts.skip_unexpected_fields_in_json = true;
flatbuffers::Parser parser(opts);
TEST_EQ(parser.Parse("table T { str:string; i:int;}"
"root_type T;"
"{ str:\"test\","
"unknown_string:\"test\","
"\"unknown_string\":\"test\","
"unknown_int:10,"
"unknown_float:1.0,"
"unknown_array: [ 1, 2, 3, 4],"
"unknown_object: { i: 10 },"
"\"unknown_object\": { \"i\": 10 },"
"i:10}"),
true);
std::string jsongen;
parser.opts.indent_step = -1;
auto result = GenText(parser, parser.builder_.GetBufferPointer(), &jsongen);
TEST_NULL(result);
TEST_EQ_STR(jsongen.c_str(), "{str: \"test\",i: 10}");
}
void ParseUnionTest() {
// Unions must be parseable with the type field following the object.
flatbuffers::Parser parser;
TEST_EQ(parser.Parse("table T { A:int; }"
"union U { T }"
"table V { X:U; }"
"root_type V;"
"{ X:{ A:1 }, X_type: T }"),
true);
// Unions must be parsable with prefixed namespace.
flatbuffers::Parser parser2;
TEST_EQ(parser2.Parse("namespace N; table A {} namespace; union U { N.A }"
"table B { e:U; } root_type B;"
"{ e_type: N_A, e: {} }"),
true);
// Test union underlying type
const char *source = "table A {} table B {} union U : int {A, B} table C {test_union: U; test_vector_of_union: [U];}";
flatbuffers::Parser parser3;
parser3.opts.lang_to_generate = flatbuffers::IDLOptions::kCpp | flatbuffers::IDLOptions::kTs;
TEST_EQ(parser3.Parse(source), true);
parser3.opts.lang_to_generate &= flatbuffers::IDLOptions::kJava;
TEST_EQ(parser3.Parse(source), false);
}
void ValidSameNameDifferentNamespaceTest() {
// Duplicate table names in different namespaces must be parsable
TEST_ASSERT(flatbuffers::Parser().Parse(
"namespace A; table X {} namespace B; table X {}"));
// Duplicate union names in different namespaces must be parsable
TEST_ASSERT(flatbuffers::Parser().Parse(
"namespace A; union X {} namespace B; union X {}"));
// Clashing table and union names in different namespaces must be parsable
TEST_ASSERT(flatbuffers::Parser().Parse(
"namespace A; table X {} namespace B; union X {}"));
TEST_ASSERT(flatbuffers::Parser().Parse(
"namespace A; union X {} namespace B; table X {}"));
}
void WarningsAsErrorsTest() {
{
flatbuffers::IDLOptions opts;
// opts.warnings_as_errors should default to false
flatbuffers::Parser parser(opts);
TEST_EQ(parser.Parse("table T { THIS_NAME_CAUSES_A_WARNING:string;}\n"
"root_type T;"),
true);
}
{
flatbuffers::IDLOptions opts;
opts.warnings_as_errors = true;
flatbuffers::Parser parser(opts);
TEST_EQ(parser.Parse("table T { THIS_NAME_CAUSES_A_WARNING:string;}\n"
"root_type T;"),
false);
}
}
void StringVectorDefaultsTest() {
std::vector<std::string> schemas;
schemas.push_back("table Monster { mana: string = \"\"; }");
schemas.push_back("table Monster { mana: string = \"mystr\"; }");
schemas.push_back("table Monster { mana: string = \" \"; }");
schemas.push_back("table Monster { mana: string = \"null\"; }");
schemas.push_back("table Monster { mana: [int] = []; }");
schemas.push_back("table Monster { mana: [uint] = [ ]; }");
schemas.push_back("table Monster { mana: [byte] = [\t\t\n]; }");
schemas.push_back("enum E:int{}table Monster{mana:[E]=[];}");
for (auto s = schemas.begin(); s < schemas.end(); s++) {
flatbuffers::Parser parser;
TEST_ASSERT(parser.Parse(s->c_str()));
const auto *mana = parser.structs_.Lookup("Monster")->fields.Lookup("mana");
TEST_EQ(mana->IsDefault(), true);
}
}
void FieldIdentifierTest() {
using flatbuffers::Parser;
TEST_EQ(true, Parser().Parse("table T{ f: int (id:0); }"));
// non-integer `id` should be rejected
TEST_EQ(false, Parser().Parse("table T{ f: int (id:text); }"));
TEST_EQ(false, Parser().Parse("table T{ f: int (id:\"text\"); }"));
TEST_EQ(false, Parser().Parse("table T{ f: int (id:0text); }"));
TEST_EQ(false, Parser().Parse("table T{ f: int (id:1.0); }"));
TEST_EQ(false, Parser().Parse("table T{ f: int (id:-1); g: int (id:0); }"));
TEST_EQ(false, Parser().Parse("table T{ f: int (id:129496726); }"));
// A unuion filed occupys two ids: enumerator + pointer (offset).
TEST_EQ(false,
Parser().Parse("union X{} table T{ u: X(id:0); table F{x:int;\n}"));
// Positive tests for unions
TEST_EQ(true, Parser().Parse("union X{} table T{ u: X (id:1); }"));
TEST_EQ(true, Parser().Parse("union X{} table T{ u: X; }"));
// Test using 'inf' and 'nan' words both as identifiers and as default values.
TEST_EQ(true, Parser().Parse("table T{ nan: string; }"));
TEST_EQ(true, Parser().Parse("table T{ inf: string; }"));
#if defined(FLATBUFFERS_HAS_NEW_STRTOD) && (FLATBUFFERS_HAS_NEW_STRTOD > 0)
TEST_EQ(true, Parser().Parse("table T{ inf: float = inf; }"));
TEST_EQ(true, Parser().Parse("table T{ nan: float = inf; }"));
#endif
}
} // namespace tests
} // namespace flatbuffers
|