1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
|
// Copyright 2022 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package abi encapsulates types and status codes from the AMD-SP (AKA PSP) device.
package abi
import (
"crypto/ecdsa"
"encoding/binary"
"encoding/hex"
"fmt"
"math/big"
pb "github.com/google/go-sev-guest/proto/sevsnp"
"github.com/google/logger"
"github.com/google/uuid"
"golang.org/x/crypto/cryptobyte"
"golang.org/x/crypto/cryptobyte/asn1"
"google.golang.org/protobuf/types/known/wrapperspb"
)
const (
// AeadAes256Gcm is the SNP API value for the AES-256-GCM encryption algorithm.
AeadAes256Gcm = 1
// SignEcdsaP384Sha384 is the SNP API value for the ECC+SHA signing algorithm.
SignEcdsaP384Sha384 = 1
// EccP384 is the SNP API value for the P-384 ECC curve identifier.
EccP384 = 2
// ReportSize is the ABI-specified byte size of an SEV-SNP attestation report.
ReportSize = 0x4A0
// FamilyIDSize is the field size of FAMILY_ID in an SEV-SNP attestation report.
FamilyIDSize = 16
// ImageIDSize is the field size of IMAGE_ID in an SEV-SNP attestation report.
ImageIDSize = 16
// ReportDataSize is the field size of REPORT_DATA in an SEV-SNP attestation report.
ReportDataSize = 64
// MeasurementSize is the field size of MEASUREMENT in an SEV-SNP attestation report.
MeasurementSize = 48
// HostDataSize is the field size of HOST_DATA in an SEV-SNP attestation report.
HostDataSize = 32
// IDKeyDigestSize is the field size of ID_KEY_DIGEST in an SEV-SNP attestation report.
IDKeyDigestSize = 48
// AuthorKeyDigestSize is the field size of AUTHOR_KEY_DIGEST in an SEV-SNP attestation report.
AuthorKeyDigestSize = 48
// ReportIDSize is the field size of REPORT_ID in an SEV-SNP attestation report.
ReportIDSize = 32
// ReportIDMASize is the field size of REPORT_ID_MA in an SEV-SNP attestation report.
ReportIDMASize = 32
// ChipIDSize is the field size of CHIP_ID in an SEV-SNP attestation report.
ChipIDSize = 64
// SignatureSize is the field size of SIGNATURE in an SEV-SNP attestation report.
SignatureSize = 512
policyOffset = 0x08
policySMTBit = 16
policyReserved1bit = 17
policyMigrateMABit = 18
policyDebugBit = 19
policySingleSocketBit = 20
maxPlatformInfoBit = 5
signatureOffset = 0x2A0
ecdsaRSsize = 72 // From the ECDSA-P384-SHA384 format in SEV SNP API specification.
// From the ECDSA public key format in SEV SNP API specification.
ecdsaQXoffset = 0x04
ecdsaQYoffset = 0x4c
ecdsaQYend = 0x94
// EcdsaP384Sha384SignatureSize is the length in bytes of the ECDSA-P384-SHA384 signature format.
EcdsaP384Sha384SignatureSize = ecdsaRSsize + ecdsaRSsize
// EcsdaPublicKeySize is the length in bytes of the Curve, QX, QY elliptic curve public key
// representation in the AMD SEV ABI.
EcsdaPublicKeySize = 0x404
// CertTableEntrySize is the ABI size of the certificate table entry struct.
CertTableEntrySize = 24
// GUIDSize is the byte length of a GUID's binary representation.
GUIDSize = 16
// The following GUIDs are defined by the AMD Guest-host communication block specification
// for MSG_REPORT_REQ:
// https://www.amd.com/system/files/TechDocs/56421-guest-hypervisor-communication-block-standardization.pdf
// VcekGUID is the Versioned Chip Endorsement Key GUID
VcekGUID = "63da758d-e664-4564-adc5-f4b93be8accd"
// VlekGUID is the Versioned Loaded Endorsement Key GUID
VlekGUID = "a8074bc2-a25a-483e-aae6-39c045a0b8a1"
// AskGUID is the AMD signing Key GUID. Used for the ASVK as well.
AskGUID = "4ab7b379-bbac-4fe4-a02f-05aef327c782"
// ArkGUID is the AMD Root Key GUID
ArkGUID = "c0b406a4-a803-4952-9743-3fb6014cd0ae"
// AsvkGUID may not be defined, but we'd like it to be, so that
// a single machine can use both VCEK and VLEK report signing.
AsvkGUID = "00000000-0000-0000-0000-000000000000"
// ExtraPlatformInfoGUID represents more information about the machine collecting an attestation
// report than just the report to help interpret the attestation report.
ExtraPlatformInfoGUID = "ecae0c0f-9502-43b1-afa2-0ae2e0d565b6"
// ExtraPlatformInfoV0Size is the minimum size for an ExtraPlatformInfo blob.
ExtraPlatformInfoV0Size = 8
// CpuidProductMask keeps only the SevProduct-relevant bits from the CPUID(1).EAX result.
CpuidProductMask = 0x0fff0fff
extendedFamilyShift = 20
extendedModelShift = 16
familyShift = 8
modelShift = 4
// Combined extended values
zen3zen4Family = 0x19
zen5Family = 0x1A
milanModel = 0 | 1
genoaModel = (1 << 4) | 1
turinModel = 2
// ReportVersion2 is set by the SNP API specification
// https://web.archive.org/web/20231222054111if_/http://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/specifications/56860.pdf
ReportVersion2 = 2
// MinSupportedReportVersion is the lowest attestation report version that this library supports.
MinSupportedReportVersion = 2
// ReportVersion3 is set by the SNP API specification
// https://www.amd.com/system/files/TechDocs/56860.pdf
ReportVersion3 = 3
// MaxSupportedReportVersion is the highest attestation report version that this library supports.
MaxSupportedReportVersion = 4
)
// CertTableHeaderEntry defines an entry of the beginning of an extended attestation report which
// points to a specific key's certificate.
type CertTableHeaderEntry struct {
// GUID is one of VcekGUID, AskGUID, or ArkGUID to identify which key an offset/length corresponds
// to.
GUID uuid.UUID
// Offset is the offset into the data pages passed to the extended get_report where the specified
// key's certificate resides.
Offset uint32
// Length is the length of the certificate within the data pages.
Length uint32
}
// CertTableEntry represents both the GUID and whole Certificate contents denoted by the
// CertTableHeaderEntry ABI struct.
type CertTableEntry struct {
GUID uuid.UUID
RawCert []byte
}
// CertTable represents each (GUID, Blob) pair of certificates returned by an extended guest
// request.
type CertTable struct {
Entries []CertTableEntry
}
// Appendix B.1 of the SEV API specification
// AskCert is the SEV format for AMD signing key certificates.
type AskCert struct {
Version uint32
KeyID uuid.UUID
CertifyingID uuid.UUID // Equals KeyID if self-signed.
KeyUsage uint32 // Table 111: 00 == Root signing key, 0x13 == SEV signing key.
PubExpSize uint32 // Must be 2048 or 4096
ModulusSize uint32 // Must be 2048 or 4096
PubExp []byte
Modulus []byte
Signature []byte
}
// SnpPlatformInfo represents an interpretation of the PLATFORM_INFO field of an attestation report.
type SnpPlatformInfo struct {
// SMTEnabled represents if the platform that produced the attestation report has SMT enabled.
SMTEnabled bool
// TSMEEnabled represents if the platform that produced the attestation report has transparent
// secure memory encryption (TSME) enabled.
TSMEEnabled bool
// ECCEnabled indicates that the platform is using error correcting codes for memory.
// Present when EccMemReporting feature bit is set.
ECCEnabled bool
// RAPLDisabled indicates that the RAPL is disabled.
RAPLDisabled bool
// CiphertextHidingDRAMEnabled indicates cypher text hiding is enabled for DRAM.
CiphertextHidingDRAMEnabled bool
// AliasCheckComplete indicates that alias detection has completed since the last system reset and there are no aliasing addresses.
// Mitigation for https://badram.eu/, see https://www.amd.com/en/resources/product-security/bulletin/amd-sb-3015.html#mitigation.
AliasCheckComplete bool
}
// SnpPolicy represents the bitmask guest policy that governs the VM's behavior from launch.
type SnpPolicy struct {
// ABIMajor is the minimum SEV SNP ABI version needed to run the guest's minor version number.
ABIMinor uint8
// ABIMajor is the minimum SEV SNP ABI version needed to run the guest's major version number.
ABIMajor uint8
// SMT is true if symmetric multithreading is allowed.
SMT bool
// MigrateMA is true if the guest is allowed to have a migration agent.
MigrateMA bool
// Debug is true if the VM can be decrypted by the host for debugging purposes.
Debug bool
// SingleSocket is true if the guest may only be active on a single socket.
SingleSocket bool
}
// ParseSnpPolicy interprets the SEV SNP API's guest policy bitmask into an SnpPolicy struct type.
func ParseSnpPolicy(guestPolicy uint64) (SnpPolicy, error) {
result := SnpPolicy{}
if guestPolicy&uint64(1<<policyReserved1bit) == 0 {
return result, fmt.Errorf("policy[%d] is reserved, must be 1, got 0", policyReserved1bit)
}
if err := mbz64(guestPolicy, "policy", 63, 21); err != nil {
return result, err
}
result.ABIMinor = uint8(guestPolicy & 0xff)
result.ABIMajor = uint8((guestPolicy >> 8) & 0xff)
result.SMT = (guestPolicy & (1 << policySMTBit)) != 0
result.MigrateMA = (guestPolicy & (1 << policyMigrateMABit)) != 0
result.Debug = (guestPolicy & (1 << policyDebugBit)) != 0
result.SingleSocket = (guestPolicy & (1 << policySingleSocketBit)) != 0
return result, nil
}
// SnpPolicyToBytes translates a structural representation of a valid SNP policy to its ABI format.
func SnpPolicyToBytes(policy SnpPolicy) uint64 {
result := uint64(policy.ABIMinor) | uint64(policy.ABIMajor)<<8 | uint64(1<<policyReserved1bit)
if policy.SMT {
result |= uint64(1 << policySMTBit)
}
if policy.MigrateMA {
result |= uint64(1 << policyMigrateMABit)
}
if policy.Debug {
result |= uint64(1 << policyDebugBit)
}
if policy.SingleSocket {
result |= uint64(1 << policySingleSocketBit)
}
return result
}
// ParseSnpPlatformInfo returns an interpretation of the given platform info, or an error for
// unrecognized bits.
func ParseSnpPlatformInfo(platformInfo uint64) (SnpPlatformInfo, error) {
result := SnpPlatformInfo{
SMTEnabled: (platformInfo & (1 << 0)) != 0,
TSMEEnabled: (platformInfo & (1 << 1)) != 0,
ECCEnabled: (platformInfo & (1 << 2)) != 0,
RAPLDisabled: (platformInfo & (1 << 3)) != 0,
CiphertextHidingDRAMEnabled: (platformInfo & (1 << 4)) != 0,
AliasCheckComplete: (platformInfo & (1 << 5)) != 0,
}
reserved := platformInfo & ^uint64((1<<(maxPlatformInfoBit+1))-1)
if reserved != 0 {
return result, fmt.Errorf("unrecognized platform info bit(s): 0x%x", platformInfo)
}
return result, nil
}
// ParseAskCert returns a struct representation of the AMD certificate format from a byte array.
func ParseAskCert(data []byte) (*AskCert, int, error) {
var cert AskCert
minimumSize := 0x40
if len(data) < minimumSize {
return nil, 0,
fmt.Errorf("AMD signing key too small, %dB, need at least %dB for header",
len(data), minimumSize)
}
cert.Version = binary.LittleEndian.Uint32(data[0:0x04])
copy(cert.KeyID[:], data[0x04:0x14])
copy(cert.CertifyingID[:], data[0x14:0x24])
cert.KeyUsage = binary.LittleEndian.Uint32(data[0x24:0x28])
// Check that the reserved region is zero.
if err := mbz(data, 0x28, 0x38); err != nil {
return nil, 0, err
}
cert.PubExpSize = binary.LittleEndian.Uint32(data[0x38:0x3C])
if cert.PubExpSize != 2048 && cert.PubExpSize != 4096 {
return nil, 0, fmt.Errorf("public exponent size %d is not 2048 or 4096", cert.PubExpSize)
}
cert.ModulusSize = binary.LittleEndian.Uint32(data[0x3C:0x40])
if cert.ModulusSize != 2048 && cert.ModulusSize != 4096 {
return nil, 0, fmt.Errorf("modulus size %d is not 2048 or 4096", cert.ModulusSize)
}
// Add byte size of the public exponent bit size and the byte size of the modulus size doubled to
// include the signature size.
minimumSize += int(cert.PubExpSize/8) + int(cert.ModulusSize/4)
if len(data) < minimumSize {
return nil, 0, fmt.Errorf("AMD signing key too small, %dB, need at least %dB for public exponent %d and modulus %d",
len(data), minimumSize, cert.PubExpSize, cert.ModulusSize)
}
cert.PubExp = make([]byte, cert.PubExpSize/8)
cert.Modulus = make([]byte, cert.ModulusSize/8)
cert.Signature = make([]byte, cert.ModulusSize/8)
pubExpEnd := (0x40 + cert.PubExpSize/8)
copy(cert.PubExp[:], data[0x40:pubExpEnd])
modulusEnd := pubExpEnd + (cert.ModulusSize / 8)
copy(cert.Modulus[:], data[pubExpEnd:modulusEnd])
signatureEnd := modulusEnd + (cert.ModulusSize / 8)
copy(cert.Signature[:], data[modulusEnd:signatureEnd])
// Return the offset of the next byte after the certificate as well as the certificate.
return &cert, int(signatureEnd), nil
}
// findNonZero returns the first index which is not zero, otherwise the length of the slice.
func findNonZero(data []uint8, lo, hi int) int {
for i := lo; i < hi; i++ {
if data[i] != 0 {
return i
}
}
return hi
}
func mbz(data []uint8, lo, hi int) error {
if findNonZero(data, lo, hi) != hi {
return fmt.Errorf("mbz range [0x%x:0x%x] not all zero: %s", lo, hi, hex.EncodeToString(data[lo:hi]))
}
return nil
}
// Checks a must-be-zero range of a uint64 between bits hi down to lo inclusive.
func mbz64(data uint64, base string, hi, lo int) error {
if (data>>lo)&((1<<(hi-lo+1))-1) != 0 {
return fmt.Errorf("mbz range %s[0x%x:0x%x] not all zero: %x", base, lo, hi, data)
}
return nil
}
// ReportToSignatureDER returns the signature component of an attestation report in DER format for
// use in x509 verification.
func ReportToSignatureDER(report []byte) ([]byte, error) {
if len(report) != ReportSize {
return nil, fmt.Errorf("incorrect report size: %x, want %x", len(report), ReportSize)
}
algo := SignatureAlgo(report)
if algo != SignEcdsaP384Sha384 {
return nil, fmt.Errorf("unknown signature algorithm: %d", algo)
}
signature := report[signatureOffset:ReportSize]
var b cryptobyte.Builder
b.AddASN1(asn1.SEQUENCE, func(b *cryptobyte.Builder) {
b.AddASN1BigInt(AmdBigInt(ecdsaGetR(signature)))
b.AddASN1BigInt(AmdBigInt(ecdsaGetS(signature)))
})
return b.Bytes()
}
func ecdsaGetR(signature []byte) []byte {
return signature[0x0:0x48]
}
func ecdsaGetS(signature []byte) []byte {
return signature[0x48:0x90]
}
func clone(b []byte) []byte {
result := make([]byte, len(b))
copy(result, b)
return result
}
func signatureAlgoSlice(report []byte) []byte {
return report[0x34:0x38]
}
// SignatureAlgo returns the SignatureAlgo field of a raw SEV-SNP attestation report.
func SignatureAlgo(report []byte) uint32 {
return binary.LittleEndian.Uint32(signatureAlgoSlice(report))
}
// ReportSigner represents which kind of key is expected to have signed the attestation report
type ReportSigner uint8
const (
// VcekReportSigner is the SIGNING_KEY value for if the VCEK signed the attestation report.
VcekReportSigner ReportSigner = iota
// VlekReportSigner is the SIGNING_KEY value for if the VLEK signed the attestation report.
VlekReportSigner
endorseReserved2
endorseReserved3
endorseReserved4
endorseReserved5
endorseReserved6
// NoneReportSigner is the SIGNING_KEY value for if the attestation report is not signed.
NoneReportSigner
)
// SignerInfo represents information about the signing circumstances for the attestation report.
type SignerInfo struct {
// SigningKey represents kind of key by which a report was signed.
SigningKey ReportSigner
// MaskChipKey is true if the host chose to enable CHIP_ID masking, to cause the report's CHIP_ID
// to be all zeros.
MaskChipKey bool
// AuthorKeyEn is true if the VM is launched with an IDBLOCK that includes an author key.
AuthorKeyEn bool
}
// String returns a ReportSigner string rendering.
func (k ReportSigner) String() string {
switch k {
case VcekReportSigner:
return "VCEK"
case VlekReportSigner:
return "VLEK"
case NoneReportSigner:
return "None"
default:
return fmt.Sprintf("UNKNOWN(%d)", byte(k))
}
}
// ParseSignerInfo interprets report[0x48:0x4c] into its component pieces and errors
// on non-zero mbz fields.
func ParseSignerInfo(signerInfo uint32) (result SignerInfo, err error) {
info64 := uint64(signerInfo)
if err = mbz64(info64, "data[0x48:0x4C]", 31, 5); err != nil {
return result, err
}
result.SigningKey = ReportSigner((signerInfo >> 2) & 7)
if result.SigningKey > VlekReportSigner && result.SigningKey < NoneReportSigner {
return result, fmt.Errorf("signing_key values 2-6 are reserved. Got %v", result.SigningKey)
}
result.MaskChipKey = (signerInfo & 2) != 0
result.AuthorKeyEn = (signerInfo & 1) != 0
return result, nil
}
// ComposeSignerInfo returns the uint32 value expected to populate the attestation report byte range
// 0x48:0x4C.
func ComposeSignerInfo(signerInfo SignerInfo) uint32 {
var result uint32
if signerInfo.AuthorKeyEn {
result |= 1
}
if signerInfo.MaskChipKey {
result |= 2
}
result |= uint32(signerInfo.SigningKey) << 2
return result
}
// ReportSignerInfo returns the signer info component of a SEV-SNP raw report.
func ReportSignerInfo(data []byte) (uint32, error) {
if len(data) < 0x4C {
return 0, fmt.Errorf("report too small: %d", len(data))
}
return binary.LittleEndian.Uint32(data[0x48:0x4C]), nil
}
// ReportToProto creates a pb.Report from the little-endian AMD SEV-SNP attestation report byte
// array in SEV SNP ABI format for ATTESTATION_REPORT.
func ReportToProto(data []uint8) (*pb.Report, error) {
if len(data) < ReportSize {
return nil, fmt.Errorf("array size is 0x%x, an SEV-SNP attestation report size is 0x%x", len(data), ReportSize)
}
r := &pb.Report{}
// r.Version should be 2, but that's left to validation step.
r.Version = binary.LittleEndian.Uint32(data[0x00:0x04])
r.GuestSvn = binary.LittleEndian.Uint32(data[0x04:0x08])
r.Policy = binary.LittleEndian.Uint64(data[0x08:0x10])
if _, err := ParseSnpPolicy(r.Policy); err != nil {
return nil, fmt.Errorf("malformed guest policy: %v", err)
}
r.FamilyId = clone(data[0x10:0x20])
r.ImageId = clone(data[0x20:0x30])
r.Vmpl = binary.LittleEndian.Uint32(data[0x30:0x34])
r.SignatureAlgo = SignatureAlgo(data)
r.CurrentTcb = binary.LittleEndian.Uint64(data[0x38:0x40])
r.PlatformInfo = binary.LittleEndian.Uint64(data[0x40:0x48])
signerInfo, err := ParseSignerInfo(binary.LittleEndian.Uint32(data[0x48:0x4C]))
if err != nil {
return nil, err
}
r.SignerInfo = ComposeSignerInfo(signerInfo)
if err := mbz(data, 0x4C, 0x50); err != nil {
return nil, err
}
r.ReportData = clone(data[0x50:0x90])
r.Measurement = clone(data[0x90:0xC0])
r.HostData = clone(data[0xC0:0xE0])
r.IdKeyDigest = clone(data[0xE0:0x110])
r.AuthorKeyDigest = clone(data[0x110:0x140])
r.ReportId = clone(data[0x140:0x160])
r.ReportIdMa = clone(data[0x160:0x180])
r.ReportedTcb = binary.LittleEndian.Uint64(data[0x180:0x188])
mbzLo := 0x188
if r.Version >= ReportVersion3 {
mbzLo = 0x18B
r.Cpuid1EaxFms = FmsToCpuid1Eax(data[0x188], data[0x189], data[0x18A])
}
if err := mbz(data, mbzLo, 0x1A0); err != nil {
return nil, err
}
r.ChipId = clone(data[0x1A0:0x1E0])
r.CommittedTcb = binary.LittleEndian.Uint64(data[0x1E0:0x1E8])
r.CurrentBuild = uint32(data[0x1E8])
r.CurrentMinor = uint32(data[0x1E9])
r.CurrentMajor = uint32(data[0x1EA])
if err := mbz(data, 0x1EB, 0x1EC); err != nil {
return nil, err
}
r.CommittedBuild = uint32(data[0x1EC])
r.CommittedMinor = uint32(data[0x1ED])
r.CommittedMajor = uint32(data[0x1EE])
if err := mbz(data, 0x1EF, 0x1F0); err != nil {
return nil, err
}
r.LaunchTcb = binary.LittleEndian.Uint64(data[0x1F0:0x1F8])
if err := mbz(data, 0x1F8, signatureOffset); err != nil {
return nil, err
}
if r.SignatureAlgo == SignEcdsaP384Sha384 {
if err := mbz(data, signatureOffset+EcdsaP384Sha384SignatureSize, ReportSize); err != nil {
return nil, err
}
}
r.Signature = clone(data[signatureOffset:ReportSize])
return r, nil
}
// ReportCertsToProto creates a pb.Attestation from the report and certificate table represented in
// data. The report is expected to take exactly abi.ReportSize bytes, followed by the certificate
// table.
func ReportCertsToProto(data []uint8) (*pb.Attestation, error) {
var certs []uint8
report := data
if len(data) >= ReportSize {
report = data[:ReportSize]
certs = data[ReportSize:]
}
mreport, err := ReportToProto(report)
if err != nil {
return nil, err
}
table := new(CertTable)
if err := table.Unmarshal(certs); err != nil {
return nil, err
}
return &pb.Attestation{Report: mreport, CertificateChain: table.Proto()}, nil
}
func checkReportSizes(r *pb.Report) error {
if len(r.FamilyId) != FamilyIDSize {
return fmt.Errorf("report family_id length is %d, expect %d", len(r.FamilyId), FamilyIDSize)
}
if len(r.ImageId) != ImageIDSize {
return fmt.Errorf("report image_id length is %d, expect %d", len(r.ImageId), ImageIDSize)
}
if len(r.ReportData) != ReportDataSize {
return fmt.Errorf("report_data length is %d, expect %d", len(r.ReportData), ReportDataSize)
}
if len(r.Measurement) != MeasurementSize {
return fmt.Errorf("measurement length is %d, expect %d", len(r.Measurement), MeasurementSize)
}
if len(r.HostData) != HostDataSize {
return fmt.Errorf("host_data length is %d, expect %d", len(r.HostData), HostDataSize)
}
if len(r.IdKeyDigest) != IDKeyDigestSize {
return fmt.Errorf("id_key_digest length is %d, expect %d", len(r.IdKeyDigest), IDKeyDigestSize)
}
if len(r.AuthorKeyDigest) != AuthorKeyDigestSize {
return fmt.Errorf("author_key_digest length is %d, expect %d", len(r.AuthorKeyDigest), AuthorKeyDigestSize)
}
if len(r.ReportId) != ReportIDSize {
return fmt.Errorf("report_id length is %d, expect %d", len(r.ReportId), ReportIDSize)
}
if len(r.ReportIdMa) != ReportIDMASize {
return fmt.Errorf("report_id_ma length is %d, expect %d", len(r.ReportIdMa), ReportIDMASize)
}
if len(r.ChipId) != ChipIDSize {
return fmt.Errorf("chip_id length is %d, expect %d", len(r.ChipId), ChipIDSize)
}
if len(r.Signature) != SignatureSize {
return fmt.Errorf("signature length is %d, expect %d", len(r.Signature), SignatureSize)
}
return nil
}
// ValidateReportFormat returns an error if the provided buffer violates structural expectations of
// attestation report data.
func ValidateReportFormat(r []byte) error {
if len(r) < ReportSize {
return fmt.Errorf("report size is %d bytes. Expected %d bytes", len(r), ReportSize)
}
version := binary.LittleEndian.Uint32(r[0x00:0x04])
if version < MinSupportedReportVersion || version > MaxSupportedReportVersion {
return fmt.Errorf("report version is: %d. Expected between %d and %d", version, MinSupportedReportVersion, MaxSupportedReportVersion)
}
policy := binary.LittleEndian.Uint64(r[0x08:0x10])
if _, err := ParseSnpPolicy(policy); err != nil {
return fmt.Errorf("malformed guest policy: %v", err)
}
return nil
}
// ReportToAbiBytes translates the report back into its little-endian ABI format.
func ReportToAbiBytes(r *pb.Report) ([]byte, error) {
if r == nil {
return nil, fmt.Errorf("report is nil")
}
if err := checkReportSizes(r); err != nil {
return nil, err
}
// Zero-initialized array fills all the reserved fields with the required zeros.
data := make([]byte, ReportSize)
binary.LittleEndian.PutUint32(data[0x00:0x04], r.Version)
binary.LittleEndian.PutUint32(data[0x04:0x08], r.GuestSvn)
binary.LittleEndian.PutUint64(data[0x08:0x10], r.Policy)
copy(data[0x10:0x20], r.FamilyId[:])
copy(data[0x20:0x30], r.ImageId[:])
binary.LittleEndian.PutUint32(data[0x30:0x34], r.Vmpl)
binary.LittleEndian.PutUint32(signatureAlgoSlice(data), r.SignatureAlgo)
binary.LittleEndian.PutUint64(data[0x38:0x40], r.CurrentTcb)
binary.LittleEndian.PutUint64(data[0x40:0x48], r.PlatformInfo)
if _, err := ParseSignerInfo(r.SignerInfo); err != nil {
return nil, err
}
binary.LittleEndian.PutUint32(data[0x48:0x4C], r.SignerInfo)
copy(data[0x50:0x90], r.ReportData[:])
copy(data[0x90:0xC0], r.Measurement[:])
copy(data[0xC0:0xE0], r.HostData[:])
copy(data[0xE0:0x110], r.IdKeyDigest[:])
copy(data[0x110:0x140], r.AuthorKeyDigest[:])
copy(data[0x140:0x160], r.ReportId[:])
copy(data[0x160:0x180], r.ReportIdMa[:])
binary.LittleEndian.PutUint64(data[0x180:0x188], r.ReportedTcb)
// Add CPUID information if this is a version 3 report.
if r.Version >= ReportVersion3 {
family, model, stepping := FmsFromCpuid1Eax(r.Cpuid1EaxFms)
data[0x188] = family
data[0x189] = model
data[0x18A] = stepping
}
copy(data[0x1A0:0x1E0], r.ChipId[:])
binary.LittleEndian.PutUint64(data[0x1E0:0x1E8], r.CommittedTcb)
if r.CurrentBuild >= (1 << 8) {
return nil, fmt.Errorf("current_build field must fit in a byte, got %d", r.CurrentBuild)
}
if r.CurrentMinor >= (1 << 8) {
return nil, fmt.Errorf("current_minor field must fit in a byte, got %d", r.CurrentMinor)
}
if r.CurrentMajor >= (1 << 8) {
return nil, fmt.Errorf("current_major field must fit in a byte, got %d", r.CurrentMajor)
}
data[0x1E8] = byte(r.CurrentBuild)
data[0x1E9] = byte(r.CurrentMinor)
data[0x1EA] = byte(r.CurrentMajor)
if r.CommittedBuild >= (1 << 8) {
return nil, fmt.Errorf("committed_build field must fit in a byte, got %d", r.CommittedBuild)
}
if r.CommittedMinor >= (1 << 8) {
return nil, fmt.Errorf("committed_minor field must fit in a byte, got %d", r.CommittedMinor)
}
if r.CommittedMajor >= (1 << 8) {
return nil, fmt.Errorf("committed_major field must fit in a byte, got %d", r.CommittedMajor)
}
data[0x1EC] = byte(r.CommittedBuild)
data[0x1ED] = byte(r.CommittedMinor)
data[0x1EE] = byte(r.CommittedMajor)
binary.LittleEndian.PutUint64(data[0x1F0:0x1F8], r.LaunchTcb)
copy(data[signatureOffset:ReportSize], r.Signature[:])
return data, nil
}
// SignedComponent returns the bytes of the SnpAttestationReport that are signed by the AMD-SP.
func SignedComponent(report []byte) []byte {
// Table 21 of https://www.amd.com/system/files/TechDocs/56860.pdf shows the signature is over
// all bytes prior to the signature in the report.
return report[0:signatureOffset]
}
func reverse(d []byte) []byte {
for i := 0; i < len(d)/2; i++ {
swapIndex := len(d) - i - 1
tmp := d[i]
d[i] = d[swapIndex]
d[swapIndex] = tmp
}
return d
}
func bigIntToAMDRS(b *big.Int) []byte {
var result [ecdsaRSsize]byte
b.FillBytes(result[:])
return reverse(result[:])
}
// EcdsaPublicKeyToBytes returns the AMD SEV ABI format of the ECDSA P-384 curve public key.
func EcdsaPublicKeyToBytes(key *ecdsa.PublicKey) ([]byte, error) {
result := make([]byte, EcsdaPublicKeySize)
switch key.Curve.Params().Name {
case "P-384":
binary.LittleEndian.PutUint32(result[0:4], EccP384)
default:
return nil, fmt.Errorf("ecdsa public key is not on curve P-384")
}
copy(result[ecdsaQXoffset:ecdsaQYoffset], bigIntToAMDRS(key.X))
copy(result[ecdsaQYoffset:ecdsaQYend], bigIntToAMDRS(key.Y))
return result, nil
}
// AmdBigInt returns a given AMD format little endian big integer as a big.Int.
func AmdBigInt(b []byte) *big.Int {
return new(big.Int).SetBytes(reverse(clone(b)))
}
// SetSignature sets the signature component the SnpAttestationReport with the specified
// representation of the R, S components of an ECDSA signature. Useful for testing.
func SetSignature(r, s *big.Int, report []byte) error {
if len(report) != ReportSize {
return fmt.Errorf("unexpected report size: %x, want %x", len(report), ReportSize)
}
signature := report[signatureOffset:ReportSize]
copy(ecdsaGetR(signature), bigIntToAMDRS(r))
copy(ecdsaGetS(signature), bigIntToAMDRS(s))
return nil
}
// Unmarshal populates a CertTableHeaderEntry from its ABI representation.
func (h *CertTableHeaderEntry) Unmarshal(data []byte) error {
if len(data) < CertTableEntrySize {
return fmt.Errorf("data too small: %v, want %v", len(data), CertTableEntrySize)
}
copy(h.GUID[:], data[0:GUIDSize])
uint32Size := 4
h.Offset = binary.LittleEndian.Uint32(data[GUIDSize : GUIDSize+uint32Size])
h.Length = binary.LittleEndian.Uint32(data[GUIDSize+uint32Size : CertTableEntrySize])
return nil
}
// Write writes a CertTableHeaderEntry in its ABI representation to data.
func (h *CertTableHeaderEntry) Write(data []byte) error {
if len(data) < CertTableEntrySize {
return fmt.Errorf("data too small: %v, want %v", len(data), CertTableEntrySize)
}
copy(data[0:GUIDSize], h.GUID[:])
uint32Size := 4
binary.LittleEndian.PutUint32(data[GUIDSize:GUIDSize+uint32Size], h.Offset)
binary.LittleEndian.PutUint32(data[GUIDSize+uint32Size:CertTableEntrySize], h.Length)
return nil
}
// ParseSnpCertTableHeader interprets the data pages from an extended guest request for certificate
// information.
func ParseSnpCertTableHeader(certs []byte) ([]CertTableHeaderEntry, error) {
var entries []CertTableHeaderEntry
var index int
slice := certs[:]
// Allow an empty table without the zero terminator.
if len(slice) == 0 {
return nil, nil
}
for {
var next CertTableHeaderEntry
if err := next.Unmarshal(slice); err != nil {
return nil, fmt.Errorf("cert table index %d entry unmarshalling error: %v", index, err)
}
slice = slice[CertTableEntrySize:]
index += CertTableEntrySize
// A whole zero entry found. We're done.
if next.Offset == 0 && next.Length == 0 && findNonZero(next.GUID[:], 0, 16) == GUIDSize {
break
}
entries = append(entries, next)
}
// Double-check that each offset is after the header.
for i, entry := range entries {
if entry.Offset < uint32(index) {
return nil, fmt.Errorf("cert table entry %d has invalid offset into header (size %d): %d",
i, entry.Offset, index)
}
}
return entries, nil
}
// Unmarshal populates the certTable with the (GUID, Blob) pairs represented in the given bytes.
// The format of the bytes is specified by the SEV SNP API for extended guest requests.
func (c *CertTable) Unmarshal(certs []byte) error {
certTableHeader, err := ParseSnpCertTableHeader(certs)
if err != nil {
return err
}
for i, entry := range certTableHeader {
var next CertTableEntry
copy(next.GUID[:], entry.GUID[:])
if entry.Offset+entry.Length > uint32(len(certs)) {
return fmt.Errorf("cert table entry %d specifies a byte range outside the certificate data block (size %d): offset=%d, length%d", i, len(certs), entry.Offset, entry.Length)
}
next.RawCert = make([]byte, entry.Length)
copy(next.RawCert, certs[entry.Offset:entry.Offset+entry.Length])
c.Entries = append(c.Entries, next)
}
return nil
}
// GetByGUIDString returns the raw bytes for a certificate that matches a key identified by the
// given GUID string.
func (c *CertTable) GetByGUIDString(guid string) ([]byte, error) {
g, err := uuid.Parse(guid)
if err != nil {
return nil, err
}
for _, entry := range c.Entries {
if entry.GUID == g {
return entry.RawCert, nil
}
}
return nil, fmt.Errorf("cert not found for GUID %s", guid)
}
// CertsFromProto returns the CertTable represented in the given certificate chain.
func CertsFromProto(chain *pb.CertificateChain) *CertTable {
c := &CertTable{}
if len(chain.GetArkCert()) != 0 {
c.Entries = append(c.Entries,
CertTableEntry{GUID: uuid.MustParse(ArkGUID), RawCert: chain.GetArkCert()})
}
if len(chain.GetAskCert()) != 0 {
c.Entries = append(c.Entries,
CertTableEntry{GUID: uuid.MustParse(AskGUID), RawCert: chain.GetAskCert()})
}
if len(chain.GetVcekCert()) != 0 {
c.Entries = append(c.Entries,
CertTableEntry{GUID: uuid.MustParse(VcekGUID), RawCert: chain.GetVcekCert()})
}
if len(chain.GetVlekCert()) != 0 {
c.Entries = append(c.Entries,
CertTableEntry{GUID: uuid.MustParse(VlekGUID), RawCert: chain.GetVlekCert()})
}
for guid, cert := range chain.GetExtras() {
c.Entries = append(c.Entries,
CertTableEntry{GUID: uuid.MustParse(guid), RawCert: cert})
}
return c
}
// Marshal returns the CertTable in its GUID table ABI format.
func (c *CertTable) Marshal() []byte {
if len(c.Entries) == 0 {
return nil
}
headerSize := uint32((len(c.Entries) + 1) * CertTableEntrySize)
var dataSize uint32
for _, entry := range c.Entries {
dataSize += uint32(len(entry.RawCert))
}
output := make([]byte, dataSize+headerSize)
cursor := headerSize
for i, entry := range c.Entries {
size := uint32(len(entry.RawCert))
h := &CertTableHeaderEntry{GUID: entry.GUID, Offset: cursor, Length: size}
copy(output[cursor:cursor+size], entry.RawCert)
h.Write(output[i*CertTableEntrySize:])
cursor += size
}
return output
}
// Proto returns the certificate chain represented in an extended guest request's
// data pages. The GHCB specification allows any number of entries in the pages,
// so missing certificates aren't an error. If certificates are missing, you can
// choose to fetch them yourself by calling verify.GetAttestationFromReport.
func (c *CertTable) Proto() *pb.CertificateChain {
vcekGUID := uuid.MustParse(VcekGUID)
vlekGUID := uuid.MustParse(VlekGUID)
askGUID := uuid.MustParse(AskGUID)
arkGUID := uuid.MustParse(ArkGUID)
result := &pb.CertificateChain{Extras: make(map[string][]byte)}
for _, entry := range c.Entries {
switch {
case entry.GUID == vcekGUID:
result.VcekCert = entry.RawCert
case entry.GUID == vlekGUID:
result.VlekCert = entry.RawCert
case entry.GUID == askGUID:
result.AskCert = entry.RawCert
case entry.GUID == arkGUID:
result.ArkCert = entry.RawCert
default:
result.Extras[entry.GUID.String()] = entry.RawCert
}
}
if len(result.VcekCert) == 0 && len(result.VlekCert) == 0 {
logger.Warning("Warning: Neither VCEK nor VLEK certificate found in data pages")
}
return result
}
// cpuid returns the 4 register results of CPUID[EAX=op,ECX=0].
// See assembly implementations in cpuid_*.s
var cpuid func(op uint32) (eax, ebx, ecx, edx uint32)
// FmsToCpuid1Eax returns the masked CPUID_1_EAX value that represents the given
// family, model, stepping (FMS) values.
func FmsToCpuid1Eax(family, model, stepping byte) uint32 {
var extendedFamily byte
familyID := family
if family >= 0xf {
extendedFamily = family - 0xf
familyID = 0xf
}
extendedModel := model >> 4
modelID := model & 0xf
return (uint32(extendedFamily) << extendedFamilyShift) |
(uint32(extendedModel) << extendedModelShift) |
(uint32(familyID) << familyShift) |
(uint32(modelID) << modelShift) |
(uint32(stepping & 0xf))
}
// FmsFromCpuid1Eax returns the family, model, stepping (FMS) values extracted from a
// CPUID_1_EAX value.
func FmsFromCpuid1Eax(eax uint32) (byte, byte, byte) {
// 31:28 reserved
// 27:20 Extended Family ID
extendedFamily := byte((eax >> extendedFamilyShift) & 0xff)
// 19:16 Extended Model ID
extendedModel := byte((eax >> extendedModelShift) & 0xf)
// 15:14 reserved
// 11:8 Family ID
familyID := byte((eax >> familyShift) & 0xf)
// 7:4 Model
modelID := byte((eax >> modelShift) & 0xf)
// 3:0 Stepping
family := extendedFamily + familyID
model := (extendedModel << 4) | modelID
stepping := byte(eax & 0xf)
return family, model, stepping
}
// SevProductFromCpuid1Eax returns the SevProduct that is represented by cpuid(1).eax.
func SevProductFromCpuid1Eax(eax uint32) *pb.SevProduct {
family, model, stepping := FmsFromCpuid1Eax(eax)
// Ah, Fh, {0h,1h} values from the KDS specification,
// section "Determining the Product Name".
var productName pb.SevProduct_SevProductName
unknown := func() {
productName = pb.SevProduct_SEV_PRODUCT_UNKNOWN
stepping = 0 // Reveal nothing.
}
// Product information specified by processor programming reference publications.
switch family {
case zen3zen4Family:
switch model {
case milanModel:
productName = pb.SevProduct_SEV_PRODUCT_MILAN
case genoaModel:
productName = pb.SevProduct_SEV_PRODUCT_GENOA
default:
unknown()
}
case zen5Family:
switch model {
case turinModel:
productName = pb.SevProduct_SEV_PRODUCT_TURIN
default:
unknown()
}
default:
unknown()
}
return &pb.SevProduct{
Name: productName,
MachineStepping: &wrapperspb.UInt32Value{Value: uint32(stepping)},
}
}
// MaskedCpuid1EaxFromSevProduct returns the Cpuid1Eax value expected from the given product
// when masked with CpuidProductMask.
func MaskedCpuid1EaxFromSevProduct(product *pb.SevProduct) uint32 {
if product == nil {
return 0
}
var family, model, stepping byte
if product.MachineStepping != nil {
stepping = byte(product.MachineStepping.Value & 0xf)
}
switch product.Name {
case pb.SevProduct_SEV_PRODUCT_MILAN:
family = zen3zen4Family
model = milanModel
case pb.SevProduct_SEV_PRODUCT_GENOA:
family = zen3zen4Family
model = genoaModel
case pb.SevProduct_SEV_PRODUCT_TURIN:
family = zen5Family
model = turinModel
default:
return 0
}
return FmsToCpuid1Eax(family, model, stepping)
}
// SevProduct returns the SEV product enum for the CPU that runs this
// function. Ought to be called from the client, not the verifier.
func SevProduct() *pb.SevProduct {
// CPUID[EAX=1] is the processor info. The only bits we care about are in
// the eax result.
eax, _, _, _ := cpuid(1)
return SevProductFromCpuid1Eax(eax & CpuidProductMask)
}
// MakeExtraPlatformInfo returns the representation of platform info needed on top of what an
// attestation report provides in order to interpret it with the help of the AMD KDS.
func MakeExtraPlatformInfo() *ExtraPlatformInfo {
eax, _, _, _ := cpuid(1)
return &ExtraPlatformInfo{
Size: ExtraPlatformInfoV0Size,
Cpuid1Eax: eax & CpuidProductMask,
}
}
// DefaultSevProduct returns the initial product version for a commercially available AMD SEV-SNP chip.
func DefaultSevProduct() *pb.SevProduct {
return &pb.SevProduct{
Name: pb.SevProduct_SEV_PRODUCT_MILAN,
MachineStepping: &wrapperspb.UInt32Value{Value: 1},
}
}
// ExtraPlatformInfo represents environment information needed to interpret an attestation report when
// the VCEK certificate is not available in the auxblob.
type ExtraPlatformInfo struct {
Size uint32 // Size doubles as Version, following the Linux ABI expansion methodology.
Cpuid1Eax uint32 // Provides product information
}
// ParseExtraPlatformInfo extracts an ExtraPlatformInfo from a blob if it matches expectations, or
// errors.
func ParseExtraPlatformInfo(data []byte) (*ExtraPlatformInfo, error) {
if len(data) < ExtraPlatformInfoV0Size {
return nil, fmt.Errorf("%d bytes is too small for ExtraPlatformInfoSize. Want >= %d bytes",
len(data), ExtraPlatformInfoV0Size)
}
// Populate V0 data.
result := &ExtraPlatformInfo{
Size: binary.LittleEndian.Uint32(data[0:0x04]),
Cpuid1Eax: binary.LittleEndian.Uint32(data[0x04:0x08]),
}
if uint32(len(data)) != result.Size {
return nil, fmt.Errorf("actual size %d bytes != reported size %d bytes", len(data), result.Size)
}
return result, nil
}
// Marshal returns ExtraPlatformInfo in its ABI format or errors.
func (i *ExtraPlatformInfo) Marshal() ([]byte, error) {
if i.Size != ExtraPlatformInfoV0Size {
return nil, fmt.Errorf("unsupported ExtraPlatformInfo size %d bytes", i.Size)
}
data := make([]byte, ExtraPlatformInfoV0Size)
binary.LittleEndian.PutUint32(data[0:0x04], i.Size)
binary.LittleEndian.PutUint32(data[0x04:0x08], i.Cpuid1Eax)
return data, nil
}
// ExtendPlatformCertTable is a convenience function for parsing a CertTable, adding the
// ExtraPlatformInfoGUID entry, and returning the marshaled extended table.
func ExtendPlatformCertTable(data []byte, info *ExtraPlatformInfo) ([]byte, error) {
certs := new(CertTable)
if err := certs.Unmarshal(data); err != nil {
return nil, err
}
// Don't extend the entries with unnecessary information about the platform
// since the VCEK certificate already contains it in an extension.
if _, err := certs.GetByGUIDString(VcekGUID); err == nil {
return data, nil
}
// A directly constructed info cannot have a marshaling error.
extra, err := info.Marshal()
if err != nil {
return nil, fmt.Errorf("could not marshal ExtraPlatformInfo: %v", err)
}
certs.Entries = append(certs.Entries, CertTableEntry{
GUID: uuid.MustParse(ExtraPlatformInfoGUID),
RawCert: extra,
})
return certs.Marshal(), nil
}
// ExtendedPlatformCertTable is a convenience function for parsing a CertTable, adding the
// ExtraPlatformInfoGUID entry, and returning the marshaled extended table.
func ExtendedPlatformCertTable(data []byte) ([]byte, error) {
return ExtendPlatformCertTable(data, MakeExtraPlatformInfo())
}
|