1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
|
# Wire User Guide
## Basics
Wire has two core concepts: providers and injectors.
### Defining Providers
The primary mechanism in Wire is the **provider**: a function that can produce a
value. These functions are ordinary Go code.
```go
package foobarbaz
type Foo struct {
X int
}
// ProvideFoo returns a Foo.
func ProvideFoo() Foo {
return Foo{X: 42}
}
```
Provider functions must be exported in order to be used from other packages,
just like ordinary functions.
Providers can specify dependencies with parameters:
```go
package foobarbaz
// ...
type Bar struct {
X int
}
// ProvideBar returns a Bar: a negative Foo.
func ProvideBar(foo Foo) Bar {
return Bar{X: -foo.X}
}
```
Providers can also return errors:
```go
package foobarbaz
import (
"context"
"errors"
)
// ...
type Baz struct {
X int
}
// ProvideBaz returns a value if Bar is not zero.
func ProvideBaz(ctx context.Context, bar Bar) (Baz, error) {
if bar.X == 0 {
return Baz{}, errors.New("cannot provide baz when bar is zero")
}
return Baz{X: bar.X}, nil
}
```
Providers can be grouped into **provider sets**. This is useful if several
providers will frequently be used together. To add these providers to a new set
called `SuperSet`, use the `wire.NewSet` function:
```go
package foobarbaz
import (
// ...
"github.com/google/wire"
)
// ...
var SuperSet = wire.NewSet(ProvideFoo, ProvideBar, ProvideBaz)
```
You can also add other provider sets into a provider set.
```go
package foobarbaz
import (
// ...
"example.com/some/other/pkg"
)
// ...
var MegaSet = wire.NewSet(SuperSet, pkg.OtherSet)
```
### Injectors
An application wires up these providers with an **injector**: a function that
calls providers in dependency order. With Wire, you write the injector's
signature, then Wire generates the function's body.
An injector is declared by writing a function declaration whose body is a call
to `wire.Build`. The return values don't matter as long as they are of the
correct type. The values themselves will be ignored in the generated code. Let's
say that the above providers were defined in a package called
`example.com/foobarbaz`. The following would declare an injector to obtain a
`Baz`:
```go
// +build wireinject
// The build tag makes sure the stub is not built in the final build.
package main
import (
"context"
"github.com/google/wire"
"example.com/foobarbaz"
)
func initializeBaz(ctx context.Context) (foobarbaz.Baz, error) {
wire.Build(foobarbaz.MegaSet)
return foobarbaz.Baz{}, nil
}
```
Like providers, injectors can be parameterized on inputs (which then get sent to
providers) and can return errors. Arguments to `wire.Build` are the same as
`wire.NewSet`: they form a provider set. This is the provider set that gets used
during code generation for that injector.
Any non-injector declarations found in a file with injectors will be copied into
the generated file.
You can generate the injector by invoking Wire in the package directory:
```shell
wire
```
Wire will produce an implementation of the injector in a file called
`wire_gen.go` that looks something like this:
```go
// Code generated by Wire. DO NOT EDIT.
//go:generate go run -mod=mod github.com/google/wire/cmd/wire
//+build !wireinject
package main
import (
"example.com/foobarbaz"
)
func initializeBaz(ctx context.Context) (foobarbaz.Baz, error) {
foo := foobarbaz.ProvideFoo()
bar := foobarbaz.ProvideBar(foo)
baz, err := foobarbaz.ProvideBaz(ctx, bar)
if err != nil {
return foobarbaz.Baz{}, err
}
return baz, nil
}
```
As you can see, the output is very close to what a developer would write
themselves. Further, there is little dependency on Wire at runtime: all of the
written code is just normal Go code, and can be used without Wire.
Once `wire_gen.go` is created, you can regenerate it by running [`go generate`].
[`go generate`]: https://blog.golang.org/generate
## Advanced Features
The following features all build on top of the concepts of providers and
injectors.
### Binding Interfaces
Frequently, dependency injection is used to bind a concrete implementation for
an interface. Wire matches inputs to outputs via [type identity][], so the
inclination might be to create a provider that returns an interface type.
However, this would not be idiomatic, since the Go best practice is to
[return concrete types][]. Instead, you can declare an interface binding in a
provider set:
```go
type Fooer interface {
Foo() string
}
type MyFooer string
func (b *MyFooer) Foo() string {
return string(*b)
}
func provideMyFooer() *MyFooer {
b := new(MyFooer)
*b = "Hello, World!"
return b
}
type Bar string
func provideBar(f Fooer) string {
// f will be a *MyFooer.
return f.Foo()
}
var Set = wire.NewSet(
provideMyFooer,
wire.Bind(new(Fooer), new(*MyFooer)),
provideBar)
```
The first argument to `wire.Bind` is a pointer to a value of the desired
interface type and the second argument is a pointer to a value of the type that
implements the interface. Any set that includes an interface binding must also
have a provider in the same set that provides the concrete type.
[type identity]: https://golang.org/ref/spec#Type_identity
[return concrete types]: https://github.com/golang/go/wiki/CodeReviewComments#interfaces
### Struct Providers
Structs can be constructed using provided types. Use the `wire.Struct` function
to construct a struct type and tell the injector which field(s) should be injected.
The injector will fill in each field using the provider for the field's type.
For the resulting struct type `S`, `wire.Struct` provides both `S` and `*S`. For
example, given the following providers:
```go
type Foo int
type Bar int
func ProvideFoo() Foo {/* ... */}
func ProvideBar() Bar {/* ... */}
type FooBar struct {
MyFoo Foo
MyBar Bar
}
var Set = wire.NewSet(
ProvideFoo,
ProvideBar,
wire.Struct(new(FooBar), "MyFoo", "MyBar"))
```
A generated injector for `FooBar` would look like this:
```go
func injectFooBar() FooBar {
foo := ProvideFoo()
bar := ProvideBar()
fooBar := FooBar{
MyFoo: foo,
MyBar: bar,
}
return fooBar
}
```
The first argument to `wire.Struct` is a pointer to the desired struct type and
the subsequent arguments are the names of fields to be injected. A special
string `"*"` can be used as a shortcut to tell the injector to inject all
fields. So `wire.Struct(new(FooBar), "*")` produces the same result as above.
For the above example, you can specify only injecting `"MyFoo"` by changing the
`Set` to:
```go
var Set = wire.NewSet(
ProvideFoo,
wire.Struct(new(FooBar), "MyFoo"))
```
Then the generated injector for `FooBar` would look like this:
```go
func injectFooBar() FooBar {
foo := ProvideFoo()
fooBar := FooBar{
MyFoo: foo,
}
return fooBar
}
```
If the injector returned a `*FooBar` instead of a `FooBar`, the generated injector
would look like this:
```go
func injectFooBar() *FooBar {
foo := ProvideFoo()
fooBar := &FooBar{
MyFoo: foo,
}
return fooBar
}
```
It is sometimes useful to prevent certain fields from being filled in by the
injector, especially when passing `*` to `wire.Struct`. You can tag a field with
`` `wire:"-"` `` to have Wire ignore such fields. For example:
```go
type Foo struct {
mu sync.Mutex `wire:"-"`
Bar Bar
}
```
When you provide the `Foo` type using `wire.Struct(new(Foo), "*")`, Wire will
automatically omit the `mu` field. Additionally, it is an error to explicitly
specify a prevented field as in `wire.Struct(new(Foo), "mu")`.
### Binding Values
Occasionally, it is useful to bind a basic value (usually `nil`) to a type.
Instead of having injectors depend on a throwaway provider function, you can add
a value expression to a provider set.
```go
type Foo struct {
X int
}
func injectFoo() Foo {
wire.Build(wire.Value(Foo{X: 42}))
return Foo{}
}
```
The generated injector would look like this:
```go
func injectFoo() Foo {
foo := _wireFooValue
return foo
}
var (
_wireFooValue = Foo{X: 42}
)
```
It's important to note that the expression will be copied to the injector's
package; references to variables will be evaluated during the injector package's
initialization. Wire will emit an error if the expression calls any functions or
receives from any channels.
For interface values, use `InterfaceValue`:
```go
func injectReader() io.Reader {
wire.Build(wire.InterfaceValue(new(io.Reader), os.Stdin))
return nil
}
```
### Use Fields of a Struct as Providers
Sometimes the providers the user wants are some fields of a struct. If you find
yourself writing a provider like `getS` in the example below to promote struct
fields into provided types:
```go
type Foo struct {
S string
N int
F float64
}
func getS(foo Foo) string {
// Bad! Use wire.FieldsOf instead.
return foo.S
}
func provideFoo() Foo {
return Foo{ S: "Hello, World!", N: 1, F: 3.14 }
}
func injectedMessage() string {
wire.Build(
provideFoo,
getS)
return ""
}
```
You can instead use `wire.FieldsOf` to use those fields directly without writing
`getS`:
```go
func injectedMessage() string {
wire.Build(
provideFoo,
wire.FieldsOf(new(Foo), "S"))
return ""
}
```
The generated injector would look like this:
```go
func injectedMessage() string {
foo := provideFoo()
string2 := foo.S
return string2
}
```
You can add as many field names to a `wire.FieldsOf` function as you like.
For a given field type `T`, `FieldsOf` provides at least `T`; if the struct
argument is a pointer to a struct, then `FieldsOf` also provides `*T`.
### Cleanup functions
If a provider creates a value that needs to be cleaned up (e.g. closing a file),
then it can return a closure to clean up the resource. The injector will use
this to either return an aggregated cleanup function to the caller or to clean
up the resource if a provider called later in the injector's implementation
returns an error.
```go
func provideFile(log Logger, path Path) (*os.File, func(), error) {
f, err := os.Open(string(path))
if err != nil {
return nil, nil, err
}
cleanup := func() {
if err := f.Close(); err != nil {
log.Log(err)
}
}
return f, cleanup, nil
}
```
A cleanup function is guaranteed to be called before the cleanup function of any
of the provider's inputs and must have the signature `func()`.
### Alternate Injector Syntax
If you grow weary of writing `return foobarbaz.Foo{}, nil` at the end of your
injector function declaration, you can instead write it more concisely with a
`panic`:
```go
func injectFoo() Foo {
panic(wire.Build(/* ... */))
}
```
|