1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
|
/*
* Copyright 2021 Google Inc. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef FLATBUFFERS_VECTOR_H_
#define FLATBUFFERS_VECTOR_H_
#include "flatbuffers/base.h"
#include "flatbuffers/buffer.h"
#include "flatbuffers/stl_emulation.h"
namespace flatbuffers {
struct String;
// An STL compatible iterator implementation for Vector below, effectively
// calling Get() for every element.
template<typename T, typename IT, typename Data = uint8_t *,
typename SizeT = uoffset_t>
struct VectorIterator {
typedef std::random_access_iterator_tag iterator_category;
typedef IT value_type;
typedef ptrdiff_t difference_type;
typedef IT *pointer;
typedef IT &reference;
static const SizeT element_stride = IndirectHelper<T>::element_stride;
VectorIterator(Data data, SizeT i) : data_(data + element_stride * i) {}
VectorIterator(const VectorIterator &other) : data_(other.data_) {}
VectorIterator() : data_(nullptr) {}
VectorIterator &operator=(const VectorIterator &other) {
data_ = other.data_;
return *this;
}
VectorIterator &operator=(VectorIterator &&other) {
data_ = other.data_;
return *this;
}
bool operator==(const VectorIterator &other) const {
return data_ == other.data_;
}
bool operator<(const VectorIterator &other) const {
return data_ < other.data_;
}
bool operator!=(const VectorIterator &other) const {
return data_ != other.data_;
}
difference_type operator-(const VectorIterator &other) const {
return (data_ - other.data_) / element_stride;
}
// Note: return type is incompatible with the standard
// `reference operator*()`.
IT operator*() const { return IndirectHelper<T>::Read(data_, 0); }
// Note: return type is incompatible with the standard
// `pointer operator->()`.
IT operator->() const { return IndirectHelper<T>::Read(data_, 0); }
VectorIterator &operator++() {
data_ += element_stride;
return *this;
}
VectorIterator operator++(int) {
VectorIterator temp(data_, 0);
data_ += element_stride;
return temp;
}
VectorIterator operator+(const SizeT &offset) const {
return VectorIterator(data_ + offset * element_stride, 0);
}
VectorIterator &operator+=(const SizeT &offset) {
data_ += offset * element_stride;
return *this;
}
VectorIterator &operator--() {
data_ -= element_stride;
return *this;
}
VectorIterator operator--(int) {
VectorIterator temp(data_, 0);
data_ -= element_stride;
return temp;
}
VectorIterator operator-(const SizeT &offset) const {
return VectorIterator(data_ - offset * element_stride, 0);
}
VectorIterator &operator-=(const SizeT &offset) {
data_ -= offset * element_stride;
return *this;
}
private:
Data data_;
};
template<typename T, typename IT, typename SizeT = uoffset_t>
using VectorConstIterator = VectorIterator<T, IT, const uint8_t *, SizeT>;
template<typename Iterator>
struct VectorReverseIterator : public std::reverse_iterator<Iterator> {
explicit VectorReverseIterator(Iterator iter)
: std::reverse_iterator<Iterator>(iter) {}
// Note: return type is incompatible with the standard
// `reference operator*()`.
typename Iterator::value_type operator*() const {
auto tmp = std::reverse_iterator<Iterator>::current;
return *--tmp;
}
// Note: return type is incompatible with the standard
// `pointer operator->()`.
typename Iterator::value_type operator->() const {
auto tmp = std::reverse_iterator<Iterator>::current;
return *--tmp;
}
};
// This is used as a helper type for accessing vectors.
// Vector::data() assumes the vector elements start after the length field.
template<typename T, typename SizeT = uoffset_t> class Vector {
public:
typedef VectorIterator<T, typename IndirectHelper<T>::mutable_return_type,
uint8_t *, SizeT>
iterator;
typedef VectorConstIterator<T, typename IndirectHelper<T>::return_type, SizeT>
const_iterator;
typedef VectorReverseIterator<iterator> reverse_iterator;
typedef VectorReverseIterator<const_iterator> const_reverse_iterator;
typedef typename flatbuffers::bool_constant<flatbuffers::is_scalar<T>::value>
scalar_tag;
static FLATBUFFERS_CONSTEXPR bool is_span_observable =
scalar_tag::value && (FLATBUFFERS_LITTLEENDIAN || sizeof(T) == 1);
SizeT size() const { return EndianScalar(length_); }
// Deprecated: use size(). Here for backwards compatibility.
FLATBUFFERS_ATTRIBUTE([[deprecated("use size() instead")]])
SizeT Length() const { return size(); }
typedef SizeT size_type;
typedef typename IndirectHelper<T>::return_type return_type;
typedef typename IndirectHelper<T>::mutable_return_type mutable_return_type;
typedef return_type value_type;
return_type Get(SizeT i) const {
FLATBUFFERS_ASSERT(i < size());
return IndirectHelper<T>::Read(Data(), i);
}
return_type operator[](SizeT i) const { return Get(i); }
// If this is a Vector of enums, T will be its storage type, not the enum
// type. This function makes it convenient to retrieve value with enum
// type E.
template<typename E> E GetEnum(SizeT i) const {
return static_cast<E>(Get(i));
}
// If this a vector of unions, this does the cast for you. There's no check
// to make sure this is the right type!
template<typename U> const U *GetAs(SizeT i) const {
return reinterpret_cast<const U *>(Get(i));
}
// If this a vector of unions, this does the cast for you. There's no check
// to make sure this is actually a string!
const String *GetAsString(SizeT i) const {
return reinterpret_cast<const String *>(Get(i));
}
const void *GetStructFromOffset(size_t o) const {
return reinterpret_cast<const void *>(Data() + o);
}
iterator begin() { return iterator(Data(), 0); }
const_iterator begin() const { return const_iterator(Data(), 0); }
iterator end() { return iterator(Data(), size()); }
const_iterator end() const { return const_iterator(Data(), size()); }
reverse_iterator rbegin() { return reverse_iterator(end()); }
const_reverse_iterator rbegin() const {
return const_reverse_iterator(end());
}
reverse_iterator rend() { return reverse_iterator(begin()); }
const_reverse_iterator rend() const {
return const_reverse_iterator(begin());
}
const_iterator cbegin() const { return begin(); }
const_iterator cend() const { return end(); }
const_reverse_iterator crbegin() const { return rbegin(); }
const_reverse_iterator crend() const { return rend(); }
// Change elements if you have a non-const pointer to this object.
// Scalars only. See reflection.h, and the documentation.
void Mutate(SizeT i, const T &val) {
FLATBUFFERS_ASSERT(i < size());
WriteScalar(data() + i, val);
}
// Change an element of a vector of tables (or strings).
// "val" points to the new table/string, as you can obtain from
// e.g. reflection::AddFlatBuffer().
void MutateOffset(SizeT i, const uint8_t *val) {
FLATBUFFERS_ASSERT(i < size());
static_assert(sizeof(T) == sizeof(SizeT), "Unrelated types");
WriteScalar(data() + i,
static_cast<SizeT>(val - (Data() + i * sizeof(SizeT))));
}
// Get a mutable pointer to tables/strings inside this vector.
mutable_return_type GetMutableObject(SizeT i) const {
FLATBUFFERS_ASSERT(i < size());
return const_cast<mutable_return_type>(IndirectHelper<T>::Read(Data(), i));
}
// The raw data in little endian format. Use with care.
const uint8_t *Data() const {
return reinterpret_cast<const uint8_t *>(&length_ + 1);
}
uint8_t *Data() { return reinterpret_cast<uint8_t *>(&length_ + 1); }
// Similarly, but typed, much like std::vector::data
const T *data() const { return reinterpret_cast<const T *>(Data()); }
T *data() { return reinterpret_cast<T *>(Data()); }
template<typename K> return_type LookupByKey(K key) const {
void *search_result = std::bsearch(
&key, Data(), size(), IndirectHelper<T>::element_stride, KeyCompare<K>);
if (!search_result) {
return nullptr; // Key not found.
}
const uint8_t *element = reinterpret_cast<const uint8_t *>(search_result);
return IndirectHelper<T>::Read(element, 0);
}
template<typename K> mutable_return_type MutableLookupByKey(K key) {
return const_cast<mutable_return_type>(LookupByKey(key));
}
protected:
// This class is only used to access pre-existing data. Don't ever
// try to construct these manually.
Vector();
SizeT length_;
private:
// This class is a pointer. Copying will therefore create an invalid object.
// Private and unimplemented copy constructor.
Vector(const Vector &);
Vector &operator=(const Vector &);
template<typename K> static int KeyCompare(const void *ap, const void *bp) {
const K *key = reinterpret_cast<const K *>(ap);
const uint8_t *data = reinterpret_cast<const uint8_t *>(bp);
auto table = IndirectHelper<T>::Read(data, 0);
// std::bsearch compares with the operands transposed, so we negate the
// result here.
return -table->KeyCompareWithValue(*key);
}
};
template<typename T> using Vector64 = Vector<T, uoffset64_t>;
template<class U>
FLATBUFFERS_CONSTEXPR_CPP11 flatbuffers::span<U> make_span(Vector<U> &vec)
FLATBUFFERS_NOEXCEPT {
static_assert(Vector<U>::is_span_observable,
"wrong type U, only LE-scalar, or byte types are allowed");
return span<U>(vec.data(), vec.size());
}
template<class U>
FLATBUFFERS_CONSTEXPR_CPP11 flatbuffers::span<const U> make_span(
const Vector<U> &vec) FLATBUFFERS_NOEXCEPT {
static_assert(Vector<U>::is_span_observable,
"wrong type U, only LE-scalar, or byte types are allowed");
return span<const U>(vec.data(), vec.size());
}
template<class U>
FLATBUFFERS_CONSTEXPR_CPP11 flatbuffers::span<uint8_t> make_bytes_span(
Vector<U> &vec) FLATBUFFERS_NOEXCEPT {
static_assert(Vector<U>::scalar_tag::value,
"wrong type U, only LE-scalar, or byte types are allowed");
return span<uint8_t>(vec.Data(), vec.size() * sizeof(U));
}
template<class U>
FLATBUFFERS_CONSTEXPR_CPP11 flatbuffers::span<const uint8_t> make_bytes_span(
const Vector<U> &vec) FLATBUFFERS_NOEXCEPT {
static_assert(Vector<U>::scalar_tag::value,
"wrong type U, only LE-scalar, or byte types are allowed");
return span<const uint8_t>(vec.Data(), vec.size() * sizeof(U));
}
// Convenient helper functions to get a span of any vector, regardless
// of whether it is null or not (the field is not set).
template<class U>
FLATBUFFERS_CONSTEXPR_CPP11 flatbuffers::span<U> make_span(Vector<U> *ptr)
FLATBUFFERS_NOEXCEPT {
static_assert(Vector<U>::is_span_observable,
"wrong type U, only LE-scalar, or byte types are allowed");
return ptr ? make_span(*ptr) : span<U>();
}
template<class U>
FLATBUFFERS_CONSTEXPR_CPP11 flatbuffers::span<const U> make_span(
const Vector<U> *ptr) FLATBUFFERS_NOEXCEPT {
static_assert(Vector<U>::is_span_observable,
"wrong type U, only LE-scalar, or byte types are allowed");
return ptr ? make_span(*ptr) : span<const U>();
}
// Represent a vector much like the template above, but in this case we
// don't know what the element types are (used with reflection.h).
class VectorOfAny {
public:
uoffset_t size() const { return EndianScalar(length_); }
const uint8_t *Data() const {
return reinterpret_cast<const uint8_t *>(&length_ + 1);
}
uint8_t *Data() { return reinterpret_cast<uint8_t *>(&length_ + 1); }
protected:
VectorOfAny();
uoffset_t length_;
private:
VectorOfAny(const VectorOfAny &);
VectorOfAny &operator=(const VectorOfAny &);
};
template<typename T, typename U>
Vector<Offset<T>> *VectorCast(Vector<Offset<U>> *ptr) {
static_assert(std::is_base_of<T, U>::value, "Unrelated types");
return reinterpret_cast<Vector<Offset<T>> *>(ptr);
}
template<typename T, typename U>
const Vector<Offset<T>> *VectorCast(const Vector<Offset<U>> *ptr) {
static_assert(std::is_base_of<T, U>::value, "Unrelated types");
return reinterpret_cast<const Vector<Offset<T>> *>(ptr);
}
// Convenient helper function to get the length of any vector, regardless
// of whether it is null or not (the field is not set).
template<typename T> static inline size_t VectorLength(const Vector<T> *v) {
return v ? v->size() : 0;
}
} // namespace flatbuffers
#endif // FLATBUFFERS_VERIFIER_H_
|