1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
|
// Copyright 2017, The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package cmp_test
import (
"fmt"
"math"
"net"
"reflect"
"sort"
"strings"
"time"
"github.com/google/go-cmp/cmp"
)
// TODO: Re-write these examples in terms of how you actually use the
// fundamental options and filters and not in terms of what cool things you can
// do with them since that overlaps with cmp/cmpopts.
// Use Diff to print out a human-readable report of differences for tests
// comparing nested or structured data.
func ExampleDiff_testing() {
// Let got be the hypothetical value obtained from some logic under test
// and want be the expected golden data.
got, want := MakeGatewayInfo()
if diff := cmp.Diff(want, got); diff != "" {
t.Errorf("MakeGatewayInfo() mismatch (-want +got):\n%s", diff)
}
// Output:
// MakeGatewayInfo() mismatch (-want +got):
// cmp_test.Gateway{
// SSID: "CoffeeShopWiFi",
// - IPAddress: s"192.168.0.2",
// + IPAddress: s"192.168.0.1",
// NetMask: s"ffff0000",
// Clients: []cmp_test.Client{
// ... // 2 identical elements
// {Hostname: "macchiato", IPAddress: s"192.168.0.153", LastSeen: s"2009-11-10 23:39:43 +0000 UTC"},
// {Hostname: "espresso", IPAddress: s"192.168.0.121"},
// {
// Hostname: "latte",
// - IPAddress: s"192.168.0.221",
// + IPAddress: s"192.168.0.219",
// LastSeen: s"2009-11-10 23:00:23 +0000 UTC",
// },
// + {
// + Hostname: "americano",
// + IPAddress: s"192.168.0.188",
// + LastSeen: s"2009-11-10 23:03:05 +0000 UTC",
// + },
// },
// }
}
// Approximate equality for floats can be handled by defining a custom
// comparer on floats that determines two values to be equal if they are within
// some range of each other.
//
// This example is for demonstrative purposes;
// use [github.com/google/go-cmp/cmp/cmpopts.EquateApprox] instead.
func ExampleOption_approximateFloats() {
// This Comparer only operates on float64.
// To handle float32s, either define a similar function for that type
// or use a Transformer to convert float32s into float64s.
opt := cmp.Comparer(func(x, y float64) bool {
delta := math.Abs(x - y)
mean := math.Abs(x+y) / 2.0
return delta/mean < 0.00001
})
x := []float64{1.0, 1.1, 1.2, math.Pi}
y := []float64{1.0, 1.1, 1.2, 3.14159265359} // Accurate enough to Pi
z := []float64{1.0, 1.1, 1.2, 3.1415} // Diverges too far from Pi
fmt.Println(cmp.Equal(x, y, opt))
fmt.Println(cmp.Equal(y, z, opt))
fmt.Println(cmp.Equal(z, x, opt))
// Output:
// true
// false
// false
}
// Normal floating-point arithmetic defines == to be false when comparing
// NaN with itself. In certain cases, this is not the desired property.
//
// This example is for demonstrative purposes;
// use [github.com/google/go-cmp/cmp/cmpopts.EquateNaNs] instead.
func ExampleOption_equalNaNs() {
// This Comparer only operates on float64.
// To handle float32s, either define a similar function for that type
// or use a Transformer to convert float32s into float64s.
opt := cmp.Comparer(func(x, y float64) bool {
return (math.IsNaN(x) && math.IsNaN(y)) || x == y
})
x := []float64{1.0, math.NaN(), math.E, 0.0}
y := []float64{1.0, math.NaN(), math.E, 0.0}
z := []float64{1.0, math.NaN(), math.Pi, 0.0} // Pi constant instead of E
fmt.Println(cmp.Equal(x, y, opt))
fmt.Println(cmp.Equal(y, z, opt))
fmt.Println(cmp.Equal(z, x, opt))
// Output:
// true
// false
// false
}
// To have floating-point comparisons combine both properties of NaN being
// equal to itself and also approximate equality of values, filters are needed
// to restrict the scope of the comparison so that they are composable.
//
// This example is for demonstrative purposes;
// use [github.com/google/go-cmp/cmp/cmpopts.EquateApprox] instead.
func ExampleOption_equalNaNsAndApproximateFloats() {
alwaysEqual := cmp.Comparer(func(_, _ interface{}) bool { return true })
opts := cmp.Options{
// This option declares that a float64 comparison is equal only if
// both inputs are NaN.
cmp.FilterValues(func(x, y float64) bool {
return math.IsNaN(x) && math.IsNaN(y)
}, alwaysEqual),
// This option declares approximate equality on float64s only if
// both inputs are not NaN.
cmp.FilterValues(func(x, y float64) bool {
return !math.IsNaN(x) && !math.IsNaN(y)
}, cmp.Comparer(func(x, y float64) bool {
delta := math.Abs(x - y)
mean := math.Abs(x+y) / 2.0
return delta/mean < 0.00001
})),
}
x := []float64{math.NaN(), 1.0, 1.1, 1.2, math.Pi}
y := []float64{math.NaN(), 1.0, 1.1, 1.2, 3.14159265359} // Accurate enough to Pi
z := []float64{math.NaN(), 1.0, 1.1, 1.2, 3.1415} // Diverges too far from Pi
fmt.Println(cmp.Equal(x, y, opts))
fmt.Println(cmp.Equal(y, z, opts))
fmt.Println(cmp.Equal(z, x, opts))
// Output:
// true
// false
// false
}
// Sometimes, an empty map or slice is considered equal to an allocated one
// of zero length.
//
// This example is for demonstrative purposes;
// use [github.com/google/go-cmp/cmp/cmpopts.EquateEmpty] instead.
func ExampleOption_equalEmpty() {
alwaysEqual := cmp.Comparer(func(_, _ interface{}) bool { return true })
// This option handles slices and maps of any type.
opt := cmp.FilterValues(func(x, y interface{}) bool {
vx, vy := reflect.ValueOf(x), reflect.ValueOf(y)
return (vx.IsValid() && vy.IsValid() && vx.Type() == vy.Type()) &&
(vx.Kind() == reflect.Slice || vx.Kind() == reflect.Map) &&
(vx.Len() == 0 && vy.Len() == 0)
}, alwaysEqual)
type S struct {
A []int
B map[string]bool
}
x := S{nil, make(map[string]bool, 100)}
y := S{make([]int, 0, 200), nil}
z := S{[]int{0}, nil} // []int has a single element (i.e., not empty)
fmt.Println(cmp.Equal(x, y, opt))
fmt.Println(cmp.Equal(y, z, opt))
fmt.Println(cmp.Equal(z, x, opt))
// Output:
// true
// false
// false
}
// Two slices may be considered equal if they have the same elements,
// regardless of the order that they appear in. Transformations can be used
// to sort the slice.
//
// This example is for demonstrative purposes;
// use [github.com/google/go-cmp/cmp/cmpopts.SortSlices] instead.
func ExampleOption_sortedSlice() {
// This Transformer sorts a []int.
trans := cmp.Transformer("Sort", func(in []int) []int {
out := append([]int(nil), in...) // Copy input to avoid mutating it
sort.Ints(out)
return out
})
x := struct{ Ints []int }{[]int{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}}
y := struct{ Ints []int }{[]int{2, 8, 0, 9, 6, 1, 4, 7, 3, 5}}
z := struct{ Ints []int }{[]int{0, 0, 1, 2, 3, 4, 5, 6, 7, 8}}
fmt.Println(cmp.Equal(x, y, trans))
fmt.Println(cmp.Equal(y, z, trans))
fmt.Println(cmp.Equal(z, x, trans))
// Output:
// true
// false
// false
}
type otherString string
func (x otherString) Equal(y otherString) bool {
return strings.EqualFold(string(x), string(y))
}
// If the Equal method defined on a type is not suitable, the type can be
// dynamically transformed to be stripped of the Equal method (or any method
// for that matter).
func ExampleOption_avoidEqualMethod() {
// Suppose otherString.Equal performs a case-insensitive equality,
// which is too loose for our needs.
// We can avoid the methods of otherString by declaring a new type.
type myString otherString
// This transformer converts otherString to myString, allowing Equal to use
// other Options to determine equality.
trans := cmp.Transformer("", func(in otherString) myString {
return myString(in)
})
x := []otherString{"foo", "bar", "baz"}
y := []otherString{"fOO", "bAr", "Baz"} // Same as before, but with different case
fmt.Println(cmp.Equal(x, y)) // Equal because of case-insensitivity
fmt.Println(cmp.Equal(x, y, trans)) // Not equal because of more exact equality
// Output:
// true
// false
}
func roundF64(z float64) float64 {
if z < 0 {
return math.Ceil(z - 0.5)
}
return math.Floor(z + 0.5)
}
// The complex numbers complex64 and complex128 can really just be decomposed
// into a pair of float32 or float64 values. It would be convenient to be able
// define only a single comparator on float64 and have float32, complex64, and
// complex128 all be able to use that comparator. Transformations can be used
// to handle this.
func ExampleOption_transformComplex() {
opts := []cmp.Option{
// This transformer decomposes complex128 into a pair of float64s.
cmp.Transformer("T1", func(in complex128) (out struct{ Real, Imag float64 }) {
out.Real, out.Imag = real(in), imag(in)
return out
}),
// This transformer converts complex64 to complex128 to allow the
// above transform to take effect.
cmp.Transformer("T2", func(in complex64) complex128 {
return complex128(in)
}),
// This transformer converts float32 to float64.
cmp.Transformer("T3", func(in float32) float64 {
return float64(in)
}),
// This equality function compares float64s as rounded integers.
cmp.Comparer(func(x, y float64) bool {
return roundF64(x) == roundF64(y)
}),
}
x := []interface{}{
complex128(3.0), complex64(5.1 + 2.9i), float32(-1.2), float64(12.3),
}
y := []interface{}{
complex128(3.1), complex64(4.9 + 3.1i), float32(-1.3), float64(11.7),
}
z := []interface{}{
complex128(3.8), complex64(4.9 + 3.1i), float32(-1.3), float64(11.7),
}
fmt.Println(cmp.Equal(x, y, opts...))
fmt.Println(cmp.Equal(y, z, opts...))
fmt.Println(cmp.Equal(z, x, opts...))
// Output:
// true
// false
// false
}
type (
Gateway struct {
SSID string
IPAddress net.IP
NetMask net.IPMask
Clients []Client
}
Client struct {
Hostname string
IPAddress net.IP
LastSeen time.Time
}
)
func MakeGatewayInfo() (x, y Gateway) {
x = Gateway{
SSID: "CoffeeShopWiFi",
IPAddress: net.IPv4(192, 168, 0, 1),
NetMask: net.IPv4Mask(255, 255, 0, 0),
Clients: []Client{{
Hostname: "ristretto",
IPAddress: net.IPv4(192, 168, 0, 116),
}, {
Hostname: "arabica",
IPAddress: net.IPv4(192, 168, 0, 104),
LastSeen: time.Date(2009, time.November, 10, 23, 6, 32, 0, time.UTC),
}, {
Hostname: "macchiato",
IPAddress: net.IPv4(192, 168, 0, 153),
LastSeen: time.Date(2009, time.November, 10, 23, 39, 43, 0, time.UTC),
}, {
Hostname: "espresso",
IPAddress: net.IPv4(192, 168, 0, 121),
}, {
Hostname: "latte",
IPAddress: net.IPv4(192, 168, 0, 219),
LastSeen: time.Date(2009, time.November, 10, 23, 0, 23, 0, time.UTC),
}, {
Hostname: "americano",
IPAddress: net.IPv4(192, 168, 0, 188),
LastSeen: time.Date(2009, time.November, 10, 23, 3, 5, 0, time.UTC),
}},
}
y = Gateway{
SSID: "CoffeeShopWiFi",
IPAddress: net.IPv4(192, 168, 0, 2),
NetMask: net.IPv4Mask(255, 255, 0, 0),
Clients: []Client{{
Hostname: "ristretto",
IPAddress: net.IPv4(192, 168, 0, 116),
}, {
Hostname: "arabica",
IPAddress: net.IPv4(192, 168, 0, 104),
LastSeen: time.Date(2009, time.November, 10, 23, 6, 32, 0, time.UTC),
}, {
Hostname: "macchiato",
IPAddress: net.IPv4(192, 168, 0, 153),
LastSeen: time.Date(2009, time.November, 10, 23, 39, 43, 0, time.UTC),
}, {
Hostname: "espresso",
IPAddress: net.IPv4(192, 168, 0, 121),
}, {
Hostname: "latte",
IPAddress: net.IPv4(192, 168, 0, 221),
LastSeen: time.Date(2009, time.November, 10, 23, 0, 23, 0, time.UTC),
}},
}
return x, y
}
var t fakeT
type fakeT struct{}
func (t fakeT) Errorf(format string, args ...interface{}) { fmt.Printf(format+"\n", args...) }
|