1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
|
// Copyright 2014 Google Inc. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package report summarizes a performance profile into a
// human-readable report.
package report
import (
"fmt"
"io"
"path/filepath"
"regexp"
"sort"
"strconv"
"strings"
"text/tabwriter"
"time"
"github.com/google/pprof/internal/graph"
"github.com/google/pprof/internal/measurement"
"github.com/google/pprof/internal/plugin"
"github.com/google/pprof/profile"
)
// Output formats.
const (
Callgrind = iota
Comments
Dis
Dot
List
Proto
Raw
Tags
Text
TopProto
Traces
Tree
WebList
)
// Options are the formatting and filtering options used to generate a
// profile.
type Options struct {
OutputFormat int
CumSort bool
CallTree bool
DropNegative bool
CompactLabels bool
Ratio float64
Title string
ProfileLabels []string
ActiveFilters []string
NumLabelUnits map[string]string
NodeCount int
NodeFraction float64
EdgeFraction float64
SampleValue func(s []int64) int64
SampleMeanDivisor func(s []int64) int64
SampleType string
SampleUnit string // Unit for the sample data from the profile.
OutputUnit string // Units for data formatting in report.
Symbol *regexp.Regexp // Symbols to include on disassembly report.
SourcePath string // Search path for source files.
TrimPath string // Paths to trim from source file paths.
IntelSyntax bool // Whether or not to print assembly in Intel syntax.
}
// Generate generates a report as directed by the Report.
func Generate(w io.Writer, rpt *Report, obj plugin.ObjTool) error {
o := rpt.options
switch o.OutputFormat {
case Comments:
return printComments(w, rpt)
case Dot:
return printDOT(w, rpt)
case Tree:
return printTree(w, rpt)
case Text:
return printText(w, rpt)
case Traces:
return printTraces(w, rpt)
case Raw:
fmt.Fprint(w, rpt.prof.String())
return nil
case Tags:
return printTags(w, rpt)
case Proto:
return printProto(w, rpt)
case TopProto:
return printTopProto(w, rpt)
case Dis:
return printAssembly(w, rpt, obj)
case List:
return printSource(w, rpt)
case WebList:
return printWebSource(w, rpt, obj)
case Callgrind:
return printCallgrind(w, rpt)
}
return fmt.Errorf("unexpected output format")
}
// newTrimmedGraph creates a graph for this report, trimmed according
// to the report options.
func (rpt *Report) newTrimmedGraph() (g *graph.Graph, origCount, droppedNodes, droppedEdges int) {
o := rpt.options
// Build a graph and refine it. On each refinement step we must rebuild the graph from the samples,
// as the graph itself doesn't contain enough information to preserve full precision.
visualMode := o.OutputFormat == Dot
cumSort := o.CumSort
// The call_tree option is only honored when generating visual representations of the callgraph.
callTree := o.CallTree && (o.OutputFormat == Dot || o.OutputFormat == Callgrind)
// First step: Build complete graph to identify low frequency nodes, based on their cum weight.
g = rpt.newGraph(nil)
totalValue, _ := g.Nodes.Sum()
nodeCutoff := abs64(int64(float64(totalValue) * o.NodeFraction))
edgeCutoff := abs64(int64(float64(totalValue) * o.EdgeFraction))
// Filter out nodes with cum value below nodeCutoff.
if nodeCutoff > 0 {
if callTree {
if nodesKept := g.DiscardLowFrequencyNodePtrs(nodeCutoff); len(g.Nodes) != len(nodesKept) {
droppedNodes = len(g.Nodes) - len(nodesKept)
g.TrimTree(nodesKept)
}
} else {
if nodesKept := g.DiscardLowFrequencyNodes(nodeCutoff); len(g.Nodes) != len(nodesKept) {
droppedNodes = len(g.Nodes) - len(nodesKept)
g = rpt.newGraph(nodesKept)
}
}
}
origCount = len(g.Nodes)
// Second step: Limit the total number of nodes. Apply specialized heuristics to improve
// visualization when generating dot output.
g.SortNodes(cumSort, visualMode)
if nodeCount := o.NodeCount; nodeCount > 0 {
// Remove low frequency tags and edges as they affect selection.
g.TrimLowFrequencyTags(nodeCutoff)
g.TrimLowFrequencyEdges(edgeCutoff)
if callTree {
if nodesKept := g.SelectTopNodePtrs(nodeCount, visualMode); len(g.Nodes) != len(nodesKept) {
g.TrimTree(nodesKept)
g.SortNodes(cumSort, visualMode)
}
} else {
if nodesKept := g.SelectTopNodes(nodeCount, visualMode); len(g.Nodes) != len(nodesKept) {
g = rpt.newGraph(nodesKept)
g.SortNodes(cumSort, visualMode)
}
}
}
// Final step: Filter out low frequency tags and edges, and remove redundant edges that clutter
// the graph.
g.TrimLowFrequencyTags(nodeCutoff)
droppedEdges = g.TrimLowFrequencyEdges(edgeCutoff)
if visualMode {
g.RemoveRedundantEdges()
}
return
}
func (rpt *Report) selectOutputUnit(g *graph.Graph) {
o := rpt.options
// Select best unit for profile output.
// Find the appropriate units for the smallest non-zero sample
if o.OutputUnit != "minimum" || len(g.Nodes) == 0 {
return
}
var minValue int64
for _, n := range g.Nodes {
nodeMin := abs64(n.FlatValue())
if nodeMin == 0 {
nodeMin = abs64(n.CumValue())
}
if nodeMin > 0 && (minValue == 0 || nodeMin < minValue) {
minValue = nodeMin
}
}
maxValue := rpt.total
if minValue == 0 {
minValue = maxValue
}
if r := o.Ratio; r > 0 && r != 1 {
minValue = int64(float64(minValue) * r)
maxValue = int64(float64(maxValue) * r)
}
_, minUnit := measurement.Scale(minValue, o.SampleUnit, "minimum")
_, maxUnit := measurement.Scale(maxValue, o.SampleUnit, "minimum")
unit := minUnit
if minUnit != maxUnit && minValue*100 < maxValue && o.OutputFormat != Callgrind {
// Minimum and maximum values have different units. Scale
// minimum by 100 to use larger units, allowing minimum value to
// be scaled down to 0.01, except for callgrind reports since
// they can only represent integer values.
_, unit = measurement.Scale(100*minValue, o.SampleUnit, "minimum")
}
if unit != "" {
o.OutputUnit = unit
} else {
o.OutputUnit = o.SampleUnit
}
}
// newGraph creates a new graph for this report. If nodes is non-nil,
// only nodes whose info matches are included. Otherwise, all nodes
// are included, without trimming.
func (rpt *Report) newGraph(nodes graph.NodeSet) *graph.Graph {
o := rpt.options
// Clean up file paths using heuristics.
prof := rpt.prof
for _, f := range prof.Function {
f.Filename = trimPath(f.Filename, o.TrimPath, o.SourcePath)
}
// Removes all numeric tags except for the bytes tag prior
// to making graph.
// TODO: modify to select first numeric tag if no bytes tag
for _, s := range prof.Sample {
numLabels := make(map[string][]int64, len(s.NumLabel))
numUnits := make(map[string][]string, len(s.NumLabel))
for k, vs := range s.NumLabel {
if k == "bytes" {
unit := o.NumLabelUnits[k]
numValues := make([]int64, len(vs))
numUnit := make([]string, len(vs))
for i, v := range vs {
numValues[i] = v
numUnit[i] = unit
}
numLabels[k] = append(numLabels[k], numValues...)
numUnits[k] = append(numUnits[k], numUnit...)
}
}
s.NumLabel = numLabels
s.NumUnit = numUnits
}
// Remove label marking samples from the base profiles, so it does not appear
// as a nodelet in the graph view.
prof.RemoveLabel("pprof::base")
formatTag := func(v int64, key string) string {
return measurement.ScaledLabel(v, key, o.OutputUnit)
}
gopt := &graph.Options{
SampleValue: o.SampleValue,
SampleMeanDivisor: o.SampleMeanDivisor,
FormatTag: formatTag,
CallTree: o.CallTree && (o.OutputFormat == Dot || o.OutputFormat == Callgrind),
DropNegative: o.DropNegative,
KeptNodes: nodes,
}
// Only keep binary names for disassembly-based reports, otherwise
// remove it to allow merging of functions across binaries.
switch o.OutputFormat {
case Raw, List, WebList, Dis, Callgrind:
gopt.ObjNames = true
}
return graph.New(rpt.prof, gopt)
}
// printProto writes the incoming proto via thw writer w.
// If the divide_by option has been specified, samples are scaled appropriately.
func printProto(w io.Writer, rpt *Report) error {
p, o := rpt.prof, rpt.options
// Apply the sample ratio to all samples before saving the profile.
if r := o.Ratio; r > 0 && r != 1 {
for _, sample := range p.Sample {
for i, v := range sample.Value {
sample.Value[i] = int64(float64(v) * r)
}
}
}
return p.Write(w)
}
// printTopProto writes a list of the hottest routines in a profile as a profile.proto.
func printTopProto(w io.Writer, rpt *Report) error {
p := rpt.prof
o := rpt.options
g, _, _, _ := rpt.newTrimmedGraph()
rpt.selectOutputUnit(g)
out := profile.Profile{
SampleType: []*profile.ValueType{
{Type: "cum", Unit: o.OutputUnit},
{Type: "flat", Unit: o.OutputUnit},
},
TimeNanos: p.TimeNanos,
DurationNanos: p.DurationNanos,
PeriodType: p.PeriodType,
Period: p.Period,
}
functionMap := make(functionMap)
for i, n := range g.Nodes {
f, added := functionMap.findOrAdd(n.Info)
if added {
out.Function = append(out.Function, f)
}
flat, cum := n.FlatValue(), n.CumValue()
l := &profile.Location{
ID: uint64(i + 1),
Address: n.Info.Address,
Line: []profile.Line{
{
Line: int64(n.Info.Lineno),
Function: f,
},
},
}
fv, _ := measurement.Scale(flat, o.SampleUnit, o.OutputUnit)
cv, _ := measurement.Scale(cum, o.SampleUnit, o.OutputUnit)
s := &profile.Sample{
Location: []*profile.Location{l},
Value: []int64{int64(cv), int64(fv)},
}
out.Location = append(out.Location, l)
out.Sample = append(out.Sample, s)
}
return out.Write(w)
}
type functionMap map[string]*profile.Function
// findOrAdd takes a node representing a function, adds the function
// represented by the node to the map if the function is not already present,
// and returns the function the node represents. This also returns a boolean,
// which is true if the function was added and false otherwise.
func (fm functionMap) findOrAdd(ni graph.NodeInfo) (*profile.Function, bool) {
fName := fmt.Sprintf("%q%q%q%d", ni.Name, ni.OrigName, ni.File, ni.StartLine)
if f := fm[fName]; f != nil {
return f, false
}
f := &profile.Function{
ID: uint64(len(fm) + 1),
Name: ni.Name,
SystemName: ni.OrigName,
Filename: ni.File,
StartLine: int64(ni.StartLine),
}
fm[fName] = f
return f, true
}
// printAssembly prints an annotated assembly listing.
func printAssembly(w io.Writer, rpt *Report, obj plugin.ObjTool) error {
return PrintAssembly(w, rpt, obj, -1)
}
// PrintAssembly prints annotated disassembly of rpt to w.
func PrintAssembly(w io.Writer, rpt *Report, obj plugin.ObjTool, maxFuncs int) error {
o := rpt.options
prof := rpt.prof
g := rpt.newGraph(nil)
// If the regexp source can be parsed as an address, also match
// functions that land on that address.
var address *uint64
if hex, err := strconv.ParseUint(o.Symbol.String(), 0, 64); err == nil {
address = &hex
}
fmt.Fprintln(w, "Total:", rpt.formatValue(rpt.total))
symbols := symbolsFromBinaries(prof, g, o.Symbol, address, obj)
symNodes := nodesPerSymbol(g.Nodes, symbols)
// Sort for printing.
var syms []*objSymbol
for s := range symNodes {
syms = append(syms, s)
}
byName := func(a, b *objSymbol) bool {
if na, nb := a.sym.Name[0], b.sym.Name[0]; na != nb {
return na < nb
}
return a.sym.Start < b.sym.Start
}
if maxFuncs < 0 {
sort.Sort(orderSyms{syms, byName})
} else {
byFlatSum := func(a, b *objSymbol) bool {
suma, _ := symNodes[a].Sum()
sumb, _ := symNodes[b].Sum()
if suma != sumb {
return suma > sumb
}
return byName(a, b)
}
sort.Sort(orderSyms{syms, byFlatSum})
if len(syms) > maxFuncs {
syms = syms[:maxFuncs]
}
}
if len(syms) == 0 {
return fmt.Errorf("no matches found for regexp: %s", o.Symbol)
}
// Correlate the symbols from the binary with the profile samples.
for _, s := range syms {
sns := symNodes[s]
// Gather samples for this symbol.
flatSum, cumSum := sns.Sum()
// Get the function assembly.
insts, err := obj.Disasm(s.sym.File, s.sym.Start, s.sym.End, o.IntelSyntax)
if err != nil {
return err
}
ns := annotateAssembly(insts, sns, s.file)
fmt.Fprintf(w, "ROUTINE ======================== %s\n", s.sym.Name[0])
for _, name := range s.sym.Name[1:] {
fmt.Fprintf(w, " AKA ======================== %s\n", name)
}
fmt.Fprintf(w, "%10s %10s (flat, cum) %s of Total\n",
rpt.formatValue(flatSum), rpt.formatValue(cumSum),
measurement.Percentage(cumSum, rpt.total))
function, file, line := "", "", 0
for _, n := range ns {
locStr := ""
// Skip loc information if it hasn't changed from previous instruction.
if n.function != function || n.file != file || n.line != line {
function, file, line = n.function, n.file, n.line
if n.function != "" {
locStr = n.function + " "
}
if n.file != "" {
locStr += n.file
if n.line != 0 {
locStr += fmt.Sprintf(":%d", n.line)
}
}
}
switch {
case locStr == "":
// No location info, just print the instruction.
fmt.Fprintf(w, "%10s %10s %10x: %s\n",
valueOrDot(n.flatValue(), rpt),
valueOrDot(n.cumValue(), rpt),
n.address, n.instruction,
)
case len(n.instruction) < 40:
// Short instruction, print loc on the same line.
fmt.Fprintf(w, "%10s %10s %10x: %-40s;%s\n",
valueOrDot(n.flatValue(), rpt),
valueOrDot(n.cumValue(), rpt),
n.address, n.instruction,
locStr,
)
default:
// Long instruction, print loc on a separate line.
fmt.Fprintf(w, "%74s;%s\n", "", locStr)
fmt.Fprintf(w, "%10s %10s %10x: %s\n",
valueOrDot(n.flatValue(), rpt),
valueOrDot(n.cumValue(), rpt),
n.address, n.instruction,
)
}
}
}
return nil
}
// symbolsFromBinaries examines the binaries listed on the profile
// that have associated samples, and identifies symbols matching rx.
func symbolsFromBinaries(prof *profile.Profile, g *graph.Graph, rx *regexp.Regexp, address *uint64, obj plugin.ObjTool) []*objSymbol {
hasSamples := make(map[string]bool)
// Only examine mappings that have samples that match the
// regexp. This is an optimization to speed up pprof.
for _, n := range g.Nodes {
if name := n.Info.PrintableName(); rx.MatchString(name) && n.Info.Objfile != "" {
hasSamples[n.Info.Objfile] = true
}
}
// Walk all mappings looking for matching functions with samples.
var objSyms []*objSymbol
for _, m := range prof.Mapping {
if !hasSamples[m.File] {
if address == nil || !(m.Start <= *address && *address <= m.Limit) {
continue
}
}
f, err := obj.Open(m.File, m.Start, m.Limit, m.Offset)
if err != nil {
fmt.Printf("%v\n", err)
continue
}
// Find symbols in this binary matching the user regexp.
var addr uint64
if address != nil {
addr = *address
}
msyms, err := f.Symbols(rx, addr)
f.Close()
if err != nil {
continue
}
for _, ms := range msyms {
objSyms = append(objSyms,
&objSymbol{
sym: ms,
file: f,
},
)
}
}
return objSyms
}
// objSym represents a symbol identified from a binary. It includes
// the SymbolInfo from the disasm package and the base that must be
// added to correspond to sample addresses
type objSymbol struct {
sym *plugin.Sym
file plugin.ObjFile
}
// orderSyms is a wrapper type to sort []*objSymbol by a supplied comparator.
type orderSyms struct {
v []*objSymbol
less func(a, b *objSymbol) bool
}
func (o orderSyms) Len() int { return len(o.v) }
func (o orderSyms) Less(i, j int) bool { return o.less(o.v[i], o.v[j]) }
func (o orderSyms) Swap(i, j int) { o.v[i], o.v[j] = o.v[j], o.v[i] }
// nodesPerSymbol classifies nodes into a group of symbols.
func nodesPerSymbol(ns graph.Nodes, symbols []*objSymbol) map[*objSymbol]graph.Nodes {
symNodes := make(map[*objSymbol]graph.Nodes)
for _, s := range symbols {
// Gather samples for this symbol.
for _, n := range ns {
if address, err := s.file.ObjAddr(n.Info.Address); err == nil && address >= s.sym.Start && address < s.sym.End {
symNodes[s] = append(symNodes[s], n)
}
}
}
return symNodes
}
type assemblyInstruction struct {
address uint64
instruction string
function string
file string
line int
flat, cum int64
flatDiv, cumDiv int64
startsBlock bool
inlineCalls []callID
}
type callID struct {
file string
line int
}
func (a *assemblyInstruction) flatValue() int64 {
if a.flatDiv != 0 {
return a.flat / a.flatDiv
}
return a.flat
}
func (a *assemblyInstruction) cumValue() int64 {
if a.cumDiv != 0 {
return a.cum / a.cumDiv
}
return a.cum
}
// annotateAssembly annotates a set of assembly instructions with a
// set of samples. It returns a set of nodes to display. base is an
// offset to adjust the sample addresses.
func annotateAssembly(insts []plugin.Inst, samples graph.Nodes, file plugin.ObjFile) []assemblyInstruction {
// Add end marker to simplify printing loop.
insts = append(insts, plugin.Inst{
Addr: ^uint64(0),
})
// Ensure samples are sorted by address.
samples.Sort(graph.AddressOrder)
s := 0
asm := make([]assemblyInstruction, 0, len(insts))
for ix, in := range insts[:len(insts)-1] {
n := assemblyInstruction{
address: in.Addr,
instruction: in.Text,
function: in.Function,
line: in.Line,
}
if in.File != "" {
n.file = filepath.Base(in.File)
}
// Sum all the samples until the next instruction (to account
// for samples attributed to the middle of an instruction).
for next := insts[ix+1].Addr; s < len(samples); s++ {
if addr, err := file.ObjAddr(samples[s].Info.Address); err != nil || addr >= next {
break
}
sample := samples[s]
n.flatDiv += sample.FlatDiv
n.flat += sample.Flat
n.cumDiv += sample.CumDiv
n.cum += sample.Cum
if f := sample.Info.File; f != "" && n.file == "" {
n.file = filepath.Base(f)
}
if ln := sample.Info.Lineno; ln != 0 && n.line == 0 {
n.line = ln
}
if f := sample.Info.Name; f != "" && n.function == "" {
n.function = f
}
}
asm = append(asm, n)
}
return asm
}
// valueOrDot formats a value according to a report, intercepting zero
// values.
func valueOrDot(value int64, rpt *Report) string {
if value == 0 {
return "."
}
return rpt.formatValue(value)
}
// printTags collects all tags referenced in the profile and prints
// them in a sorted table.
func printTags(w io.Writer, rpt *Report) error {
p := rpt.prof
o := rpt.options
formatTag := func(v int64, key string) string {
return measurement.ScaledLabel(v, key, o.OutputUnit)
}
// Hashtable to keep accumulate tags as key,value,count.
tagMap := make(map[string]map[string]int64)
for _, s := range p.Sample {
for key, vals := range s.Label {
for _, val := range vals {
valueMap, ok := tagMap[key]
if !ok {
valueMap = make(map[string]int64)
tagMap[key] = valueMap
}
valueMap[val] += o.SampleValue(s.Value)
}
}
for key, vals := range s.NumLabel {
unit := o.NumLabelUnits[key]
for _, nval := range vals {
val := formatTag(nval, unit)
valueMap, ok := tagMap[key]
if !ok {
valueMap = make(map[string]int64)
tagMap[key] = valueMap
}
valueMap[val] += o.SampleValue(s.Value)
}
}
}
tagKeys := make([]*graph.Tag, 0, len(tagMap))
for key := range tagMap {
tagKeys = append(tagKeys, &graph.Tag{Name: key})
}
tabw := tabwriter.NewWriter(w, 0, 0, 1, ' ', tabwriter.AlignRight)
for _, tagKey := range graph.SortTags(tagKeys, true) {
var total int64
key := tagKey.Name
tags := make([]*graph.Tag, 0, len(tagMap[key]))
for t, c := range tagMap[key] {
total += c
tags = append(tags, &graph.Tag{Name: t, Flat: c})
}
f, u := measurement.Scale(total, o.SampleUnit, o.OutputUnit)
fmt.Fprintf(tabw, "%s:\t Total %.1f%s\n", key, f, u)
for _, t := range graph.SortTags(tags, true) {
f, u := measurement.Scale(t.FlatValue(), o.SampleUnit, o.OutputUnit)
if total > 0 {
fmt.Fprintf(tabw, " \t%.1f%s (%s):\t %s\n", f, u, measurement.Percentage(t.FlatValue(), total), t.Name)
} else {
fmt.Fprintf(tabw, " \t%.1f%s:\t %s\n", f, u, t.Name)
}
}
fmt.Fprintln(tabw)
}
return tabw.Flush()
}
// printComments prints all freeform comments in the profile.
func printComments(w io.Writer, rpt *Report) error {
p := rpt.prof
for _, c := range p.Comments {
fmt.Fprintln(w, c)
}
return nil
}
// TextItem holds a single text report entry.
type TextItem struct {
Name string
InlineLabel string // Not empty if inlined
Flat, Cum int64 // Raw values
FlatFormat, CumFormat string // Formatted values
}
// TextItems returns a list of text items from the report and a list
// of labels that describe the report.
func TextItems(rpt *Report) ([]TextItem, []string) {
g, origCount, droppedNodes, _ := rpt.newTrimmedGraph()
rpt.selectOutputUnit(g)
labels := reportLabels(rpt, g, origCount, droppedNodes, 0, false)
var items []TextItem
var flatSum int64
for _, n := range g.Nodes {
name, flat, cum := n.Info.PrintableName(), n.FlatValue(), n.CumValue()
var inline, noinline bool
for _, e := range n.In {
if e.Inline {
inline = true
} else {
noinline = true
}
}
var inl string
if inline {
if noinline {
inl = "(partial-inline)"
} else {
inl = "(inline)"
}
}
flatSum += flat
items = append(items, TextItem{
Name: name,
InlineLabel: inl,
Flat: flat,
Cum: cum,
FlatFormat: rpt.formatValue(flat),
CumFormat: rpt.formatValue(cum),
})
}
return items, labels
}
// printText prints a flat text report for a profile.
func printText(w io.Writer, rpt *Report) error {
items, labels := TextItems(rpt)
fmt.Fprintln(w, strings.Join(labels, "\n"))
fmt.Fprintf(w, "%10s %5s%% %5s%% %10s %5s%%\n",
"flat", "flat", "sum", "cum", "cum")
var flatSum int64
for _, item := range items {
inl := item.InlineLabel
if inl != "" {
inl = " " + inl
}
flatSum += item.Flat
fmt.Fprintf(w, "%10s %s %s %10s %s %s%s\n",
item.FlatFormat, measurement.Percentage(item.Flat, rpt.total),
measurement.Percentage(flatSum, rpt.total),
item.CumFormat, measurement.Percentage(item.Cum, rpt.total),
item.Name, inl)
}
return nil
}
// printTraces prints all traces from a profile.
func printTraces(w io.Writer, rpt *Report) error {
fmt.Fprintln(w, strings.Join(ProfileLabels(rpt), "\n"))
prof := rpt.prof
o := rpt.options
const separator = "-----------+-------------------------------------------------------"
_, locations := graph.CreateNodes(prof, &graph.Options{})
for _, sample := range prof.Sample {
type stk struct {
*graph.NodeInfo
inline bool
}
var stack []stk
for _, loc := range sample.Location {
nodes := locations[loc.ID]
for i, n := range nodes {
// The inline flag may be inaccurate if 'show' or 'hide' filter is
// used. See https://github.com/google/pprof/issues/511.
inline := i != len(nodes)-1
stack = append(stack, stk{&n.Info, inline})
}
}
if len(stack) == 0 {
continue
}
fmt.Fprintln(w, separator)
// Print any text labels for the sample.
var labels []string
for s, vs := range sample.Label {
labels = append(labels, fmt.Sprintf("%10s: %s\n", s, strings.Join(vs, " ")))
}
sort.Strings(labels)
fmt.Fprint(w, strings.Join(labels, ""))
// Print any numeric labels for the sample
var numLabels []string
for key, vals := range sample.NumLabel {
unit := o.NumLabelUnits[key]
numValues := make([]string, len(vals))
for i, vv := range vals {
numValues[i] = measurement.Label(vv, unit)
}
numLabels = append(numLabels, fmt.Sprintf("%10s: %s\n", key, strings.Join(numValues, " ")))
}
sort.Strings(numLabels)
fmt.Fprint(w, strings.Join(numLabels, ""))
var d, v int64
v = o.SampleValue(sample.Value)
if o.SampleMeanDivisor != nil {
d = o.SampleMeanDivisor(sample.Value)
}
// Print call stack.
if d != 0 {
v = v / d
}
for i, s := range stack {
var vs, inline string
if i == 0 {
vs = rpt.formatValue(v)
}
if s.inline {
inline = " (inline)"
}
fmt.Fprintf(w, "%10s %s%s\n", vs, s.PrintableName(), inline)
}
}
fmt.Fprintln(w, separator)
return nil
}
// printCallgrind prints a graph for a profile on callgrind format.
func printCallgrind(w io.Writer, rpt *Report) error {
o := rpt.options
rpt.options.NodeFraction = 0
rpt.options.EdgeFraction = 0
rpt.options.NodeCount = 0
g, _, _, _ := rpt.newTrimmedGraph()
rpt.selectOutputUnit(g)
nodeNames := getDisambiguatedNames(g)
fmt.Fprintln(w, "positions: instr line")
fmt.Fprintln(w, "events:", o.SampleType+"("+o.OutputUnit+")")
objfiles := make(map[string]int)
files := make(map[string]int)
names := make(map[string]int)
// prevInfo points to the previous NodeInfo.
// It is used to group cost lines together as much as possible.
var prevInfo *graph.NodeInfo
for _, n := range g.Nodes {
if prevInfo == nil || n.Info.Objfile != prevInfo.Objfile || n.Info.File != prevInfo.File || n.Info.Name != prevInfo.Name {
fmt.Fprintln(w)
fmt.Fprintln(w, "ob="+callgrindName(objfiles, n.Info.Objfile))
fmt.Fprintln(w, "fl="+callgrindName(files, n.Info.File))
fmt.Fprintln(w, "fn="+callgrindName(names, n.Info.Name))
}
addr := callgrindAddress(prevInfo, n.Info.Address)
sv, _ := measurement.Scale(n.FlatValue(), o.SampleUnit, o.OutputUnit)
fmt.Fprintf(w, "%s %d %d\n", addr, n.Info.Lineno, int64(sv))
// Print outgoing edges.
for _, out := range n.Out.Sort() {
c, _ := measurement.Scale(out.Weight, o.SampleUnit, o.OutputUnit)
callee := out.Dest
fmt.Fprintln(w, "cfl="+callgrindName(files, callee.Info.File))
fmt.Fprintln(w, "cfn="+callgrindName(names, nodeNames[callee]))
// pprof doesn't have a flat weight for a call, leave as 0.
fmt.Fprintf(w, "calls=0 %s %d\n", callgrindAddress(prevInfo, callee.Info.Address), callee.Info.Lineno)
// TODO: This address may be in the middle of a call
// instruction. It would be best to find the beginning
// of the instruction, but the tools seem to handle
// this OK.
fmt.Fprintf(w, "* * %d\n", int64(c))
}
prevInfo = &n.Info
}
return nil
}
// getDisambiguatedNames returns a map from each node in the graph to
// the name to use in the callgrind output. Callgrind merges all
// functions with the same [file name, function name]. Add a [%d/n]
// suffix to disambiguate nodes with different values of
// node.Function, which we want to keep separate. In particular, this
// affects graphs created with --call_tree, where nodes from different
// contexts are associated to different Functions.
func getDisambiguatedNames(g *graph.Graph) map[*graph.Node]string {
nodeName := make(map[*graph.Node]string, len(g.Nodes))
type names struct {
file, function string
}
// nameFunctionIndex maps the callgrind names (filename, function)
// to the node.Function values found for that name, and each
// node.Function value to a sequential index to be used on the
// disambiguated name.
nameFunctionIndex := make(map[names]map[*graph.Node]int)
for _, n := range g.Nodes {
nm := names{n.Info.File, n.Info.Name}
p, ok := nameFunctionIndex[nm]
if !ok {
p = make(map[*graph.Node]int)
nameFunctionIndex[nm] = p
}
if _, ok := p[n.Function]; !ok {
p[n.Function] = len(p)
}
}
for _, n := range g.Nodes {
nm := names{n.Info.File, n.Info.Name}
nodeName[n] = n.Info.Name
if p := nameFunctionIndex[nm]; len(p) > 1 {
// If there is more than one function, add suffix to disambiguate.
nodeName[n] += fmt.Sprintf(" [%d/%d]", p[n.Function]+1, len(p))
}
}
return nodeName
}
// callgrindName implements the callgrind naming compression scheme.
// For names not previously seen returns "(N) name", where N is a
// unique index. For names previously seen returns "(N)" where N is
// the index returned the first time.
func callgrindName(names map[string]int, name string) string {
if name == "" {
return ""
}
if id, ok := names[name]; ok {
return fmt.Sprintf("(%d)", id)
}
id := len(names) + 1
names[name] = id
return fmt.Sprintf("(%d) %s", id, name)
}
// callgrindAddress implements the callgrind subposition compression scheme if
// possible. If prevInfo != nil, it contains the previous address. The current
// address can be given relative to the previous address, with an explicit +/-
// to indicate it is relative, or * for the same address.
func callgrindAddress(prevInfo *graph.NodeInfo, curr uint64) string {
abs := fmt.Sprintf("%#x", curr)
if prevInfo == nil {
return abs
}
prev := prevInfo.Address
if prev == curr {
return "*"
}
diff := int64(curr - prev)
relative := fmt.Sprintf("%+d", diff)
// Only bother to use the relative address if it is actually shorter.
if len(relative) < len(abs) {
return relative
}
return abs
}
// printTree prints a tree-based report in text form.
func printTree(w io.Writer, rpt *Report) error {
const separator = "----------------------------------------------------------+-------------"
const legend = " flat flat% sum% cum cum% calls calls% + context "
g, origCount, droppedNodes, _ := rpt.newTrimmedGraph()
rpt.selectOutputUnit(g)
fmt.Fprintln(w, strings.Join(reportLabels(rpt, g, origCount, droppedNodes, 0, false), "\n"))
fmt.Fprintln(w, separator)
fmt.Fprintln(w, legend)
var flatSum int64
rx := rpt.options.Symbol
matched := 0
for _, n := range g.Nodes {
name, flat, cum := n.Info.PrintableName(), n.FlatValue(), n.CumValue()
// Skip any entries that do not match the regexp (for the "peek" command).
if rx != nil && !rx.MatchString(name) {
continue
}
matched++
fmt.Fprintln(w, separator)
// Print incoming edges.
inEdges := n.In.Sort()
for _, in := range inEdges {
var inline string
if in.Inline {
inline = " (inline)"
}
fmt.Fprintf(w, "%50s %s | %s%s\n", rpt.formatValue(in.Weight),
measurement.Percentage(in.Weight, cum), in.Src.Info.PrintableName(), inline)
}
// Print current node.
flatSum += flat
fmt.Fprintf(w, "%10s %s %s %10s %s | %s\n",
rpt.formatValue(flat),
measurement.Percentage(flat, rpt.total),
measurement.Percentage(flatSum, rpt.total),
rpt.formatValue(cum),
measurement.Percentage(cum, rpt.total),
name)
// Print outgoing edges.
outEdges := n.Out.Sort()
for _, out := range outEdges {
var inline string
if out.Inline {
inline = " (inline)"
}
fmt.Fprintf(w, "%50s %s | %s%s\n", rpt.formatValue(out.Weight),
measurement.Percentage(out.Weight, cum), out.Dest.Info.PrintableName(), inline)
}
}
if len(g.Nodes) > 0 {
fmt.Fprintln(w, separator)
}
if rx != nil && matched == 0 {
return fmt.Errorf("no matches found for regexp: %s", rx)
}
return nil
}
// GetDOT returns a graph suitable for dot processing along with some
// configuration information.
func GetDOT(rpt *Report) (*graph.Graph, *graph.DotConfig) {
g, origCount, droppedNodes, droppedEdges := rpt.newTrimmedGraph()
rpt.selectOutputUnit(g)
labels := reportLabels(rpt, g, origCount, droppedNodes, droppedEdges, true)
c := &graph.DotConfig{
Title: rpt.options.Title,
Labels: labels,
FormatValue: rpt.formatValue,
Total: rpt.total,
}
return g, c
}
// printDOT prints an annotated callgraph in DOT format.
func printDOT(w io.Writer, rpt *Report) error {
g, c := GetDOT(rpt)
graph.ComposeDot(w, g, &graph.DotAttributes{}, c)
return nil
}
// ProfileLabels returns printable labels for a profile.
func ProfileLabels(rpt *Report) []string {
label := []string{}
prof := rpt.prof
o := rpt.options
if len(prof.Mapping) > 0 {
if prof.Mapping[0].File != "" {
label = append(label, "File: "+filepath.Base(prof.Mapping[0].File))
}
if prof.Mapping[0].BuildID != "" {
label = append(label, "Build ID: "+prof.Mapping[0].BuildID)
}
}
// Only include comments that do not start with '#'.
for _, c := range prof.Comments {
if !strings.HasPrefix(c, "#") {
label = append(label, c)
}
}
if o.SampleType != "" {
label = append(label, "Type: "+o.SampleType)
}
if prof.TimeNanos != 0 {
const layout = "Jan 2, 2006 at 3:04pm (MST)"
label = append(label, "Time: "+time.Unix(0, prof.TimeNanos).Format(layout))
}
if prof.DurationNanos != 0 {
duration := measurement.Label(prof.DurationNanos, "nanoseconds")
totalNanos, totalUnit := measurement.Scale(rpt.total, o.SampleUnit, "nanoseconds")
var ratio string
if totalUnit == "ns" && totalNanos != 0 {
ratio = "(" + measurement.Percentage(int64(totalNanos), prof.DurationNanos) + ")"
}
label = append(label, fmt.Sprintf("Duration: %s, Total samples = %s %s", duration, rpt.formatValue(rpt.total), ratio))
}
return label
}
// reportLabels returns printable labels for a report. Includes
// profileLabels.
func reportLabels(rpt *Report, g *graph.Graph, origCount, droppedNodes, droppedEdges int, fullHeaders bool) []string {
nodeFraction := rpt.options.NodeFraction
edgeFraction := rpt.options.EdgeFraction
nodeCount := len(g.Nodes)
var label []string
if len(rpt.options.ProfileLabels) > 0 {
label = append(label, rpt.options.ProfileLabels...)
} else if fullHeaders || !rpt.options.CompactLabels {
label = ProfileLabels(rpt)
}
var flatSum int64
for _, n := range g.Nodes {
flatSum = flatSum + n.FlatValue()
}
if len(rpt.options.ActiveFilters) > 0 {
activeFilters := legendActiveFilters(rpt.options.ActiveFilters)
label = append(label, activeFilters...)
}
label = append(label, fmt.Sprintf("Showing nodes accounting for %s, %s of %s total", rpt.formatValue(flatSum), strings.TrimSpace(measurement.Percentage(flatSum, rpt.total)), rpt.formatValue(rpt.total)))
if rpt.total != 0 {
if droppedNodes > 0 {
label = append(label, genLabel(droppedNodes, "node", "cum",
rpt.formatValue(abs64(int64(float64(rpt.total)*nodeFraction)))))
}
if droppedEdges > 0 {
label = append(label, genLabel(droppedEdges, "edge", "freq",
rpt.formatValue(abs64(int64(float64(rpt.total)*edgeFraction)))))
}
if nodeCount > 0 && nodeCount < origCount {
label = append(label, fmt.Sprintf("Showing top %d nodes out of %d",
nodeCount, origCount))
}
}
// Help new users understand the graph.
// A new line is intentionally added here to better show this message.
if fullHeaders {
label = append(label, "\nSee https://git.io/JfYMW for how to read the graph")
}
return label
}
func legendActiveFilters(activeFilters []string) []string {
legendActiveFilters := make([]string, len(activeFilters)+1)
legendActiveFilters[0] = "Active filters:"
for i, s := range activeFilters {
if len(s) > 80 {
s = s[:80] + "…"
}
legendActiveFilters[i+1] = " " + s
}
return legendActiveFilters
}
func genLabel(d int, n, l, f string) string {
if d > 1 {
n = n + "s"
}
return fmt.Sprintf("Dropped %d %s (%s <= %s)", d, n, l, f)
}
// New builds a new report indexing the sample values interpreting the
// samples with the provided function.
func New(prof *profile.Profile, o *Options) *Report {
format := func(v int64) string {
if r := o.Ratio; r > 0 && r != 1 {
fv := float64(v) * r
v = int64(fv)
}
return measurement.ScaledLabel(v, o.SampleUnit, o.OutputUnit)
}
return &Report{prof, computeTotal(prof, o.SampleValue, o.SampleMeanDivisor),
o, format}
}
// NewDefault builds a new report indexing the last sample value
// available.
func NewDefault(prof *profile.Profile, options Options) *Report {
index := len(prof.SampleType) - 1
o := &options
if o.Title == "" && len(prof.Mapping) > 0 && prof.Mapping[0].File != "" {
o.Title = filepath.Base(prof.Mapping[0].File)
}
o.SampleType = prof.SampleType[index].Type
o.SampleUnit = strings.ToLower(prof.SampleType[index].Unit)
o.SampleValue = func(v []int64) int64 {
return v[index]
}
return New(prof, o)
}
// computeTotal computes the sum of the absolute value of all sample values.
// If any samples have label indicating they belong to the diff base, then the
// total will only include samples with that label.
func computeTotal(prof *profile.Profile, value, meanDiv func(v []int64) int64) int64 {
var div, total, diffDiv, diffTotal int64
for _, sample := range prof.Sample {
var d, v int64
v = value(sample.Value)
if meanDiv != nil {
d = meanDiv(sample.Value)
}
if v < 0 {
v = -v
}
total += v
div += d
if sample.DiffBaseSample() {
diffTotal += v
diffDiv += d
}
}
if diffTotal > 0 {
total = diffTotal
div = diffDiv
}
if div != 0 {
return total / div
}
return total
}
// Report contains the data and associated routines to extract a
// report from a profile.
type Report struct {
prof *profile.Profile
total int64
options *Options
formatValue func(int64) string
}
// Total returns the total number of samples in a report.
func (rpt *Report) Total() int64 { return rpt.total }
func abs64(i int64) int64 {
if i < 0 {
return -i
}
return i
}
|