1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
|
// Copyright 2018 Google LLC. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package expr provides nftables rule expressions.
package expr
import (
"encoding/binary"
"github.com/google/nftables/binaryutil"
"github.com/google/nftables/internal/parseexprfunc"
"github.com/mdlayher/netlink"
"golang.org/x/sys/unix"
)
func init() {
parseexprfunc.ParseExprBytesFunc = func(fam byte, ad *netlink.AttributeDecoder, b []byte) ([]interface{}, error) {
exprs, err := exprsFromBytes(fam, ad, b)
if err != nil {
return nil, err
}
result := make([]interface{}, len(exprs))
for idx, expr := range exprs {
result[idx] = expr
}
return result, nil
}
parseexprfunc.ParseExprMsgFunc = func(fam byte, b []byte) ([]interface{}, error) {
ad, err := netlink.NewAttributeDecoder(b)
if err != nil {
return nil, err
}
ad.ByteOrder = binary.BigEndian
var exprs []interface{}
for ad.Next() {
e, err := parseexprfunc.ParseExprBytesFunc(fam, ad, b)
if err != nil {
return e, err
}
exprs = append(exprs, e...)
}
return exprs, ad.Err()
}
}
// Marshal serializes the specified expression into a byte slice.
func Marshal(fam byte, e Any) ([]byte, error) {
return e.marshal(fam)
}
// Unmarshal fills an expression from the specified byte slice.
func Unmarshal(fam byte, data []byte, e Any) error {
return e.unmarshal(fam, data)
}
// exprsFromBytes parses nested raw expressions bytes
// to construct nftables expressions
func exprsFromBytes(fam byte, ad *netlink.AttributeDecoder, b []byte) ([]Any, error) {
var exprs []Any
ad.Do(func(b []byte) error {
ad, err := netlink.NewAttributeDecoder(b)
if err != nil {
return err
}
ad.ByteOrder = binary.BigEndian
var name string
for ad.Next() {
switch ad.Type() {
case unix.NFTA_EXPR_NAME:
name = ad.String()
if name == "notrack" {
e := &Notrack{}
exprs = append(exprs, e)
}
case unix.NFTA_EXPR_DATA:
var e Any
switch name {
case "ct":
e = &Ct{}
case "range":
e = &Range{}
case "meta":
e = &Meta{}
case "cmp":
e = &Cmp{}
case "counter":
e = &Counter{}
case "objref":
e = &Objref{}
case "payload":
e = &Payload{}
case "lookup":
e = &Lookup{}
case "immediate":
e = &Immediate{}
case "bitwise":
e = &Bitwise{}
case "redir":
e = &Redir{}
case "nat":
e = &NAT{}
case "limit":
e = &Limit{}
case "quota":
e = &Quota{}
case "dynset":
e = &Dynset{}
case "log":
e = &Log{}
case "exthdr":
e = &Exthdr{}
case "match":
e = &Match{}
case "target":
e = &Target{}
case "connlimit":
e = &Connlimit{}
case "queue":
e = &Queue{}
case "flow_offload":
e = &FlowOffload{}
case "reject":
e = &Reject{}
case "masq":
e = &Masq{}
case "hash":
e = &Hash{}
}
if e == nil {
// TODO: introduce an opaque expression type so that users know
// something is here.
continue // unsupported expression type
}
ad.Do(func(b []byte) error {
if err := Unmarshal(fam, b, e); err != nil {
return err
}
// Verdict expressions are a special-case of immediate expressions, so
// if the expression is an immediate writing nothing into the verdict
// register (invalid), re-parse it as a verdict expression.
if imm, isImmediate := e.(*Immediate); isImmediate && imm.Register == unix.NFT_REG_VERDICT && len(imm.Data) == 0 {
e = &Verdict{}
if err := Unmarshal(fam, b, e); err != nil {
return err
}
}
exprs = append(exprs, e)
return nil
})
}
}
return ad.Err()
})
return exprs, ad.Err()
}
// Any is an interface implemented by any expression type.
type Any interface {
marshal(fam byte) ([]byte, error)
unmarshal(fam byte, data []byte) error
}
// MetaKey specifies which piece of meta information should be loaded. See also
// https://wiki.nftables.org/wiki-nftables/index.php/Matching_packet_metainformation
type MetaKey uint32
// Possible MetaKey values.
const (
MetaKeyLEN MetaKey = unix.NFT_META_LEN
MetaKeyPROTOCOL MetaKey = unix.NFT_META_PROTOCOL
MetaKeyPRIORITY MetaKey = unix.NFT_META_PRIORITY
MetaKeyMARK MetaKey = unix.NFT_META_MARK
MetaKeyIIF MetaKey = unix.NFT_META_IIF
MetaKeyOIF MetaKey = unix.NFT_META_OIF
MetaKeyIIFNAME MetaKey = unix.NFT_META_IIFNAME
MetaKeyOIFNAME MetaKey = unix.NFT_META_OIFNAME
MetaKeyIIFTYPE MetaKey = unix.NFT_META_IIFTYPE
MetaKeyOIFTYPE MetaKey = unix.NFT_META_OIFTYPE
MetaKeySKUID MetaKey = unix.NFT_META_SKUID
MetaKeySKGID MetaKey = unix.NFT_META_SKGID
MetaKeyNFTRACE MetaKey = unix.NFT_META_NFTRACE
MetaKeyRTCLASSID MetaKey = unix.NFT_META_RTCLASSID
MetaKeySECMARK MetaKey = unix.NFT_META_SECMARK
MetaKeyNFPROTO MetaKey = unix.NFT_META_NFPROTO
MetaKeyL4PROTO MetaKey = unix.NFT_META_L4PROTO
MetaKeyBRIIIFNAME MetaKey = unix.NFT_META_BRI_IIFNAME
MetaKeyBRIOIFNAME MetaKey = unix.NFT_META_BRI_OIFNAME
MetaKeyPKTTYPE MetaKey = unix.NFT_META_PKTTYPE
MetaKeyCPU MetaKey = unix.NFT_META_CPU
MetaKeyIIFGROUP MetaKey = unix.NFT_META_IIFGROUP
MetaKeyOIFGROUP MetaKey = unix.NFT_META_OIFGROUP
MetaKeyCGROUP MetaKey = unix.NFT_META_CGROUP
MetaKeyPRANDOM MetaKey = unix.NFT_META_PRANDOM
)
// Meta loads packet meta information for later comparisons. See also
// https://wiki.nftables.org/wiki-nftables/index.php/Matching_packet_metainformation
type Meta struct {
Key MetaKey
SourceRegister bool
Register uint32
}
func (e *Meta) marshal(fam byte) ([]byte, error) {
regData := []byte{}
exprData, err := netlink.MarshalAttributes(
[]netlink.Attribute{
{Type: unix.NFTA_META_KEY, Data: binaryutil.BigEndian.PutUint32(uint32(e.Key))},
},
)
if err != nil {
return nil, err
}
if e.SourceRegister {
regData, err = netlink.MarshalAttributes(
[]netlink.Attribute{
{Type: unix.NFTA_META_SREG, Data: binaryutil.BigEndian.PutUint32(e.Register)},
},
)
} else {
regData, err = netlink.MarshalAttributes(
[]netlink.Attribute{
{Type: unix.NFTA_META_DREG, Data: binaryutil.BigEndian.PutUint32(e.Register)},
},
)
}
if err != nil {
return nil, err
}
exprData = append(exprData, regData...)
return netlink.MarshalAttributes([]netlink.Attribute{
{Type: unix.NFTA_EXPR_NAME, Data: []byte("meta\x00")},
{Type: unix.NLA_F_NESTED | unix.NFTA_EXPR_DATA, Data: exprData},
})
}
func (e *Meta) unmarshal(fam byte, data []byte) error {
ad, err := netlink.NewAttributeDecoder(data)
if err != nil {
return err
}
ad.ByteOrder = binary.BigEndian
for ad.Next() {
switch ad.Type() {
case unix.NFTA_META_SREG:
e.Register = ad.Uint32()
e.SourceRegister = true
case unix.NFTA_META_DREG:
e.Register = ad.Uint32()
case unix.NFTA_META_KEY:
e.Key = MetaKey(ad.Uint32())
}
}
return ad.Err()
}
// Masq (Masquerade) is a special case of SNAT, where the source address is
// automagically set to the address of the output interface. See also
// https://wiki.nftables.org/wiki-nftables/index.php/Performing_Network_Address_Translation_(NAT)#Masquerading
type Masq struct {
Random bool
FullyRandom bool
Persistent bool
ToPorts bool
RegProtoMin uint32
RegProtoMax uint32
}
// TODO, Once the constants below are available in golang.org/x/sys/unix, switch to use those.
const (
// NF_NAT_RANGE_PROTO_RANDOM defines flag for a random masquerade
NF_NAT_RANGE_PROTO_RANDOM = 0x4
// NF_NAT_RANGE_PROTO_RANDOM_FULLY defines flag for a fully random masquerade
NF_NAT_RANGE_PROTO_RANDOM_FULLY = 0x10
// NF_NAT_RANGE_PERSISTENT defines flag for a persistent masquerade
NF_NAT_RANGE_PERSISTENT = 0x8
// NF_NAT_RANGE_PREFIX defines flag for a prefix masquerade
NF_NAT_RANGE_PREFIX = 0x40
)
func (e *Masq) marshal(fam byte) ([]byte, error) {
msgData := []byte{}
if !e.ToPorts {
flags := uint32(0)
if e.Random {
flags |= NF_NAT_RANGE_PROTO_RANDOM
}
if e.FullyRandom {
flags |= NF_NAT_RANGE_PROTO_RANDOM_FULLY
}
if e.Persistent {
flags |= NF_NAT_RANGE_PERSISTENT
}
if flags != 0 {
flagsData, err := netlink.MarshalAttributes([]netlink.Attribute{
{Type: unix.NFTA_MASQ_FLAGS, Data: binaryutil.BigEndian.PutUint32(flags)}})
if err != nil {
return nil, err
}
msgData = append(msgData, flagsData...)
}
} else {
regsData, err := netlink.MarshalAttributes([]netlink.Attribute{
{Type: unix.NFTA_MASQ_REG_PROTO_MIN, Data: binaryutil.BigEndian.PutUint32(e.RegProtoMin)}})
if err != nil {
return nil, err
}
msgData = append(msgData, regsData...)
if e.RegProtoMax != 0 {
regsData, err := netlink.MarshalAttributes([]netlink.Attribute{
{Type: unix.NFTA_MASQ_REG_PROTO_MAX, Data: binaryutil.BigEndian.PutUint32(e.RegProtoMax)}})
if err != nil {
return nil, err
}
msgData = append(msgData, regsData...)
}
}
return netlink.MarshalAttributes([]netlink.Attribute{
{Type: unix.NFTA_EXPR_NAME, Data: []byte("masq\x00")},
{Type: unix.NLA_F_NESTED | unix.NFTA_EXPR_DATA, Data: msgData},
})
}
func (e *Masq) unmarshal(fam byte, data []byte) error {
ad, err := netlink.NewAttributeDecoder(data)
if err != nil {
return err
}
ad.ByteOrder = binary.BigEndian
for ad.Next() {
switch ad.Type() {
case unix.NFTA_MASQ_REG_PROTO_MIN:
e.ToPorts = true
e.RegProtoMin = ad.Uint32()
case unix.NFTA_MASQ_REG_PROTO_MAX:
e.RegProtoMax = ad.Uint32()
case unix.NFTA_MASQ_FLAGS:
flags := ad.Uint32()
e.Persistent = (flags & NF_NAT_RANGE_PERSISTENT) != 0
e.Random = (flags & NF_NAT_RANGE_PROTO_RANDOM) != 0
e.FullyRandom = (flags & NF_NAT_RANGE_PROTO_RANDOM_FULLY) != 0
}
}
return ad.Err()
}
// CmpOp specifies which type of comparison should be performed.
type CmpOp uint32
// Possible CmpOp values.
const (
CmpOpEq CmpOp = unix.NFT_CMP_EQ
CmpOpNeq CmpOp = unix.NFT_CMP_NEQ
CmpOpLt CmpOp = unix.NFT_CMP_LT
CmpOpLte CmpOp = unix.NFT_CMP_LTE
CmpOpGt CmpOp = unix.NFT_CMP_GT
CmpOpGte CmpOp = unix.NFT_CMP_GTE
)
// Cmp compares a register with the specified data.
type Cmp struct {
Op CmpOp
Register uint32
Data []byte
}
func (e *Cmp) marshal(fam byte) ([]byte, error) {
cmpData, err := netlink.MarshalAttributes([]netlink.Attribute{
{Type: unix.NFTA_DATA_VALUE, Data: e.Data},
})
if err != nil {
return nil, err
}
exprData, err := netlink.MarshalAttributes([]netlink.Attribute{
{Type: unix.NFTA_CMP_SREG, Data: binaryutil.BigEndian.PutUint32(e.Register)},
{Type: unix.NFTA_CMP_OP, Data: binaryutil.BigEndian.PutUint32(uint32(e.Op))},
{Type: unix.NLA_F_NESTED | unix.NFTA_CMP_DATA, Data: cmpData},
})
if err != nil {
return nil, err
}
return netlink.MarshalAttributes([]netlink.Attribute{
{Type: unix.NFTA_EXPR_NAME, Data: []byte("cmp\x00")},
{Type: unix.NLA_F_NESTED | unix.NFTA_EXPR_DATA, Data: exprData},
})
}
func (e *Cmp) unmarshal(fam byte, data []byte) error {
ad, err := netlink.NewAttributeDecoder(data)
if err != nil {
return err
}
ad.ByteOrder = binary.BigEndian
for ad.Next() {
switch ad.Type() {
case unix.NFTA_CMP_SREG:
e.Register = ad.Uint32()
case unix.NFTA_CMP_OP:
e.Op = CmpOp(ad.Uint32())
case unix.NFTA_CMP_DATA:
ad.Do(func(b []byte) error {
ad, err := netlink.NewAttributeDecoder(b)
if err != nil {
return err
}
ad.ByteOrder = binary.BigEndian
if ad.Next() && ad.Type() == unix.NFTA_DATA_VALUE {
ad.Do(func(b []byte) error {
e.Data = b
return nil
})
}
return ad.Err()
})
}
}
return ad.Err()
}
|