1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938
|
/*
* Copyright 2017 Google Inc. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef FLATBUFFERS_FLEXBUFFERS_H_
#define FLATBUFFERS_FLEXBUFFERS_H_
#include <algorithm>
#include <map>
// Used to select STL variant.
#include "flatbuffers/base.h"
// We use the basic binary writing functions from the regular FlatBuffers.
#include "flatbuffers/util.h"
#ifdef _MSC_VER
# include <intrin.h>
#endif
#if defined(_MSC_VER)
# pragma warning(push)
# pragma warning(disable : 4127) // C4127: conditional expression is constant
#endif
namespace flexbuffers {
class Reference;
class Map;
// These are used in the lower 2 bits of a type field to determine the size of
// the elements (and or size field) of the item pointed to (e.g. vector).
enum BitWidth {
BIT_WIDTH_8 = 0,
BIT_WIDTH_16 = 1,
BIT_WIDTH_32 = 2,
BIT_WIDTH_64 = 3,
};
// These are used as the upper 6 bits of a type field to indicate the actual
// type.
enum Type {
FBT_NULL = 0,
FBT_INT = 1,
FBT_UINT = 2,
FBT_FLOAT = 3,
// Types above stored inline, types below (except FBT_BOOL) store an offset.
FBT_KEY = 4,
FBT_STRING = 5,
FBT_INDIRECT_INT = 6,
FBT_INDIRECT_UINT = 7,
FBT_INDIRECT_FLOAT = 8,
FBT_MAP = 9,
FBT_VECTOR = 10, // Untyped.
FBT_VECTOR_INT = 11, // Typed any size (stores no type table).
FBT_VECTOR_UINT = 12,
FBT_VECTOR_FLOAT = 13,
FBT_VECTOR_KEY = 14,
// DEPRECATED, use FBT_VECTOR or FBT_VECTOR_KEY instead.
// Read test.cpp/FlexBuffersDeprecatedTest() for details on why.
FBT_VECTOR_STRING_DEPRECATED = 15,
FBT_VECTOR_INT2 = 16, // Typed tuple (no type table, no size field).
FBT_VECTOR_UINT2 = 17,
FBT_VECTOR_FLOAT2 = 18,
FBT_VECTOR_INT3 = 19, // Typed triple (no type table, no size field).
FBT_VECTOR_UINT3 = 20,
FBT_VECTOR_FLOAT3 = 21,
FBT_VECTOR_INT4 = 22, // Typed quad (no type table, no size field).
FBT_VECTOR_UINT4 = 23,
FBT_VECTOR_FLOAT4 = 24,
FBT_BLOB = 25,
FBT_BOOL = 26,
FBT_VECTOR_BOOL =
36, // To Allow the same type of conversion of type to vector type
FBT_MAX_TYPE = 37
};
inline bool IsInline(Type t) { return t <= FBT_FLOAT || t == FBT_BOOL; }
inline bool IsTypedVectorElementType(Type t) {
return (t >= FBT_INT && t <= FBT_STRING) || t == FBT_BOOL;
}
inline bool IsTypedVector(Type t) {
return (t >= FBT_VECTOR_INT && t <= FBT_VECTOR_STRING_DEPRECATED) ||
t == FBT_VECTOR_BOOL;
}
inline bool IsFixedTypedVector(Type t) {
return t >= FBT_VECTOR_INT2 && t <= FBT_VECTOR_FLOAT4;
}
inline Type ToTypedVector(Type t, size_t fixed_len = 0) {
FLATBUFFERS_ASSERT(IsTypedVectorElementType(t));
switch (fixed_len) {
case 0: return static_cast<Type>(t - FBT_INT + FBT_VECTOR_INT);
case 2: return static_cast<Type>(t - FBT_INT + FBT_VECTOR_INT2);
case 3: return static_cast<Type>(t - FBT_INT + FBT_VECTOR_INT3);
case 4: return static_cast<Type>(t - FBT_INT + FBT_VECTOR_INT4);
default: FLATBUFFERS_ASSERT(0); return FBT_NULL;
}
}
inline Type ToTypedVectorElementType(Type t) {
FLATBUFFERS_ASSERT(IsTypedVector(t));
return static_cast<Type>(t - FBT_VECTOR_INT + FBT_INT);
}
inline Type ToFixedTypedVectorElementType(Type t, uint8_t *len) {
FLATBUFFERS_ASSERT(IsFixedTypedVector(t));
auto fixed_type = t - FBT_VECTOR_INT2;
*len = static_cast<uint8_t>(fixed_type / 3 +
2); // 3 types each, starting from length 2.
return static_cast<Type>(fixed_type % 3 + FBT_INT);
}
// TODO: implement proper support for 8/16bit floats, or decide not to
// support them.
typedef int16_t half;
typedef int8_t quarter;
// TODO: can we do this without conditionals using intrinsics or inline asm
// on some platforms? Given branch prediction the method below should be
// decently quick, but it is the most frequently executed function.
// We could do an (unaligned) 64-bit read if we ifdef out the platforms for
// which that doesn't work (or where we'd read into un-owned memory).
template<typename R, typename T1, typename T2, typename T4, typename T8>
R ReadSizedScalar(const uint8_t *data, uint8_t byte_width) {
return byte_width < 4
? (byte_width < 2
? static_cast<R>(flatbuffers::ReadScalar<T1>(data))
: static_cast<R>(flatbuffers::ReadScalar<T2>(data)))
: (byte_width < 8
? static_cast<R>(flatbuffers::ReadScalar<T4>(data))
: static_cast<R>(flatbuffers::ReadScalar<T8>(data)));
}
inline int64_t ReadInt64(const uint8_t *data, uint8_t byte_width) {
return ReadSizedScalar<int64_t, int8_t, int16_t, int32_t, int64_t>(
data, byte_width);
}
inline uint64_t ReadUInt64(const uint8_t *data, uint8_t byte_width) {
// This is the "hottest" function (all offset lookups use this), so worth
// optimizing if possible.
// TODO: GCC apparently replaces memcpy by a rep movsb, but only if count is a
// constant, which here it isn't. Test if memcpy is still faster than
// the conditionals in ReadSizedScalar. Can also use inline asm.
// clang-format off
#if defined(_MSC_VER) && defined(_M_X64) && !defined(_M_ARM64EC)
// This is 64-bit Windows only, __movsb does not work on 32-bit Windows.
uint64_t u = 0;
__movsb(reinterpret_cast<uint8_t *>(&u),
reinterpret_cast<const uint8_t *>(data), byte_width);
return flatbuffers::EndianScalar(u);
#else
return ReadSizedScalar<uint64_t, uint8_t, uint16_t, uint32_t, uint64_t>(
data, byte_width);
#endif
// clang-format on
}
inline double ReadDouble(const uint8_t *data, uint8_t byte_width) {
return ReadSizedScalar<double, quarter, half, float, double>(data,
byte_width);
}
inline const uint8_t *Indirect(const uint8_t *offset, uint8_t byte_width) {
return offset - ReadUInt64(offset, byte_width);
}
template<typename T> const uint8_t *Indirect(const uint8_t *offset) {
return offset - flatbuffers::ReadScalar<T>(offset);
}
inline BitWidth WidthU(uint64_t u) {
#define FLATBUFFERS_GET_FIELD_BIT_WIDTH(value, width) \
{ \
if (!((u) & ~((1ULL << (width)) - 1ULL))) return BIT_WIDTH_##width; \
}
FLATBUFFERS_GET_FIELD_BIT_WIDTH(u, 8);
FLATBUFFERS_GET_FIELD_BIT_WIDTH(u, 16);
FLATBUFFERS_GET_FIELD_BIT_WIDTH(u, 32);
#undef FLATBUFFERS_GET_FIELD_BIT_WIDTH
return BIT_WIDTH_64;
}
inline BitWidth WidthI(int64_t i) {
auto u = static_cast<uint64_t>(i) << 1;
return WidthU(i >= 0 ? u : ~u);
}
inline BitWidth WidthF(double f) {
return static_cast<double>(static_cast<float>(f)) == f ? BIT_WIDTH_32
: BIT_WIDTH_64;
}
// Base class of all types below.
// Points into the data buffer and allows access to one type.
class Object {
public:
Object(const uint8_t *data, uint8_t byte_width)
: data_(data), byte_width_(byte_width) {}
protected:
const uint8_t *data_;
uint8_t byte_width_;
};
// Object that has a size, obtained either from size prefix, or elsewhere.
class Sized : public Object {
public:
// Size prefix.
Sized(const uint8_t *data, uint8_t byte_width)
: Object(data, byte_width), size_(read_size()) {}
// Manual size.
Sized(const uint8_t *data, uint8_t byte_width, size_t sz)
: Object(data, byte_width), size_(sz) {}
size_t size() const { return size_; }
// Access size stored in `byte_width_` bytes before data_ pointer.
size_t read_size() const {
return static_cast<size_t>(ReadUInt64(data_ - byte_width_, byte_width_));
}
protected:
size_t size_;
};
class String : public Sized {
public:
// Size prefix.
String(const uint8_t *data, uint8_t byte_width) : Sized(data, byte_width) {}
// Manual size.
String(const uint8_t *data, uint8_t byte_width, size_t sz)
: Sized(data, byte_width, sz) {}
size_t length() const { return size(); }
const char *c_str() const { return reinterpret_cast<const char *>(data_); }
std::string str() const { return std::string(c_str(), size()); }
static String EmptyString() {
static const char *empty_string = "";
return String(reinterpret_cast<const uint8_t *>(empty_string), 1, 0);
}
bool IsTheEmptyString() const { return data_ == EmptyString().data_; }
};
class Blob : public Sized {
public:
Blob(const uint8_t *data_buf, uint8_t byte_width)
: Sized(data_buf, byte_width) {}
static Blob EmptyBlob() {
static const uint8_t empty_blob[] = { 0 /*len*/ };
return Blob(empty_blob + 1, 1);
}
bool IsTheEmptyBlob() const { return data_ == EmptyBlob().data_; }
const uint8_t *data() const { return data_; }
};
class Vector : public Sized {
public:
Vector(const uint8_t *data, uint8_t byte_width) : Sized(data, byte_width) {}
Reference operator[](size_t i) const;
static Vector EmptyVector() {
static const uint8_t empty_vector[] = { 0 /*len*/ };
return Vector(empty_vector + 1, 1);
}
bool IsTheEmptyVector() const { return data_ == EmptyVector().data_; }
};
class TypedVector : public Sized {
public:
TypedVector(const uint8_t *data, uint8_t byte_width, Type element_type)
: Sized(data, byte_width), type_(element_type) {}
Reference operator[](size_t i) const;
static TypedVector EmptyTypedVector() {
static const uint8_t empty_typed_vector[] = { 0 /*len*/ };
return TypedVector(empty_typed_vector + 1, 1, FBT_INT);
}
bool IsTheEmptyVector() const {
return data_ == TypedVector::EmptyTypedVector().data_;
}
Type ElementType() { return type_; }
friend Reference;
private:
Type type_;
friend Map;
};
class FixedTypedVector : public Object {
public:
FixedTypedVector(const uint8_t *data, uint8_t byte_width, Type element_type,
uint8_t len)
: Object(data, byte_width), type_(element_type), len_(len) {}
Reference operator[](size_t i) const;
static FixedTypedVector EmptyFixedTypedVector() {
static const uint8_t fixed_empty_vector[] = { 0 /* unused */ };
return FixedTypedVector(fixed_empty_vector, 1, FBT_INT, 0);
}
bool IsTheEmptyFixedTypedVector() const {
return data_ == FixedTypedVector::EmptyFixedTypedVector().data_;
}
Type ElementType() const { return type_; }
uint8_t size() const { return len_; }
private:
Type type_;
uint8_t len_;
};
class Map : public Vector {
public:
Map(const uint8_t *data, uint8_t byte_width) : Vector(data, byte_width) {}
Reference operator[](const char *key) const;
Reference operator[](const std::string &key) const;
Vector Values() const { return Vector(data_, byte_width_); }
TypedVector Keys() const {
const size_t num_prefixed_fields = 3;
auto keys_offset = data_ - byte_width_ * num_prefixed_fields;
return TypedVector(Indirect(keys_offset, byte_width_),
static_cast<uint8_t>(
ReadUInt64(keys_offset + byte_width_, byte_width_)),
FBT_KEY);
}
static Map EmptyMap() {
static const uint8_t empty_map[] = {
0 /*keys_len*/, 0 /*keys_offset*/, 1 /*keys_width*/, 0 /*len*/
};
return Map(empty_map + 4, 1);
}
bool IsTheEmptyMap() const { return data_ == EmptyMap().data_; }
};
inline void IndentString(std::string &s, int indent,
const char *indent_string) {
for (int i = 0; i < indent; i++) s += indent_string;
}
template<typename T>
void AppendToString(std::string &s, T &&v, bool keys_quoted, bool indented,
int cur_indent, const char *indent_string) {
s += "[";
s += indented ? "\n" : " ";
for (size_t i = 0; i < v.size(); i++) {
if (i) {
s += ",";
s += indented ? "\n" : " ";
}
if (indented) IndentString(s, cur_indent, indent_string);
v[i].ToString(true, keys_quoted, s, indented, cur_indent,
indent_string);
}
if (indented) {
s += "\n";
IndentString(s, cur_indent - 1, indent_string);
} else {
s += " ";
}
s += "]";
}
template<typename T>
void AppendToString(std::string &s, T &&v, bool keys_quoted) {
AppendToString(s, v, keys_quoted);
}
class Reference {
public:
Reference()
: data_(nullptr), parent_width_(0), byte_width_(0), type_(FBT_NULL) {}
Reference(const uint8_t *data, uint8_t parent_width, uint8_t byte_width,
Type type)
: data_(data),
parent_width_(parent_width),
byte_width_(byte_width),
type_(type) {}
Reference(const uint8_t *data, uint8_t parent_width, uint8_t packed_type)
: data_(data),
parent_width_(parent_width),
byte_width_(static_cast<uint8_t>(1 << (packed_type & 3))),
type_(static_cast<Type>(packed_type >> 2)) {}
Type GetType() const { return type_; }
bool IsNull() const { return type_ == FBT_NULL; }
bool IsBool() const { return type_ == FBT_BOOL; }
bool IsInt() const { return type_ == FBT_INT || type_ == FBT_INDIRECT_INT; }
bool IsUInt() const {
return type_ == FBT_UINT || type_ == FBT_INDIRECT_UINT;
}
bool IsIntOrUint() const { return IsInt() || IsUInt(); }
bool IsFloat() const {
return type_ == FBT_FLOAT || type_ == FBT_INDIRECT_FLOAT;
}
bool IsNumeric() const { return IsIntOrUint() || IsFloat(); }
bool IsString() const { return type_ == FBT_STRING; }
bool IsKey() const { return type_ == FBT_KEY; }
bool IsVector() const { return type_ == FBT_VECTOR || type_ == FBT_MAP; }
bool IsUntypedVector() const { return type_ == FBT_VECTOR; }
bool IsTypedVector() const { return flexbuffers::IsTypedVector(type_); }
bool IsFixedTypedVector() const {
return flexbuffers::IsFixedTypedVector(type_);
}
bool IsAnyVector() const {
return (IsTypedVector() || IsFixedTypedVector() || IsVector());
}
bool IsMap() const { return type_ == FBT_MAP; }
bool IsBlob() const { return type_ == FBT_BLOB; }
bool AsBool() const {
return (type_ == FBT_BOOL ? ReadUInt64(data_, parent_width_)
: AsUInt64()) != 0;
}
// Reads any type as a int64_t. Never fails, does most sensible conversion.
// Truncates floats, strings are attempted to be parsed for a number,
// vectors/maps return their size. Returns 0 if all else fails.
int64_t AsInt64() const {
if (type_ == FBT_INT) {
// A fast path for the common case.
return ReadInt64(data_, parent_width_);
} else
switch (type_) {
case FBT_INDIRECT_INT: return ReadInt64(Indirect(), byte_width_);
case FBT_UINT: return ReadUInt64(data_, parent_width_);
case FBT_INDIRECT_UINT: return ReadUInt64(Indirect(), byte_width_);
case FBT_FLOAT:
return static_cast<int64_t>(ReadDouble(data_, parent_width_));
case FBT_INDIRECT_FLOAT:
return static_cast<int64_t>(ReadDouble(Indirect(), byte_width_));
case FBT_NULL: return 0;
case FBT_STRING: return flatbuffers::StringToInt(AsString().c_str());
case FBT_VECTOR: return static_cast<int64_t>(AsVector().size());
case FBT_BOOL: return ReadInt64(data_, parent_width_);
default:
// Convert other things to int.
return 0;
}
}
// TODO: could specialize these to not use AsInt64() if that saves
// extension ops in generated code, and use a faster op than ReadInt64.
int32_t AsInt32() const { return static_cast<int32_t>(AsInt64()); }
int16_t AsInt16() const { return static_cast<int16_t>(AsInt64()); }
int8_t AsInt8() const { return static_cast<int8_t>(AsInt64()); }
uint64_t AsUInt64() const {
if (type_ == FBT_UINT) {
// A fast path for the common case.
return ReadUInt64(data_, parent_width_);
} else
switch (type_) {
case FBT_INDIRECT_UINT: return ReadUInt64(Indirect(), byte_width_);
case FBT_INT: return ReadInt64(data_, parent_width_);
case FBT_INDIRECT_INT: return ReadInt64(Indirect(), byte_width_);
case FBT_FLOAT:
return static_cast<uint64_t>(ReadDouble(data_, parent_width_));
case FBT_INDIRECT_FLOAT:
return static_cast<uint64_t>(ReadDouble(Indirect(), byte_width_));
case FBT_NULL: return 0;
case FBT_STRING: return flatbuffers::StringToUInt(AsString().c_str());
case FBT_VECTOR: return static_cast<uint64_t>(AsVector().size());
case FBT_BOOL: return ReadUInt64(data_, parent_width_);
default:
// Convert other things to uint.
return 0;
}
}
uint32_t AsUInt32() const { return static_cast<uint32_t>(AsUInt64()); }
uint16_t AsUInt16() const { return static_cast<uint16_t>(AsUInt64()); }
uint8_t AsUInt8() const { return static_cast<uint8_t>(AsUInt64()); }
double AsDouble() const {
if (type_ == FBT_FLOAT) {
// A fast path for the common case.
return ReadDouble(data_, parent_width_);
} else
switch (type_) {
case FBT_INDIRECT_FLOAT: return ReadDouble(Indirect(), byte_width_);
case FBT_INT:
return static_cast<double>(ReadInt64(data_, parent_width_));
case FBT_UINT:
return static_cast<double>(ReadUInt64(data_, parent_width_));
case FBT_INDIRECT_INT:
return static_cast<double>(ReadInt64(Indirect(), byte_width_));
case FBT_INDIRECT_UINT:
return static_cast<double>(ReadUInt64(Indirect(), byte_width_));
case FBT_NULL: return 0.0;
case FBT_STRING: {
double d;
flatbuffers::StringToNumber(AsString().c_str(), &d);
return d;
}
case FBT_VECTOR: return static_cast<double>(AsVector().size());
case FBT_BOOL:
return static_cast<double>(ReadUInt64(data_, parent_width_));
default:
// Convert strings and other things to float.
return 0;
}
}
float AsFloat() const { return static_cast<float>(AsDouble()); }
const char *AsKey() const {
if (type_ == FBT_KEY || type_ == FBT_STRING) {
return reinterpret_cast<const char *>(Indirect());
} else {
return "";
}
}
// This function returns the empty string if you try to read something that
// is not a string or key.
String AsString() const {
if (type_ == FBT_STRING) {
return String(Indirect(), byte_width_);
} else if (type_ == FBT_KEY) {
auto key = Indirect();
return String(key, byte_width_,
strlen(reinterpret_cast<const char *>(key)));
} else {
return String::EmptyString();
}
}
// Unlike AsString(), this will convert any type to a std::string.
std::string ToString() const {
std::string s;
ToString(false, false, s);
return s;
}
// Convert any type to a JSON-like string. strings_quoted determines if
// string values at the top level receive "" quotes (inside other values
// they always do). keys_quoted determines if keys are quoted, at any level.
void ToString(bool strings_quoted, bool keys_quoted, std::string &s) const {
ToString(strings_quoted, keys_quoted, s, false, 0, "");
}
// This version additionally allow you to specify if you want indentation.
void ToString(bool strings_quoted, bool keys_quoted, std::string &s,
bool indented, int cur_indent, const char *indent_string) const {
if (type_ == FBT_STRING) {
String str(Indirect(), byte_width_);
if (strings_quoted) {
flatbuffers::EscapeString(str.c_str(), str.length(), &s, true, false);
} else {
s.append(str.c_str(), str.length());
}
} else if (IsKey()) {
auto str = AsKey();
if (keys_quoted) {
flatbuffers::EscapeString(str, strlen(str), &s, true, false);
} else {
s += str;
}
} else if (IsInt()) {
s += flatbuffers::NumToString(AsInt64());
} else if (IsUInt()) {
s += flatbuffers::NumToString(AsUInt64());
} else if (IsFloat()) {
s += flatbuffers::NumToString(AsDouble());
} else if (IsNull()) {
s += "null";
} else if (IsBool()) {
s += AsBool() ? "true" : "false";
} else if (IsMap()) {
s += "{";
s += indented ? "\n" : " ";
auto m = AsMap();
auto keys = m.Keys();
auto vals = m.Values();
for (size_t i = 0; i < keys.size(); i++) {
bool kq = keys_quoted;
if (!kq) {
// FlexBuffers keys may contain arbitrary characters, only allow
// unquoted if it looks like an "identifier":
const char *p = keys[i].AsKey();
if (!flatbuffers::is_alpha(*p) && *p != '_') {
kq = true;
} else {
while (*++p) {
if (!flatbuffers::is_alnum(*p) && *p != '_') {
kq = true;
break;
}
}
}
}
if (indented) IndentString(s, cur_indent + 1, indent_string);
keys[i].ToString(true, kq, s);
s += ": ";
vals[i].ToString(true, keys_quoted, s, indented, cur_indent + 1, indent_string);
if (i < keys.size() - 1) {
s += ",";
if (!indented) s += " ";
}
if (indented) s += "\n";
}
if (!indented) s += " ";
if (indented) IndentString(s, cur_indent, indent_string);
s += "}";
} else if (IsVector()) {
AppendToString<Vector>(s, AsVector(), keys_quoted, indented,
cur_indent + 1, indent_string);
} else if (IsTypedVector()) {
AppendToString<TypedVector>(s, AsTypedVector(), keys_quoted, indented,
cur_indent + 1, indent_string);
} else if (IsFixedTypedVector()) {
AppendToString<FixedTypedVector>(s, AsFixedTypedVector(), keys_quoted,
indented, cur_indent + 1, indent_string);
} else if (IsBlob()) {
auto blob = AsBlob();
flatbuffers::EscapeString(reinterpret_cast<const char *>(blob.data()),
blob.size(), &s, true, false);
} else {
s += "(?)";
}
}
// This function returns the empty blob if you try to read a not-blob.
// Strings can be viewed as blobs too.
Blob AsBlob() const {
if (type_ == FBT_BLOB || type_ == FBT_STRING) {
return Blob(Indirect(), byte_width_);
} else {
return Blob::EmptyBlob();
}
}
// This function returns the empty vector if you try to read a not-vector.
// Maps can be viewed as vectors too.
Vector AsVector() const {
if (type_ == FBT_VECTOR || type_ == FBT_MAP) {
return Vector(Indirect(), byte_width_);
} else {
return Vector::EmptyVector();
}
}
TypedVector AsTypedVector() const {
if (IsTypedVector()) {
auto tv =
TypedVector(Indirect(), byte_width_, ToTypedVectorElementType(type_));
if (tv.type_ == FBT_STRING) {
// These can't be accessed as strings, since we don't know the bit-width
// of the size field, see the declaration of
// FBT_VECTOR_STRING_DEPRECATED above for details.
// We change the type here to be keys, which are a subtype of strings,
// and will ignore the size field. This will truncate strings with
// embedded nulls.
tv.type_ = FBT_KEY;
}
return tv;
} else {
return TypedVector::EmptyTypedVector();
}
}
FixedTypedVector AsFixedTypedVector() const {
if (IsFixedTypedVector()) {
uint8_t len = 0;
auto vtype = ToFixedTypedVectorElementType(type_, &len);
return FixedTypedVector(Indirect(), byte_width_, vtype, len);
} else {
return FixedTypedVector::EmptyFixedTypedVector();
}
}
Map AsMap() const {
if (type_ == FBT_MAP) {
return Map(Indirect(), byte_width_);
} else {
return Map::EmptyMap();
}
}
template<typename T> T As() const;
// Experimental: Mutation functions.
// These allow scalars in an already created buffer to be updated in-place.
// Since by default scalars are stored in the smallest possible space,
// the new value may not fit, in which case these functions return false.
// To avoid this, you can construct the values you intend to mutate using
// Builder::ForceMinimumBitWidth.
bool MutateInt(int64_t i) {
if (type_ == FBT_INT) {
return Mutate(data_, i, parent_width_, WidthI(i));
} else if (type_ == FBT_INDIRECT_INT) {
return Mutate(Indirect(), i, byte_width_, WidthI(i));
} else if (type_ == FBT_UINT) {
auto u = static_cast<uint64_t>(i);
return Mutate(data_, u, parent_width_, WidthU(u));
} else if (type_ == FBT_INDIRECT_UINT) {
auto u = static_cast<uint64_t>(i);
return Mutate(Indirect(), u, byte_width_, WidthU(u));
} else {
return false;
}
}
bool MutateBool(bool b) {
return type_ == FBT_BOOL && Mutate(data_, b, parent_width_, BIT_WIDTH_8);
}
bool MutateUInt(uint64_t u) {
if (type_ == FBT_UINT) {
return Mutate(data_, u, parent_width_, WidthU(u));
} else if (type_ == FBT_INDIRECT_UINT) {
return Mutate(Indirect(), u, byte_width_, WidthU(u));
} else if (type_ == FBT_INT) {
auto i = static_cast<int64_t>(u);
return Mutate(data_, i, parent_width_, WidthI(i));
} else if (type_ == FBT_INDIRECT_INT) {
auto i = static_cast<int64_t>(u);
return Mutate(Indirect(), i, byte_width_, WidthI(i));
} else {
return false;
}
}
bool MutateFloat(float f) {
if (type_ == FBT_FLOAT) {
return MutateF(data_, f, parent_width_, BIT_WIDTH_32);
} else if (type_ == FBT_INDIRECT_FLOAT) {
return MutateF(Indirect(), f, byte_width_, BIT_WIDTH_32);
} else {
return false;
}
}
bool MutateFloat(double d) {
if (type_ == FBT_FLOAT) {
return MutateF(data_, d, parent_width_, WidthF(d));
} else if (type_ == FBT_INDIRECT_FLOAT) {
return MutateF(Indirect(), d, byte_width_, WidthF(d));
} else {
return false;
}
}
bool MutateString(const char *str, size_t len) {
auto s = AsString();
if (s.IsTheEmptyString()) return false;
// This is very strict, could allow shorter strings, but that creates
// garbage.
if (s.length() != len) return false;
memcpy(const_cast<char *>(s.c_str()), str, len);
return true;
}
bool MutateString(const char *str) { return MutateString(str, strlen(str)); }
bool MutateString(const std::string &str) {
return MutateString(str.data(), str.length());
}
private:
const uint8_t *Indirect() const {
return flexbuffers::Indirect(data_, parent_width_);
}
template<typename T>
bool Mutate(const uint8_t *dest, T t, size_t byte_width,
BitWidth value_width) {
auto fits = static_cast<size_t>(static_cast<size_t>(1U) << value_width) <=
byte_width;
if (fits) {
t = flatbuffers::EndianScalar(t);
memcpy(const_cast<uint8_t *>(dest), &t, byte_width);
}
return fits;
}
template<typename T>
bool MutateF(const uint8_t *dest, T t, size_t byte_width,
BitWidth value_width) {
if (byte_width == sizeof(double))
return Mutate(dest, static_cast<double>(t), byte_width, value_width);
if (byte_width == sizeof(float))
return Mutate(dest, static_cast<float>(t), byte_width, value_width);
FLATBUFFERS_ASSERT(false);
return false;
}
friend class Verifier;
const uint8_t *data_;
uint8_t parent_width_;
uint8_t byte_width_;
Type type_;
};
// Template specialization for As().
template<> inline bool Reference::As<bool>() const { return AsBool(); }
template<> inline int8_t Reference::As<int8_t>() const { return AsInt8(); }
template<> inline int16_t Reference::As<int16_t>() const { return AsInt16(); }
template<> inline int32_t Reference::As<int32_t>() const { return AsInt32(); }
template<> inline int64_t Reference::As<int64_t>() const { return AsInt64(); }
template<> inline uint8_t Reference::As<uint8_t>() const { return AsUInt8(); }
template<> inline uint16_t Reference::As<uint16_t>() const {
return AsUInt16();
}
template<> inline uint32_t Reference::As<uint32_t>() const {
return AsUInt32();
}
template<> inline uint64_t Reference::As<uint64_t>() const {
return AsUInt64();
}
template<> inline double Reference::As<double>() const { return AsDouble(); }
template<> inline float Reference::As<float>() const { return AsFloat(); }
template<> inline String Reference::As<String>() const { return AsString(); }
template<> inline std::string Reference::As<std::string>() const {
return AsString().str();
}
template<> inline Blob Reference::As<Blob>() const { return AsBlob(); }
template<> inline Vector Reference::As<Vector>() const { return AsVector(); }
template<> inline TypedVector Reference::As<TypedVector>() const {
return AsTypedVector();
}
template<> inline FixedTypedVector Reference::As<FixedTypedVector>() const {
return AsFixedTypedVector();
}
template<> inline Map Reference::As<Map>() const { return AsMap(); }
inline uint8_t PackedType(BitWidth bit_width, Type type) {
return static_cast<uint8_t>(bit_width | (type << 2));
}
inline uint8_t NullPackedType() { return PackedType(BIT_WIDTH_8, FBT_NULL); }
// Vector accessors.
// Note: if you try to access outside of bounds, you get a Null value back
// instead. Normally this would be an assert, but since this is "dynamically
// typed" data, you may not want that (someone sends you a 2d vector and you
// wanted 3d).
// The Null converts seamlessly into a default value for any other type.
// TODO(wvo): Could introduce an #ifdef that makes this into an assert?
inline Reference Vector::operator[](size_t i) const {
auto len = size();
if (i >= len) return Reference(nullptr, 1, NullPackedType());
auto packed_type = (data_ + len * byte_width_)[i];
auto elem = data_ + i * byte_width_;
return Reference(elem, byte_width_, packed_type);
}
inline Reference TypedVector::operator[](size_t i) const {
auto len = size();
if (i >= len) return Reference(nullptr, 1, NullPackedType());
auto elem = data_ + i * byte_width_;
return Reference(elem, byte_width_, 1, type_);
}
inline Reference FixedTypedVector::operator[](size_t i) const {
if (i >= len_) return Reference(nullptr, 1, NullPackedType());
auto elem = data_ + i * byte_width_;
return Reference(elem, byte_width_, 1, type_);
}
template<typename T> int KeyCompare(const void *key, const void *elem) {
auto str_elem = reinterpret_cast<const char *>(
Indirect<T>(reinterpret_cast<const uint8_t *>(elem)));
auto skey = reinterpret_cast<const char *>(key);
return strcmp(skey, str_elem);
}
inline Reference Map::operator[](const char *key) const {
auto keys = Keys();
// We can't pass keys.byte_width_ to the comparison function, so we have
// to pick the right one ahead of time.
int (*comp)(const void *, const void *) = nullptr;
switch (keys.byte_width_) {
case 1: comp = KeyCompare<uint8_t>; break;
case 2: comp = KeyCompare<uint16_t>; break;
case 4: comp = KeyCompare<uint32_t>; break;
case 8: comp = KeyCompare<uint64_t>; break;
default: FLATBUFFERS_ASSERT(false); return Reference();
}
auto res = std::bsearch(key, keys.data_, keys.size(), keys.byte_width_, comp);
if (!res) return Reference(nullptr, 1, NullPackedType());
auto i = (reinterpret_cast<uint8_t *>(res) - keys.data_) / keys.byte_width_;
return (*static_cast<const Vector *>(this))[i];
}
inline Reference Map::operator[](const std::string &key) const {
return (*this)[key.c_str()];
}
inline Reference GetRoot(const uint8_t *buffer, size_t size) {
// See Finish() below for the serialization counterpart of this.
// The root starts at the end of the buffer, so we parse backwards from there.
auto end = buffer + size;
auto byte_width = *--end;
auto packed_type = *--end;
end -= byte_width; // The root data item.
return Reference(end, byte_width, packed_type);
}
inline Reference GetRoot(const std::vector<uint8_t> &buffer) {
return GetRoot(buffer.data(), buffer.size());
}
// Flags that configure how the Builder behaves.
// The "Share" flags determine if the Builder automatically tries to pool
// this type. Pooling can reduce the size of serialized data if there are
// multiple maps of the same kind, at the expense of slightly slower
// serialization (the cost of lookups) and more memory use (std::set).
// By default this is on for keys, but off for strings.
// Turn keys off if you have e.g. only one map.
// Turn strings on if you expect many non-unique string values.
// Additionally, sharing key vectors can save space if you have maps with
// identical field populations.
enum BuilderFlag {
BUILDER_FLAG_NONE = 0,
BUILDER_FLAG_SHARE_KEYS = 1,
BUILDER_FLAG_SHARE_STRINGS = 2,
BUILDER_FLAG_SHARE_KEYS_AND_STRINGS = 3,
BUILDER_FLAG_SHARE_KEY_VECTORS = 4,
BUILDER_FLAG_SHARE_ALL = 7,
};
class Builder FLATBUFFERS_FINAL_CLASS {
public:
Builder(size_t initial_size = 256,
BuilderFlag flags = BUILDER_FLAG_SHARE_KEYS)
: buf_(initial_size),
finished_(false),
has_duplicate_keys_(false),
flags_(flags),
force_min_bit_width_(BIT_WIDTH_8),
key_pool(KeyOffsetCompare(buf_)),
string_pool(StringOffsetCompare(buf_)) {
buf_.clear();
}
#ifdef FLATBUFFERS_DEFAULT_DECLARATION
Builder(Builder &&) = default;
Builder &operator=(Builder &&) = default;
#endif
/// @brief Get the serialized buffer (after you call `Finish()`).
/// @return Returns a vector owned by this class.
const std::vector<uint8_t> &GetBuffer() const {
Finished();
return buf_;
}
// Size of the buffer. Does not include unfinished values.
size_t GetSize() const { return buf_.size(); }
// Reset all state so we can re-use the buffer.
void Clear() {
buf_.clear();
stack_.clear();
finished_ = false;
// flags_ remains as-is;
force_min_bit_width_ = BIT_WIDTH_8;
key_pool.clear();
string_pool.clear();
}
// All value constructing functions below have two versions: one that
// takes a key (for placement inside a map) and one that doesn't (for inside
// vectors and elsewhere).
void Null() { stack_.push_back(Value()); }
void Null(const char *key) {
Key(key);
Null();
}
void Int(int64_t i) { stack_.push_back(Value(i, FBT_INT, WidthI(i))); }
void Int(const char *key, int64_t i) {
Key(key);
Int(i);
}
void UInt(uint64_t u) { stack_.push_back(Value(u, FBT_UINT, WidthU(u))); }
void UInt(const char *key, uint64_t u) {
Key(key);
UInt(u);
}
void Float(float f) { stack_.push_back(Value(f)); }
void Float(const char *key, float f) {
Key(key);
Float(f);
}
void Double(double f) { stack_.push_back(Value(f)); }
void Double(const char *key, double d) {
Key(key);
Double(d);
}
void Bool(bool b) { stack_.push_back(Value(b)); }
void Bool(const char *key, bool b) {
Key(key);
Bool(b);
}
void IndirectInt(int64_t i) { PushIndirect(i, FBT_INDIRECT_INT, WidthI(i)); }
void IndirectInt(const char *key, int64_t i) {
Key(key);
IndirectInt(i);
}
void IndirectUInt(uint64_t u) {
PushIndirect(u, FBT_INDIRECT_UINT, WidthU(u));
}
void IndirectUInt(const char *key, uint64_t u) {
Key(key);
IndirectUInt(u);
}
void IndirectFloat(float f) {
PushIndirect(f, FBT_INDIRECT_FLOAT, BIT_WIDTH_32);
}
void IndirectFloat(const char *key, float f) {
Key(key);
IndirectFloat(f);
}
void IndirectDouble(double f) {
PushIndirect(f, FBT_INDIRECT_FLOAT, WidthF(f));
}
void IndirectDouble(const char *key, double d) {
Key(key);
IndirectDouble(d);
}
size_t Key(const char *str, size_t len) {
auto sloc = buf_.size();
WriteBytes(str, len + 1);
if (flags_ & BUILDER_FLAG_SHARE_KEYS) {
auto it = key_pool.find(sloc);
if (it != key_pool.end()) {
// Already in the buffer. Remove key we just serialized, and use
// existing offset instead.
buf_.resize(sloc);
sloc = *it;
} else {
key_pool.insert(sloc);
}
}
stack_.push_back(Value(static_cast<uint64_t>(sloc), FBT_KEY, BIT_WIDTH_8));
return sloc;
}
size_t Key(const char *str) { return Key(str, strlen(str)); }
size_t Key(const std::string &str) { return Key(str.c_str(), str.size()); }
size_t String(const char *str, size_t len) {
auto reset_to = buf_.size();
auto sloc = CreateBlob(str, len, 1, FBT_STRING);
if (flags_ & BUILDER_FLAG_SHARE_STRINGS) {
StringOffset so(sloc, len);
auto it = string_pool.find(so);
if (it != string_pool.end()) {
// Already in the buffer. Remove string we just serialized, and use
// existing offset instead.
buf_.resize(reset_to);
sloc = it->first;
stack_.back().u_ = sloc;
} else {
string_pool.insert(so);
}
}
return sloc;
}
size_t String(const char *str) { return String(str, strlen(str)); }
size_t String(const std::string &str) {
return String(str.c_str(), str.size());
}
void String(const flexbuffers::String &str) {
String(str.c_str(), str.length());
}
void String(const char *key, const char *str) {
Key(key);
String(str);
}
void String(const char *key, const std::string &str) {
Key(key);
String(str);
}
void String(const char *key, const flexbuffers::String &str) {
Key(key);
String(str);
}
size_t Blob(const void *data, size_t len) {
return CreateBlob(data, len, 0, FBT_BLOB);
}
size_t Blob(const std::vector<uint8_t> &v) {
return CreateBlob(v.data(), v.size(), 0, FBT_BLOB);
}
void Blob(const char *key, const void *data, size_t len) {
Key(key);
Blob(data, len);
}
void Blob(const char *key, const std::vector<uint8_t> &v) {
Key(key);
Blob(v);
}
// TODO(wvo): support all the FlexBuffer types (like flexbuffers::String),
// e.g. Vector etc. Also in overloaded versions.
// Also some FlatBuffers types?
size_t StartVector() { return stack_.size(); }
size_t StartVector(const char *key) {
Key(key);
return stack_.size();
}
size_t StartMap() { return stack_.size(); }
size_t StartMap(const char *key) {
Key(key);
return stack_.size();
}
// TODO(wvo): allow this to specify an alignment greater than the natural
// alignment.
size_t EndVector(size_t start, bool typed, bool fixed) {
auto vec = CreateVector(start, stack_.size() - start, 1, typed, fixed);
// Remove temp elements and return vector.
stack_.resize(start);
stack_.push_back(vec);
return static_cast<size_t>(vec.u_);
}
size_t EndMap(size_t start) {
// We should have interleaved keys and values on the stack.
auto len = MapElementCount(start);
// Make sure keys are all strings:
for (auto key = start; key < stack_.size(); key += 2) {
FLATBUFFERS_ASSERT(stack_[key].type_ == FBT_KEY);
}
// Now sort values, so later we can do a binary search lookup.
// We want to sort 2 array elements at a time.
struct TwoValue {
Value key;
Value val;
};
// TODO(wvo): strict aliasing?
// TODO(wvo): allow the caller to indicate the data is already sorted
// for maximum efficiency? With an assert to check sortedness to make sure
// we're not breaking binary search.
// Or, we can track if the map is sorted as keys are added which would be
// be quite cheap (cheaper than checking it here), so we can skip this
// step automatically when appliccable, and encourage people to write in
// sorted fashion.
// std::sort is typically already a lot faster on sorted data though.
auto dict = reinterpret_cast<TwoValue *>(stack_.data() + start);
std::sort(
dict, dict + len, [&](const TwoValue &a, const TwoValue &b) -> bool {
auto as = reinterpret_cast<const char *>(buf_.data() + a.key.u_);
auto bs = reinterpret_cast<const char *>(buf_.data() + b.key.u_);
auto comp = strcmp(as, bs);
// We want to disallow duplicate keys, since this results in a
// map where values cannot be found.
// But we can't assert here (since we don't want to fail on
// random JSON input) or have an error mechanism.
// Instead, we set has_duplicate_keys_ in the builder to
// signal this.
// TODO: Have to check for pointer equality, as some sort
// implementation apparently call this function with the same
// element?? Why?
if (!comp && &a != &b) has_duplicate_keys_ = true;
return comp < 0;
});
// First create a vector out of all keys.
// TODO(wvo): if kBuilderFlagShareKeyVectors is true, see if we can share
// the first vector.
auto keys = CreateVector(start, len, 2, true, false);
auto vec = CreateVector(start + 1, len, 2, false, false, &keys);
// Remove temp elements and return map.
stack_.resize(start);
stack_.push_back(vec);
return static_cast<size_t>(vec.u_);
}
// Call this after EndMap to see if the map had any duplicate keys.
// Any map with such keys won't be able to retrieve all values.
bool HasDuplicateKeys() const { return has_duplicate_keys_; }
template<typename F> size_t Vector(F f) {
auto start = StartVector();
f();
return EndVector(start, false, false);
}
template<typename F, typename T> size_t Vector(F f, T &state) {
auto start = StartVector();
f(state);
return EndVector(start, false, false);
}
template<typename F> size_t Vector(const char *key, F f) {
auto start = StartVector(key);
f();
return EndVector(start, false, false);
}
template<typename F, typename T>
size_t Vector(const char *key, F f, T &state) {
auto start = StartVector(key);
f(state);
return EndVector(start, false, false);
}
template<typename T> void Vector(const T *elems, size_t len) {
if (flatbuffers::is_scalar<T>::value) {
// This path should be a lot quicker and use less space.
ScalarVector(elems, len, false);
} else {
auto start = StartVector();
for (size_t i = 0; i < len; i++) Add(elems[i]);
EndVector(start, false, false);
}
}
template<typename T>
void Vector(const char *key, const T *elems, size_t len) {
Key(key);
Vector(elems, len);
}
template<typename T> void Vector(const std::vector<T> &vec) {
Vector(vec.data(), vec.size());
}
template<typename F> size_t TypedVector(F f) {
auto start = StartVector();
f();
return EndVector(start, true, false);
}
template<typename F, typename T> size_t TypedVector(F f, T &state) {
auto start = StartVector();
f(state);
return EndVector(start, true, false);
}
template<typename F> size_t TypedVector(const char *key, F f) {
auto start = StartVector(key);
f();
return EndVector(start, true, false);
}
template<typename F, typename T>
size_t TypedVector(const char *key, F f, T &state) {
auto start = StartVector(key);
f(state);
return EndVector(start, true, false);
}
template<typename T> size_t FixedTypedVector(const T *elems, size_t len) {
// We only support a few fixed vector lengths. Anything bigger use a
// regular typed vector.
FLATBUFFERS_ASSERT(len >= 2 && len <= 4);
// And only scalar values.
static_assert(flatbuffers::is_scalar<T>::value, "Unrelated types");
return ScalarVector(elems, len, true);
}
template<typename T>
size_t FixedTypedVector(const char *key, const T *elems, size_t len) {
Key(key);
return FixedTypedVector(elems, len);
}
template<typename F> size_t Map(F f) {
auto start = StartMap();
f();
return EndMap(start);
}
template<typename F, typename T> size_t Map(F f, T &state) {
auto start = StartMap();
f(state);
return EndMap(start);
}
template<typename F> size_t Map(const char *key, F f) {
auto start = StartMap(key);
f();
return EndMap(start);
}
template<typename F, typename T> size_t Map(const char *key, F f, T &state) {
auto start = StartMap(key);
f(state);
return EndMap(start);
}
template<typename T> void Map(const std::map<std::string, T> &map) {
auto start = StartMap();
for (auto it = map.begin(); it != map.end(); ++it)
Add(it->first.c_str(), it->second);
EndMap(start);
}
size_t MapElementCount(size_t start) {
// Make sure it is an even number:
auto len = stack_.size() - start;
FLATBUFFERS_ASSERT(!(len & 1));
len /= 2;
return len;
}
// If you wish to share a value explicitly (a value not shared automatically
// through one of the BUILDER_FLAG_SHARE_* flags) you can do so with these
// functions. Or if you wish to turn those flags off for performance reasons
// and still do some explicit sharing. For example:
// builder.IndirectDouble(M_PI);
// auto id = builder.LastValue(); // Remember where we stored it.
// .. more code goes here ..
// builder.ReuseValue(id); // Refers to same double by offset.
// LastValue works regardless of whether the value has a key or not.
// Works on any data type.
struct Value;
Value LastValue() { return stack_.back(); }
void ReuseValue(Value v) { stack_.push_back(v); }
void ReuseValue(const char *key, Value v) {
Key(key);
ReuseValue(v);
}
// Undo the last element serialized. Call once for a value and once for a
// key.
void Undo() {
stack_.pop_back();
}
// Overloaded Add that tries to call the correct function above.
void Add(int8_t i) { Int(i); }
void Add(int16_t i) { Int(i); }
void Add(int32_t i) { Int(i); }
void Add(int64_t i) { Int(i); }
void Add(uint8_t u) { UInt(u); }
void Add(uint16_t u) { UInt(u); }
void Add(uint32_t u) { UInt(u); }
void Add(uint64_t u) { UInt(u); }
void Add(float f) { Float(f); }
void Add(double d) { Double(d); }
void Add(bool b) { Bool(b); }
void Add(const char *str) { String(str); }
void Add(const std::string &str) { String(str); }
void Add(const flexbuffers::String &str) { String(str); }
template<typename T> void Add(const std::vector<T> &vec) { Vector(vec); }
template<typename T> void Add(const char *key, const T &t) {
Key(key);
Add(t);
}
template<typename T> void Add(const std::map<std::string, T> &map) {
Map(map);
}
template<typename T> void operator+=(const T &t) { Add(t); }
// This function is useful in combination with the Mutate* functions above.
// It forces elements of vectors and maps to have a minimum size, such that
// they can later be updated without failing.
// Call with no arguments to reset.
void ForceMinimumBitWidth(BitWidth bw = BIT_WIDTH_8) {
force_min_bit_width_ = bw;
}
void Finish() {
// If you hit this assert, you likely have objects that were never included
// in a parent. You need to have exactly one root to finish a buffer.
// Check your Start/End calls are matched, and all objects are inside
// some other object.
FLATBUFFERS_ASSERT(stack_.size() == 1);
// Write root value.
auto byte_width = Align(stack_[0].ElemWidth(buf_.size(), 0));
WriteAny(stack_[0], byte_width);
// Write root type.
Write(stack_[0].StoredPackedType(), 1);
// Write root size. Normally determined by parent, but root has no parent :)
Write(byte_width, 1);
finished_ = true;
}
private:
void Finished() const {
// If you get this assert, you're attempting to get access a buffer
// which hasn't been finished yet. Be sure to call
// Builder::Finish with your root object.
FLATBUFFERS_ASSERT(finished_);
}
// Align to prepare for writing a scalar with a certain size.
uint8_t Align(BitWidth alignment) {
auto byte_width = 1U << alignment;
buf_.insert(buf_.end(), flatbuffers::PaddingBytes(buf_.size(), byte_width),
0);
return static_cast<uint8_t>(byte_width);
}
void WriteBytes(const void *val, size_t size) {
buf_.insert(buf_.end(), reinterpret_cast<const uint8_t *>(val),
reinterpret_cast<const uint8_t *>(val) + size);
}
template<typename T> void Write(T val, size_t byte_width) {
FLATBUFFERS_ASSERT(sizeof(T) >= byte_width);
val = flatbuffers::EndianScalar(val);
WriteBytes(&val, byte_width);
}
void WriteDouble(double f, uint8_t byte_width) {
switch (byte_width) {
case 8: Write(f, byte_width); break;
case 4: Write(static_cast<float>(f), byte_width); break;
// case 2: Write(static_cast<half>(f), byte_width); break;
// case 1: Write(static_cast<quarter>(f), byte_width); break;
default: FLATBUFFERS_ASSERT(0);
}
}
void WriteOffset(uint64_t o, uint8_t byte_width) {
auto reloff = buf_.size() - o;
FLATBUFFERS_ASSERT(byte_width == 8 || reloff < 1ULL << (byte_width * 8));
Write(reloff, byte_width);
}
template<typename T> void PushIndirect(T val, Type type, BitWidth bit_width) {
auto byte_width = Align(bit_width);
auto iloc = buf_.size();
Write(val, byte_width);
stack_.push_back(Value(static_cast<uint64_t>(iloc), type, bit_width));
}
static BitWidth WidthB(size_t byte_width) {
switch (byte_width) {
case 1: return BIT_WIDTH_8;
case 2: return BIT_WIDTH_16;
case 4: return BIT_WIDTH_32;
case 8: return BIT_WIDTH_64;
default: FLATBUFFERS_ASSERT(false); return BIT_WIDTH_64;
}
}
template<typename T> static Type GetScalarType() {
static_assert(flatbuffers::is_scalar<T>::value, "Unrelated types");
return flatbuffers::is_floating_point<T>::value ? FBT_FLOAT
: flatbuffers::is_same<T, bool>::value
? FBT_BOOL
: (flatbuffers::is_unsigned<T>::value ? FBT_UINT : FBT_INT);
}
public:
// This was really intended to be private, except for LastValue/ReuseValue.
struct Value {
union {
int64_t i_;
uint64_t u_;
double f_;
};
Type type_;
// For scalars: of itself, for vector: of its elements, for string: length.
BitWidth min_bit_width_;
Value() : i_(0), type_(FBT_NULL), min_bit_width_(BIT_WIDTH_8) {}
Value(bool b)
: u_(static_cast<uint64_t>(b)),
type_(FBT_BOOL),
min_bit_width_(BIT_WIDTH_8) {}
Value(int64_t i, Type t, BitWidth bw)
: i_(i), type_(t), min_bit_width_(bw) {}
Value(uint64_t u, Type t, BitWidth bw)
: u_(u), type_(t), min_bit_width_(bw) {}
Value(float f)
: f_(static_cast<double>(f)),
type_(FBT_FLOAT),
min_bit_width_(BIT_WIDTH_32) {}
Value(double f) : f_(f), type_(FBT_FLOAT), min_bit_width_(WidthF(f)) {}
uint8_t StoredPackedType(BitWidth parent_bit_width_ = BIT_WIDTH_8) const {
return PackedType(StoredWidth(parent_bit_width_), type_);
}
BitWidth ElemWidth(size_t buf_size, size_t elem_index) const {
if (IsInline(type_)) {
return min_bit_width_;
} else {
// We have an absolute offset, but want to store a relative offset
// elem_index elements beyond the current buffer end. Since whether
// the relative offset fits in a certain byte_width depends on
// the size of the elements before it (and their alignment), we have
// to test for each size in turn.
for (size_t byte_width = 1;
byte_width <= sizeof(flatbuffers::largest_scalar_t);
byte_width *= 2) {
// Where are we going to write this offset?
auto offset_loc = buf_size +
flatbuffers::PaddingBytes(buf_size, byte_width) +
elem_index * byte_width;
// Compute relative offset.
auto offset = offset_loc - u_;
// Does it fit?
auto bit_width = WidthU(offset);
if (static_cast<size_t>(static_cast<size_t>(1U) << bit_width) ==
byte_width)
return bit_width;
}
FLATBUFFERS_ASSERT(false); // Must match one of the sizes above.
return BIT_WIDTH_64;
}
}
BitWidth StoredWidth(BitWidth parent_bit_width_ = BIT_WIDTH_8) const {
if (IsInline(type_)) {
return (std::max)(min_bit_width_, parent_bit_width_);
} else {
return min_bit_width_;
}
}
};
private:
void WriteAny(const Value &val, uint8_t byte_width) {
switch (val.type_) {
case FBT_NULL:
case FBT_INT: Write(val.i_, byte_width); break;
case FBT_BOOL:
case FBT_UINT: Write(val.u_, byte_width); break;
case FBT_FLOAT: WriteDouble(val.f_, byte_width); break;
default: WriteOffset(val.u_, byte_width); break;
}
}
size_t CreateBlob(const void *data, size_t len, size_t trailing, Type type) {
auto bit_width = WidthU(len);
auto byte_width = Align(bit_width);
Write<uint64_t>(len, byte_width);
auto sloc = buf_.size();
WriteBytes(data, len + trailing);
stack_.push_back(Value(static_cast<uint64_t>(sloc), type, bit_width));
return sloc;
}
template<typename T>
size_t ScalarVector(const T *elems, size_t len, bool fixed) {
auto vector_type = GetScalarType<T>();
auto byte_width = sizeof(T);
auto bit_width = WidthB(byte_width);
// If you get this assert, you're trying to write a vector with a size
// field that is bigger than the scalars you're trying to write (e.g. a
// byte vector > 255 elements). For such types, write a "blob" instead.
// TODO: instead of asserting, could write vector with larger elements
// instead, though that would be wasteful.
FLATBUFFERS_ASSERT(WidthU(len) <= bit_width);
Align(bit_width);
if (!fixed) Write<uint64_t>(len, byte_width);
auto vloc = buf_.size();
for (size_t i = 0; i < len; i++) Write(elems[i], byte_width);
stack_.push_back(Value(static_cast<uint64_t>(vloc),
ToTypedVector(vector_type, fixed ? len : 0),
bit_width));
return vloc;
}
Value CreateVector(size_t start, size_t vec_len, size_t step, bool typed,
bool fixed, const Value *keys = nullptr) {
FLATBUFFERS_ASSERT(
!fixed ||
typed); // typed=false, fixed=true combination is not supported.
// Figure out smallest bit width we can store this vector with.
auto bit_width = (std::max)(force_min_bit_width_, WidthU(vec_len));
auto prefix_elems = 1;
if (keys) {
// If this vector is part of a map, we will pre-fix an offset to the keys
// to this vector.
bit_width = (std::max)(bit_width, keys->ElemWidth(buf_.size(), 0));
prefix_elems += 2;
}
Type vector_type = FBT_KEY;
// Check bit widths and types for all elements.
for (size_t i = start; i < stack_.size(); i += step) {
auto elem_width =
stack_[i].ElemWidth(buf_.size(), i - start + prefix_elems);
bit_width = (std::max)(bit_width, elem_width);
if (typed) {
if (i == start) {
vector_type = stack_[i].type_;
} else {
// If you get this assert, you are writing a typed vector with
// elements that are not all the same type.
FLATBUFFERS_ASSERT(vector_type == stack_[i].type_);
}
}
}
// If you get this assert, your typed types are not one of:
// Int / UInt / Float / Key.
FLATBUFFERS_ASSERT(!typed || IsTypedVectorElementType(vector_type));
auto byte_width = Align(bit_width);
// Write vector. First the keys width/offset if available, and size.
if (keys) {
WriteOffset(keys->u_, byte_width);
Write<uint64_t>(1ULL << keys->min_bit_width_, byte_width);
}
if (!fixed) Write<uint64_t>(vec_len, byte_width);
// Then the actual data.
auto vloc = buf_.size();
for (size_t i = start; i < stack_.size(); i += step) {
WriteAny(stack_[i], byte_width);
}
// Then the types.
if (!typed) {
for (size_t i = start; i < stack_.size(); i += step) {
buf_.push_back(stack_[i].StoredPackedType(bit_width));
}
}
return Value(static_cast<uint64_t>(vloc),
keys ? FBT_MAP
: (typed ? ToTypedVector(vector_type, fixed ? vec_len : 0)
: FBT_VECTOR),
bit_width);
}
// You shouldn't really be copying instances of this class.
Builder(const Builder &);
Builder &operator=(const Builder &);
std::vector<uint8_t> buf_;
std::vector<Value> stack_;
bool finished_;
bool has_duplicate_keys_;
BuilderFlag flags_;
BitWidth force_min_bit_width_;
struct KeyOffsetCompare {
explicit KeyOffsetCompare(const std::vector<uint8_t> &buf) : buf_(&buf) {}
bool operator()(size_t a, size_t b) const {
auto stra = reinterpret_cast<const char *>(buf_->data() + a);
auto strb = reinterpret_cast<const char *>(buf_->data() + b);
return strcmp(stra, strb) < 0;
}
const std::vector<uint8_t> *buf_;
};
typedef std::pair<size_t, size_t> StringOffset;
struct StringOffsetCompare {
explicit StringOffsetCompare(const std::vector<uint8_t> &buf)
: buf_(&buf) {}
bool operator()(const StringOffset &a, const StringOffset &b) const {
auto stra = buf_->data() + a.first;
auto strb = buf_->data() + b.first;
auto cr = memcmp(stra, strb, (std::min)(a.second, b.second) + 1);
return cr < 0 || (cr == 0 && a.second < b.second);
}
const std::vector<uint8_t> *buf_;
};
typedef std::set<size_t, KeyOffsetCompare> KeyOffsetMap;
typedef std::set<StringOffset, StringOffsetCompare> StringOffsetMap;
KeyOffsetMap key_pool;
StringOffsetMap string_pool;
friend class Verifier;
};
// Helper class to verify the integrity of a FlexBuffer
class Verifier FLATBUFFERS_FINAL_CLASS {
public:
Verifier(const uint8_t *buf, size_t buf_len,
// Supplying this vector likely results in faster verification
// of larger buffers with many shared keys/strings, but
// comes at the cost of using additional memory the same size of
// the buffer being verified, so it is by default off.
std::vector<uint8_t> *reuse_tracker = nullptr,
bool _check_alignment = true, size_t max_depth = 64)
: buf_(buf),
size_(buf_len),
depth_(0),
max_depth_(max_depth),
num_vectors_(0),
max_vectors_(buf_len),
check_alignment_(_check_alignment),
reuse_tracker_(reuse_tracker) {
FLATBUFFERS_ASSERT(static_cast<int32_t>(size_) < FLATBUFFERS_MAX_BUFFER_SIZE);
if (reuse_tracker_) {
reuse_tracker_->clear();
reuse_tracker_->resize(size_, PackedType(BIT_WIDTH_8, FBT_NULL));
}
}
private:
// Central location where any verification failures register.
bool Check(bool ok) const {
// clang-format off
#ifdef FLATBUFFERS_DEBUG_VERIFICATION_FAILURE
FLATBUFFERS_ASSERT(ok);
#endif
// clang-format on
return ok;
}
// Verify any range within the buffer.
bool VerifyFrom(size_t elem, size_t elem_len) const {
return Check(elem_len < size_ && elem <= size_ - elem_len);
}
bool VerifyBefore(size_t elem, size_t elem_len) const {
return Check(elem_len <= elem);
}
bool VerifyFromPointer(const uint8_t *p, size_t len) {
auto o = static_cast<size_t>(p - buf_);
return VerifyFrom(o, len);
}
bool VerifyBeforePointer(const uint8_t *p, size_t len) {
auto o = static_cast<size_t>(p - buf_);
return VerifyBefore(o, len);
}
bool VerifyByteWidth(size_t width) {
return Check(width == 1 || width == 2 || width == 4 || width == 8);
}
bool VerifyType(int type) { return Check(type >= 0 && type < FBT_MAX_TYPE); }
bool VerifyOffset(uint64_t off, const uint8_t *p) {
return Check(off <= static_cast<uint64_t>(size_)) &&
off <= static_cast<uint64_t>(p - buf_);
}
bool VerifyAlignment(const uint8_t *p, size_t size) const {
auto o = static_cast<size_t>(p - buf_);
return Check((o & (size - 1)) == 0 || !check_alignment_);
}
// Macro, since we want to escape from parent function & use lazy args.
#define FLEX_CHECK_VERIFIED(P, PACKED_TYPE) \
if (reuse_tracker_) { \
auto packed_type = PACKED_TYPE; \
auto existing = (*reuse_tracker_)[P - buf_]; \
if (existing == packed_type) return true; \
/* Fail verification if already set with different type! */ \
if (!Check(existing == 0)) return false; \
(*reuse_tracker_)[P - buf_] = packed_type; \
}
bool VerifyVector(Reference r, const uint8_t *p, Type elem_type) {
// Any kind of nesting goes thru this function, so guard against that
// here, both with simple nesting checks, and the reuse tracker if on.
depth_++;
num_vectors_++;
if (!Check(depth_ <= max_depth_ && num_vectors_ <= max_vectors_))
return false;
auto size_byte_width = r.byte_width_;
if (!VerifyBeforePointer(p, size_byte_width)) return false;
FLEX_CHECK_VERIFIED(p - size_byte_width,
PackedType(Builder::WidthB(size_byte_width), r.type_));
auto sized = Sized(p, size_byte_width);
auto num_elems = sized.size();
auto elem_byte_width = r.type_ == FBT_STRING || r.type_ == FBT_BLOB
? uint8_t(1)
: r.byte_width_;
auto max_elems = SIZE_MAX / elem_byte_width;
if (!Check(num_elems < max_elems))
return false; // Protect against byte_size overflowing.
auto byte_size = num_elems * elem_byte_width;
if (!VerifyFromPointer(p, byte_size)) return false;
if (elem_type == FBT_NULL) {
// Verify type bytes after the vector.
if (!VerifyFromPointer(p + byte_size, num_elems)) return false;
auto v = Vector(p, size_byte_width);
for (size_t i = 0; i < num_elems; i++)
if (!VerifyRef(v[i])) return false;
} else if (elem_type == FBT_KEY) {
auto v = TypedVector(p, elem_byte_width, FBT_KEY);
for (size_t i = 0; i < num_elems; i++)
if (!VerifyRef(v[i])) return false;
} else {
FLATBUFFERS_ASSERT(IsInline(elem_type));
}
depth_--;
return true;
}
bool VerifyKeys(const uint8_t *p, uint8_t byte_width) {
// The vector part of the map has already been verified.
const size_t num_prefixed_fields = 3;
if (!VerifyBeforePointer(p, byte_width * num_prefixed_fields)) return false;
p -= byte_width * num_prefixed_fields;
auto off = ReadUInt64(p, byte_width);
if (!VerifyOffset(off, p)) return false;
auto key_byte_with =
static_cast<uint8_t>(ReadUInt64(p + byte_width, byte_width));
if (!VerifyByteWidth(key_byte_with)) return false;
return VerifyVector(Reference(p, byte_width, key_byte_with, FBT_VECTOR_KEY),
p - off, FBT_KEY);
}
bool VerifyKey(const uint8_t *p) {
FLEX_CHECK_VERIFIED(p, PackedType(BIT_WIDTH_8, FBT_KEY));
while (p < buf_ + size_)
if (*p++) return true;
return false;
}
#undef FLEX_CHECK_VERIFIED
bool VerifyTerminator(const String &s) {
return VerifyFromPointer(reinterpret_cast<const uint8_t *>(s.c_str()),
s.size() + 1);
}
bool VerifyRef(Reference r) {
// r.parent_width_ and r.data_ already verified.
if (!VerifyByteWidth(r.byte_width_) || !VerifyType(r.type_)) {
return false;
}
if (IsInline(r.type_)) {
// Inline scalars, don't require further verification.
return true;
}
// All remaining types are an offset.
auto off = ReadUInt64(r.data_, r.parent_width_);
if (!VerifyOffset(off, r.data_)) return false;
auto p = r.Indirect();
if (!VerifyAlignment(p, r.byte_width_)) return false;
switch (r.type_) {
case FBT_INDIRECT_INT:
case FBT_INDIRECT_UINT:
case FBT_INDIRECT_FLOAT: return VerifyFromPointer(p, r.byte_width_);
case FBT_KEY: return VerifyKey(p);
case FBT_MAP:
return VerifyVector(r, p, FBT_NULL) && VerifyKeys(p, r.byte_width_);
case FBT_VECTOR: return VerifyVector(r, p, FBT_NULL);
case FBT_VECTOR_INT: return VerifyVector(r, p, FBT_INT);
case FBT_VECTOR_BOOL:
case FBT_VECTOR_UINT: return VerifyVector(r, p, FBT_UINT);
case FBT_VECTOR_FLOAT: return VerifyVector(r, p, FBT_FLOAT);
case FBT_VECTOR_KEY: return VerifyVector(r, p, FBT_KEY);
case FBT_VECTOR_STRING_DEPRECATED:
// Use of FBT_KEY here intentional, see elsewhere.
return VerifyVector(r, p, FBT_KEY);
case FBT_BLOB: return VerifyVector(r, p, FBT_UINT);
case FBT_STRING:
return VerifyVector(r, p, FBT_UINT) &&
VerifyTerminator(String(p, r.byte_width_));
case FBT_VECTOR_INT2:
case FBT_VECTOR_UINT2:
case FBT_VECTOR_FLOAT2:
case FBT_VECTOR_INT3:
case FBT_VECTOR_UINT3:
case FBT_VECTOR_FLOAT3:
case FBT_VECTOR_INT4:
case FBT_VECTOR_UINT4:
case FBT_VECTOR_FLOAT4: {
uint8_t len = 0;
auto vtype = ToFixedTypedVectorElementType(r.type_, &len);
if (!VerifyType(vtype)) return false;
return VerifyFromPointer(p, static_cast<size_t>(r.byte_width_) * len);
}
default: return false;
}
}
public:
bool VerifyBuffer() {
if (!Check(size_ >= 3)) return false;
auto end = buf_ + size_;
auto byte_width = *--end;
auto packed_type = *--end;
return VerifyByteWidth(byte_width) && Check(end - buf_ >= byte_width) &&
VerifyRef(Reference(end - byte_width, byte_width, packed_type));
}
private:
const uint8_t *buf_;
size_t size_;
size_t depth_;
const size_t max_depth_;
size_t num_vectors_;
const size_t max_vectors_;
bool check_alignment_;
std::vector<uint8_t> *reuse_tracker_;
};
// Utility function that constructs the Verifier for you, see above for
// parameters.
inline bool VerifyBuffer(const uint8_t *buf, size_t buf_len,
std::vector<uint8_t> *reuse_tracker = nullptr) {
Verifier verifier(buf, buf_len, reuse_tracker);
return verifier.VerifyBuffer();
}
} // namespace flexbuffers
#if defined(_MSC_VER)
# pragma warning(pop)
#endif
#endif // FLATBUFFERS_FLEXBUFFERS_H_
|