1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
|
// Copyright 2014 Google Inc. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package graph
import (
"fmt"
"io"
"math"
"path/filepath"
"strings"
"github.com/google/pprof/internal/measurement"
)
// DotAttributes contains details about the graph itself, giving
// insight into how its elements should be rendered.
type DotAttributes struct {
Nodes map[*Node]*DotNodeAttributes // A map allowing each Node to have its own visualization option
}
// DotNodeAttributes contains Node specific visualization options.
type DotNodeAttributes struct {
Shape string // The optional shape of the node when rendered visually
Bold bool // If the node should be bold or not
Peripheries int // An optional number of borders to place around a node
URL string // An optional url link to add to a node
Formatter func(*NodeInfo) string // An optional formatter for the node's label
}
// DotConfig contains attributes about how a graph should be
// constructed and how it should look.
type DotConfig struct {
Title string // The title of the DOT graph
LegendURL string // The URL to link to from the legend.
Labels []string // The labels for the DOT's legend
FormatValue func(int64) string // A formatting function for values
Total int64 // The total weight of the graph, used to compute percentages
}
const maxNodelets = 4 // Number of nodelets for labels (both numeric and non)
// ComposeDot creates and writes a in the DOT format to the writer, using
// the configurations given.
func ComposeDot(w io.Writer, g *Graph, a *DotAttributes, c *DotConfig) {
builder := &builder{w, a, c}
// Begin constructing DOT by adding a title and legend.
builder.start()
defer builder.finish()
builder.addLegend()
if len(g.Nodes) == 0 {
return
}
// Preprocess graph to get id map and find max flat.
nodeIDMap := make(map[*Node]int)
hasNodelets := make(map[*Node]bool)
maxFlat := float64(abs64(g.Nodes[0].FlatValue()))
for i, n := range g.Nodes {
nodeIDMap[n] = i + 1
if float64(abs64(n.FlatValue())) > maxFlat {
maxFlat = float64(abs64(n.FlatValue()))
}
}
edges := EdgeMap{}
// Add nodes and nodelets to DOT builder.
for _, n := range g.Nodes {
builder.addNode(n, nodeIDMap[n], maxFlat)
hasNodelets[n] = builder.addNodelets(n, nodeIDMap[n])
// Collect all edges. Use a fake node to support multiple incoming edges.
for _, e := range n.Out {
edges[&Node{}] = e
}
}
// Add edges to DOT builder. Sort edges by frequency as a hint to the graph layout engine.
for _, e := range edges.Sort() {
builder.addEdge(e, nodeIDMap[e.Src], nodeIDMap[e.Dest], hasNodelets[e.Src])
}
}
// builder wraps an io.Writer and understands how to compose DOT formatted elements.
type builder struct {
io.Writer
attributes *DotAttributes
config *DotConfig
}
// start generates a title and initial node in DOT format.
func (b *builder) start() {
graphname := "unnamed"
if b.config.Title != "" {
graphname = b.config.Title
}
fmt.Fprintln(b, `digraph "`+graphname+`" {`)
fmt.Fprintln(b, `node [style=filled fillcolor="#f8f8f8"]`)
}
// finish closes the opening curly bracket in the constructed DOT buffer.
func (b *builder) finish() {
fmt.Fprintln(b, "}")
}
// addLegend generates a legend in DOT format.
func (b *builder) addLegend() {
labels := b.config.Labels
if len(labels) == 0 {
return
}
title := labels[0]
fmt.Fprintf(b, `subgraph cluster_L { "%s" [shape=box fontsize=16`, title)
fmt.Fprintf(b, ` label="%s\l"`, strings.Join(escapeForDot(labels), `\l`))
if b.config.LegendURL != "" {
fmt.Fprintf(b, ` URL="%s" target="_blank"`, b.config.LegendURL)
}
if b.config.Title != "" {
fmt.Fprintf(b, ` tooltip="%s"`, b.config.Title)
}
fmt.Fprintf(b, "] }\n")
}
// addNode generates a graph node in DOT format.
func (b *builder) addNode(node *Node, nodeID int, maxFlat float64) {
flat, cum := node.FlatValue(), node.CumValue()
attrs := b.attributes.Nodes[node]
// Populate label for node.
var label string
if attrs != nil && attrs.Formatter != nil {
label = attrs.Formatter(&node.Info)
} else {
label = multilinePrintableName(&node.Info)
}
flatValue := b.config.FormatValue(flat)
if flat != 0 {
label = label + fmt.Sprintf(`%s (%s)`,
flatValue,
strings.TrimSpace(measurement.Percentage(flat, b.config.Total)))
} else {
label = label + "0"
}
cumValue := flatValue
if cum != flat {
if flat != 0 {
label = label + `\n`
} else {
label = label + " "
}
cumValue = b.config.FormatValue(cum)
label = label + fmt.Sprintf(`of %s (%s)`,
cumValue,
strings.TrimSpace(measurement.Percentage(cum, b.config.Total)))
}
// Scale font sizes from 8 to 24 based on percentage of flat frequency.
// Use non linear growth to emphasize the size difference.
baseFontSize, maxFontGrowth := 8, 16.0
fontSize := baseFontSize
if maxFlat != 0 && flat != 0 && float64(abs64(flat)) <= maxFlat {
fontSize += int(math.Ceil(maxFontGrowth * math.Sqrt(float64(abs64(flat))/maxFlat)))
}
// Determine node shape.
shape := "box"
if attrs != nil && attrs.Shape != "" {
shape = attrs.Shape
}
// Create DOT attribute for node.
attr := fmt.Sprintf(`label="%s" id="node%d" fontsize=%d shape=%s tooltip="%s (%s)" color="%s" fillcolor="%s"`,
label, nodeID, fontSize, shape, node.Info.PrintableName(), cumValue,
dotColor(float64(node.CumValue())/float64(abs64(b.config.Total)), false),
dotColor(float64(node.CumValue())/float64(abs64(b.config.Total)), true))
// Add on extra attributes if provided.
if attrs != nil {
// Make bold if specified.
if attrs.Bold {
attr += ` style="bold,filled"`
}
// Add peripheries if specified.
if attrs.Peripheries != 0 {
attr += fmt.Sprintf(` peripheries=%d`, attrs.Peripheries)
}
// Add URL if specified. target="_blank" forces the link to open in a new tab.
if attrs.URL != "" {
attr += fmt.Sprintf(` URL="%s" target="_blank"`, attrs.URL)
}
}
fmt.Fprintf(b, "N%d [%s]\n", nodeID, attr)
}
// addNodelets generates the DOT boxes for the node tags if they exist.
func (b *builder) addNodelets(node *Node, nodeID int) bool {
var nodelets string
// Populate two Tag slices, one for LabelTags and one for NumericTags.
var ts []*Tag
lnts := make(map[string][]*Tag)
for _, t := range node.LabelTags {
ts = append(ts, t)
}
for l, tm := range node.NumericTags {
for _, t := range tm {
lnts[l] = append(lnts[l], t)
}
}
// For leaf nodes, print cumulative tags (includes weight from
// children that have been deleted).
// For internal nodes, print only flat tags.
flatTags := len(node.Out) > 0
// Select the top maxNodelets alphanumeric labels by weight.
SortTags(ts, flatTags)
if len(ts) > maxNodelets {
ts = ts[:maxNodelets]
}
for i, t := range ts {
w := t.CumValue()
if flatTags {
w = t.FlatValue()
}
if w == 0 {
continue
}
weight := b.config.FormatValue(w)
nodelets += fmt.Sprintf(`N%d_%d [label = "%s" id="N%d_%d" fontsize=8 shape=box3d tooltip="%s"]`+"\n", nodeID, i, t.Name, nodeID, i, weight)
nodelets += fmt.Sprintf(`N%d -> N%d_%d [label=" %s" weight=100 tooltip="%s" labeltooltip="%s"]`+"\n", nodeID, nodeID, i, weight, weight, weight)
if nts := lnts[t.Name]; nts != nil {
nodelets += b.numericNodelets(nts, maxNodelets, flatTags, fmt.Sprintf(`N%d_%d`, nodeID, i))
}
}
if nts := lnts[""]; nts != nil {
nodelets += b.numericNodelets(nts, maxNodelets, flatTags, fmt.Sprintf(`N%d`, nodeID))
}
fmt.Fprint(b, nodelets)
return nodelets != ""
}
func (b *builder) numericNodelets(nts []*Tag, maxNumNodelets int, flatTags bool, source string) string {
nodelets := ""
// Collapse numeric labels into maxNumNodelets buckets, of the form:
// 1MB..2MB, 3MB..5MB, ...
for j, t := range b.collapsedTags(nts, maxNumNodelets, flatTags) {
w, attr := t.CumValue(), ` style="dotted"`
if flatTags || t.FlatValue() == t.CumValue() {
w, attr = t.FlatValue(), ""
}
if w != 0 {
weight := b.config.FormatValue(w)
nodelets += fmt.Sprintf(`N%s_%d [label = "%s" id="N%s_%d" fontsize=8 shape=box3d tooltip="%s"]`+"\n", source, j, t.Name, source, j, weight)
nodelets += fmt.Sprintf(`%s -> N%s_%d [label=" %s" weight=100 tooltip="%s" labeltooltip="%s"%s]`+"\n", source, source, j, weight, weight, weight, attr)
}
}
return nodelets
}
// addEdge generates a graph edge in DOT format.
func (b *builder) addEdge(edge *Edge, from, to int, hasNodelets bool) {
var inline string
if edge.Inline {
inline = `\n (inline)`
}
w := b.config.FormatValue(edge.WeightValue())
attr := fmt.Sprintf(`label=" %s%s"`, w, inline)
if b.config.Total != 0 {
// Note: edge.weight > b.config.Total is possible for profile diffs.
if weight := 1 + int(min64(abs64(edge.WeightValue()*100/b.config.Total), 100)); weight > 1 {
attr = fmt.Sprintf(`%s weight=%d`, attr, weight)
}
if width := 1 + int(min64(abs64(edge.WeightValue()*5/b.config.Total), 5)); width > 1 {
attr = fmt.Sprintf(`%s penwidth=%d`, attr, width)
}
attr = fmt.Sprintf(`%s color="%s"`, attr,
dotColor(float64(edge.WeightValue())/float64(abs64(b.config.Total)), false))
}
arrow := "->"
if edge.Residual {
arrow = "..."
}
tooltip := fmt.Sprintf(`"%s %s %s (%s)"`,
edge.Src.Info.PrintableName(), arrow, edge.Dest.Info.PrintableName(), w)
attr = fmt.Sprintf(`%s tooltip=%s labeltooltip=%s`, attr, tooltip, tooltip)
if edge.Residual {
attr = attr + ` style="dotted"`
}
if hasNodelets {
// Separate children further if source has tags.
attr = attr + " minlen=2"
}
fmt.Fprintf(b, "N%d -> N%d [%s]\n", from, to, attr)
}
// dotColor returns a color for the given score (between -1.0 and
// 1.0), with -1.0 colored red, 0.0 colored grey, and 1.0 colored
// green. If isBackground is true, then a light (low-saturation)
// color is returned (suitable for use as a background color);
// otherwise, a darker color is returned (suitable for use as a
// foreground color).
func dotColor(score float64, isBackground bool) string {
// A float between 0.0 and 1.0, indicating the extent to which
// colors should be shifted away from grey (to make positive and
// negative values easier to distinguish, and to make more use of
// the color range.)
const shift = 0.7
// Saturation and value (in hsv colorspace) for background colors.
const bgSaturation = 0.1
const bgValue = 0.93
// Saturation and value (in hsv colorspace) for foreground colors.
const fgSaturation = 1.0
const fgValue = 0.7
// Choose saturation and value based on isBackground.
var saturation float64
var value float64
if isBackground {
saturation = bgSaturation
value = bgValue
} else {
saturation = fgSaturation
value = fgValue
}
// Limit the score values to the range [-1.0, 1.0].
score = math.Max(-1.0, math.Min(1.0, score))
// Reduce saturation near score=0 (so it is colored grey, rather than yellow).
if math.Abs(score) < 0.2 {
saturation *= math.Abs(score) / 0.2
}
// Apply 'shift' to move scores away from 0.0 (grey).
if score > 0.0 {
score = math.Pow(score, (1.0 - shift))
}
if score < 0.0 {
score = -math.Pow(-score, (1.0 - shift))
}
var r, g, b float64 // red, green, blue
if score < 0.0 {
g = value
r = value * (1 + saturation*score)
} else {
r = value
g = value * (1 - saturation*score)
}
b = value * (1 - saturation)
return fmt.Sprintf("#%02x%02x%02x", uint8(r*255.0), uint8(g*255.0), uint8(b*255.0))
}
func multilinePrintableName(info *NodeInfo) string {
infoCopy := *info
infoCopy.Name = ShortenFunctionName(infoCopy.Name)
infoCopy.Name = strings.Replace(infoCopy.Name, "::", `\n`, -1)
infoCopy.Name = strings.Replace(infoCopy.Name, ".", `\n`, -1)
if infoCopy.File != "" {
infoCopy.File = filepath.Base(infoCopy.File)
}
return strings.Join(infoCopy.NameComponents(), `\n`) + `\n`
}
// collapsedTags trims and sorts a slice of tags.
func (b *builder) collapsedTags(ts []*Tag, count int, flatTags bool) []*Tag {
ts = SortTags(ts, flatTags)
if len(ts) <= count {
return ts
}
tagGroups := make([][]*Tag, count)
for i, t := range (ts)[:count] {
tagGroups[i] = []*Tag{t}
}
for _, t := range (ts)[count:] {
g, d := 0, tagDistance(t, tagGroups[0][0])
for i := 1; i < count; i++ {
if nd := tagDistance(t, tagGroups[i][0]); nd < d {
g, d = i, nd
}
}
tagGroups[g] = append(tagGroups[g], t)
}
var nts []*Tag
for _, g := range tagGroups {
l, w, c := b.tagGroupLabel(g)
nts = append(nts, &Tag{
Name: l,
Flat: w,
Cum: c,
})
}
return SortTags(nts, flatTags)
}
func tagDistance(t, u *Tag) float64 {
v, _ := measurement.Scale(u.Value, u.Unit, t.Unit)
if v < float64(t.Value) {
return float64(t.Value) - v
}
return v - float64(t.Value)
}
func (b *builder) tagGroupLabel(g []*Tag) (label string, flat, cum int64) {
if len(g) == 1 {
t := g[0]
return measurement.Label(t.Value, t.Unit), t.FlatValue(), t.CumValue()
}
min := g[0]
max := g[0]
df, f := min.FlatDiv, min.Flat
dc, c := min.CumDiv, min.Cum
for _, t := range g[1:] {
if v, _ := measurement.Scale(t.Value, t.Unit, min.Unit); int64(v) < min.Value {
min = t
}
if v, _ := measurement.Scale(t.Value, t.Unit, max.Unit); int64(v) > max.Value {
max = t
}
f += t.Flat
df += t.FlatDiv
c += t.Cum
dc += t.CumDiv
}
if df != 0 {
f = f / df
}
if dc != 0 {
c = c / dc
}
// Tags are not scaled with the selected output unit because tags are often
// much smaller than other values which appear, so the range of tag sizes
// sometimes would appear to be "0..0" when scaled to the selected output unit.
return measurement.Label(min.Value, min.Unit) + ".." + measurement.Label(max.Value, max.Unit), f, c
}
func min64(a, b int64) int64 {
if a < b {
return a
}
return b
}
// escapeForDot escapes double quotes and backslashes, and replaces Graphviz's
// "center" character (\n) with a left-justified character.
// See https://graphviz.org/doc/info/attrs.html#k:escString for more info.
func escapeForDot(in []string) []string {
var out = make([]string, len(in))
for i := range in {
out[i] = strings.ReplaceAll(strings.ReplaceAll(strings.ReplaceAll(in[i], `\`, `\\`), `"`, `\"`), "\n", `\l`)
}
return out
}
|