1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
|
// Copyright 2022 Google LLC.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//go:build darwin && cgo
// +build darwin,cgo
// Package keychain contains functions for retrieving certificates from the Darwin Keychain.
package keychain
/*
#cgo CFLAGS: -mmacosx-version-min=10.12
#cgo LDFLAGS: -framework CoreFoundation -framework Security
#include <CoreFoundation/CoreFoundation.h>
#include <Security/Security.h>
*/
import "C"
import (
"bytes"
"crypto"
"crypto/ecdsa"
"crypto/rsa"
"crypto/x509"
"encoding/pem"
"fmt"
"io"
"os"
"os/user"
"path/filepath"
"runtime"
"sync"
"time"
"unsafe"
)
// Maps for translating from crypto.Hash to SecKeyAlgorithm.
// https://developer.apple.com/documentation/security/seckeyalgorithm
var (
ecdsaAlgorithms = map[crypto.Hash]C.CFStringRef{
crypto.SHA256: C.kSecKeyAlgorithmECDSASignatureDigestX962SHA256,
crypto.SHA384: C.kSecKeyAlgorithmECDSASignatureDigestX962SHA384,
crypto.SHA512: C.kSecKeyAlgorithmECDSASignatureDigestX962SHA512,
}
rsaRaw = map[crypto.Hash]C.CFStringRef{
crypto.SHA256: C.kSecKeyAlgorithmRSAEncryptionRaw,
}
rsaPKCS1v15Algorithms = map[crypto.Hash]C.CFStringRef{
crypto.SHA256: C.kSecKeyAlgorithmRSASignatureDigestPKCS1v15SHA256,
crypto.SHA384: C.kSecKeyAlgorithmRSASignatureDigestPKCS1v15SHA384,
crypto.SHA512: C.kSecKeyAlgorithmRSASignatureDigestPKCS1v15SHA512,
}
rsaPSSAlgorithms = map[crypto.Hash]C.CFStringRef{
crypto.SHA256: C.kSecKeyAlgorithmRSASignatureDigestPSSSHA256,
crypto.SHA384: C.kSecKeyAlgorithmRSASignatureDigestPSSSHA384,
crypto.SHA512: C.kSecKeyAlgorithmRSASignatureDigestPSSSHA512,
}
rsaOAEPAlgorithms = map[crypto.Hash]C.CFStringRef{
crypto.SHA256: C.kSecKeyAlgorithmRSAEncryptionOAEPSHA256,
crypto.SHA384: C.kSecKeyAlgorithmRSAEncryptionOAEPSHA384,
crypto.SHA512: C.kSecKeyAlgorithmRSAEncryptionOAEPSHA512,
}
)
const unknownSecKeyAlgorithm = C.CFStringRef(0)
const invalidKey = C.SecKeyRef(0)
// cfStringToString returns a Go string given a CFString.
func cfStringToString(cfStr C.CFStringRef) string {
s := C.CFStringGetCStringPtr(cfStr, C.kCFStringEncodingUTF8)
if s != nil {
return C.GoString(s)
}
glyphLength := C.CFStringGetLength(cfStr) + 1
utf8Length := C.CFStringGetMaximumSizeForEncoding(glyphLength, C.kCFStringEncodingUTF8)
if s = (*C.char)(C.malloc(C.size_t(utf8Length))); s == nil {
panic("unable to allocate memory")
}
defer C.free(unsafe.Pointer(s))
if C.CFStringGetCString(cfStr, s, utf8Length, C.kCFStringEncodingUTF8) == 0 {
panic("unable to convert cfStringref to string")
}
return C.GoString(s)
}
func cfRelease(x unsafe.Pointer) {
C.CFRelease(C.CFTypeRef(x))
}
// cfError is an error type that owns a CFErrorRef, and obtains the error string
// by using CFErrorCopyDescription.
type cfError struct {
e C.CFErrorRef
}
// cfErrorFromRef converts a C.CFErrorRef to a cfError, taking ownership of the
// reference and releasing when the value is finalized.
func cfErrorFromRef(cfErr C.CFErrorRef) error {
if cfErr == 0 {
return nil
}
c := &cfError{e: cfErr}
runtime.SetFinalizer(c, func(x interface{}) {
C.CFRelease(C.CFTypeRef(x.(*cfError).e))
})
return c
}
func (e *cfError) Error() string {
s := C.CFErrorCopyDescription(C.CFErrorRef(e.e))
defer C.CFRelease(C.CFTypeRef(s))
return cfStringToString(s)
}
// keychainError is an error type that is based on an OSStatus return code, and
// obtains the error string with SecCopyErrorMessageString.
type keychainError C.OSStatus
func (e keychainError) Error() string {
s := C.SecCopyErrorMessageString(C.OSStatus(e), nil)
defer C.CFRelease(C.CFTypeRef(s))
return cfStringToString(s)
}
// cfDataToBytes turns a CFDataRef into a byte slice.
func cfDataToBytes(cfData C.CFDataRef) []byte {
return C.GoBytes(unsafe.Pointer(C.CFDataGetBytePtr(cfData)), C.int(C.CFDataGetLength(cfData)))
}
// bytesToCFData turns a byte slice into a CFDataRef. Caller then "owns" the
// CFDataRef and must CFRelease the CFDataRef when done.
func bytesToCFData(buf []byte) C.CFDataRef {
return C.CFDataCreate(C.kCFAllocatorDefault, (*C.UInt8)(unsafe.Pointer(&buf[0])), C.CFIndex(len(buf)))
}
// int32ToCFNumber turns an int32 into a CFNumberRef. Caller then "owns"
// the CFNumberRef and must CFRelease the CFNumberRef when done.
func int32ToCFNumber(n int32) C.CFNumberRef {
return C.CFNumberCreate(C.kCFAllocatorDefault, C.kCFNumberSInt32Type, unsafe.Pointer(&n))
}
// Key is a wrapper around the Keychain reference that uses it to
// implement signing-related methods with Keychain functionality.
type Key struct {
privateKeyRef C.SecKeyRef
certs []*x509.Certificate
once sync.Once
publicKeyRef C.SecKeyRef
hash crypto.Hash
}
// newKey makes a new Key wrapper around the key reference,
// takes ownership of the reference, and sets up a finalizer to handle releasing
// the reference.
func newKey(privateKeyRef C.SecKeyRef, certs []*x509.Certificate, publicKeyRef C.SecKeyRef) (*Key, error) {
k := &Key{
privateKeyRef: privateKeyRef,
certs: certs,
publicKeyRef: publicKeyRef,
hash: crypto.SHA256,
}
// This struct now owns the key reference. Retain now and release on
// finalise in case the credential gets forgotten about.
C.CFRetain(C.CFTypeRef(privateKeyRef))
C.CFRetain(C.CFTypeRef(publicKeyRef))
runtime.SetFinalizer(k, func(x interface{}) {
x.(*Key).Close()
})
return k, nil
}
// CertificateChain returns the credential as a raw X509 cert chain. This
// contains the public key.
func (k *Key) CertificateChain() [][]byte {
rv := make([][]byte, len(k.certs))
for i, c := range k.certs {
rv[i] = c.Raw
}
return rv
}
// Close releases resources held by the credential.
func (k *Key) Close() error {
// Don't double-release references.
k.once.Do(func() {
C.CFRelease(C.CFTypeRef(k.privateKeyRef))
C.CFRelease(C.CFTypeRef(k.publicKeyRef))
})
return nil
}
// Public returns the corresponding public key for this Key. Good
// thing we extracted it when we created it.
func (k *Key) Public() crypto.PublicKey {
return k.certs[0].PublicKey
}
// Sign signs a message digest. Here, we pass off the signing to Keychain library.
func (k *Key) Sign(rand io.Reader, digest []byte, opts crypto.SignerOpts) (signature []byte, err error) {
// Map the signing algorithm and hash function to a SecKeyAlgorithm constant.
var algorithms map[crypto.Hash]C.CFStringRef
switch pub := k.Public().(type) {
case *ecdsa.PublicKey:
algorithms = ecdsaAlgorithms
case *rsa.PublicKey:
if _, ok := opts.(*rsa.PSSOptions); ok {
algorithms = rsaPSSAlgorithms
break
}
algorithms = rsaPKCS1v15Algorithms
default:
return nil, fmt.Errorf("unsupported algorithm %T", pub)
}
algorithm, ok := algorithms[opts.HashFunc()]
if !ok {
return nil, fmt.Errorf("unsupported hash function %T", opts.HashFunc())
}
// Copy input over into CF-land.
cfDigest := bytesToCFData(digest)
defer C.CFRelease(C.CFTypeRef(cfDigest))
var cfErr C.CFErrorRef
sig := C.SecKeyCreateSignature(C.SecKeyRef(k.privateKeyRef), algorithm, C.CFDataRef(cfDigest), &cfErr)
if cfErr != 0 {
return nil, cfErrorFromRef(cfErr)
}
defer C.CFRelease(C.CFTypeRef(sig))
return cfDataToBytes(C.CFDataRef(sig)), nil
}
func getLoginKeychainPath() (string, error) {
usr, err := user.Current()
if err != nil {
return "", fmt.Errorf("could not get current user: %w", err)
}
return filepath.Join(usr.HomeDir, "Library", "Keychains", "login.keychain-db"), nil
}
func getSystemKeychainPath() (string, error) {
return "/Library/Keychains/System.keychain", nil
}
func getKeychainPath(keychainRef C.CFTypeRef) (string, error) {
var pathBuf [1024]C.char
pathLen := C.uint32_t(len(pathBuf))
status := C.SecKeychainGetPath(C.SecKeychainRef(keychainRef), &pathLen, &pathBuf[0])
if status != 0 {
return "", fmt.Errorf("SecKeychainGetPath failed: %d", status)
}
return C.GoStringN(&pathBuf[0], C.int(pathLen)), nil
}
// findMatchingIdentities returns a list of identities satisfying the keychainType and issuerCN criteria as "leafIdents".
// It also returns the parsed leaf certificates as "leafs", and a pointer of the underlying "leafMatches" to be released by the caller.
func findMatchingIdentities(keychainType string, issuerCN string) ([]C.SecIdentityRef, []*x509.Certificate, C.CFTypeRef, error) {
leafSearch := C.CFDictionaryCreateMutable(C.kCFAllocatorDefault, 5, &C.kCFTypeDictionaryKeyCallBacks, &C.kCFTypeDictionaryValueCallBacks)
defer C.CFRelease(C.CFTypeRef(unsafe.Pointer(leafSearch)))
// Get identities (certificate + private key pairs).
C.CFDictionaryAddValue(leafSearch, unsafe.Pointer(C.kSecClass), unsafe.Pointer(C.kSecClassIdentity))
// Get identities that are signing capable.
C.CFDictionaryAddValue(leafSearch, unsafe.Pointer(C.kSecAttrCanSign), unsafe.Pointer(C.kCFBooleanTrue))
// For each identity, give us the reference to it.
C.CFDictionaryAddValue(leafSearch, unsafe.Pointer(C.kSecReturnRef), unsafe.Pointer(C.kCFBooleanTrue))
// Be sure to list out all the matches.
C.CFDictionaryAddValue(leafSearch, unsafe.Pointer(C.kSecMatchLimit), unsafe.Pointer(C.kSecMatchLimitAll))
// Obtain the total keychain search space for the user as a list of keychains.
var keychainList C.CFArrayRef
if err := C.SecKeychainCopySearchList(&keychainList); err != C.errSecSuccess {
return nil, nil, 0, fmt.Errorf("failed to get keychain search list: %w", keychainError(err))
}
defer C.CFRelease(C.CFTypeRef(keychainList))
// Filter for login vs system keychain search space.
if keychainType == "login" || keychainType == "system" {
var targetPath string
var err error
if keychainType == "login" {
targetPath, err = getLoginKeychainPath()
} else {
targetPath, err = getSystemKeychainPath()
}
if err != nil {
return nil, nil, 0, fmt.Errorf("Error determining target keychain path: %w", err)
}
filteredKeychainList := C.CFArrayCreateMutable(C.kCFAllocatorDefault, 0, &C.kCFTypeArrayCallBacks)
defer C.CFRelease(C.CFTypeRef(filteredKeychainList))
for i := 0; i < int(C.CFArrayGetCount(keychainList)); i++ {
keychainRef := C.CFArrayGetValueAtIndex(keychainList, C.CFIndex(i))
keychainPath, err := getKeychainPath(C.CFTypeRef(keychainRef))
if err != nil {
return nil, nil, 0, fmt.Errorf("Error extracting keychain path: %w", err)
}
if keychainPath == targetPath {
C.CFArrayAppendValue(filteredKeychainList, keychainRef)
}
}
keychainList = C.CFArrayRef(filteredKeychainList)
} else if keychainType != "all" && keychainType != "" {
return nil, nil, 0, fmt.Errorf("invalid keychain type: %s", keychainType)
}
// Restrict keychain search space
C.CFDictionaryAddValue(leafSearch, unsafe.Pointer(C.kSecMatchSearchList), unsafe.Pointer(keychainList))
var leafMatches C.CFTypeRef
if errno := C.SecItemCopyMatching(C.CFDictionaryRef(leafSearch), &leafMatches); errno != C.errSecSuccess {
return nil, nil, 0, fmt.Errorf("failed to find matching identities: %w", keychainError(errno))
}
signingIdents := C.CFArrayRef(leafMatches)
var leafIdents []C.SecIdentityRef
var leafs []*x509.Certificate
for i := 0; i < int(C.CFArrayGetCount(signingIdents)); i++ {
identDict := C.CFArrayGetValueAtIndex(signingIdents, C.CFIndex(i))
xc, err := identityToX509(C.SecIdentityRef(identDict))
if err != nil {
continue // Skip this identity if there's an error
}
if xc.Issuer.CommonName == issuerCN {
leafs = append(leafs, xc)
leafIdents = append(leafIdents, C.SecIdentityRef(identDict))
}
}
return leafIdents, leafs, leafMatches, nil
}
// compareCertificatesByRaw compares two certificates for exact byte-for-byte equality.
// It returns true if and only if the certificates have identical DER-encoded representations.
func compareCertificatesByRaw(cert1, cert2 *x509.Certificate) bool {
if cert1 == nil || cert2 == nil {
return cert1 == cert2 // True only if both are nil
}
return bytes.Equal(cert1.Raw, cert2.Raw)
}
// Cred gets the first Credential (filtering on issuer and keychainType) corresponding to
// available certificate and private key pairs (i.e. identities) in
// the Keychain. Accepted values for keychainType are "login", "system", and "all".
// For backwards compatibility, an empty keychainType will be treated as "all".
func Cred(issuerCN, keychainType string) (*Key, error) {
leafIdents, leafs, leafMatches, err := findMatchingIdentities(keychainType, issuerCN)
if err != nil {
return nil, err
}
defer C.CFRelease(leafMatches)
// If system keychain, we need to do an extra query for login, and subtract that from the final results.
// This is because of a quirk with Apple's kSecMatchSearchList API, which incorrectly returns results
// from both the login and system keychain when we retrict the search space to system only.
if keychainType == "system" {
loginLeafIdents, _, loginLeafMatches, err := findMatchingIdentities("login", issuerCN)
if err != nil {
return nil, err
}
defer C.CFRelease(loginLeafMatches)
var filteredLeafIdents []C.SecIdentityRef
var filteredLeafs []*x509.Certificate
outerLoop:
for i, systemIdent := range leafIdents {
systemCert, err1 := identityToX509(systemIdent)
if err1 != nil {
continue // Skip if we can't get the certificate
}
for _, loginIdent := range loginLeafIdents {
loginCert, err2 := identityToX509(loginIdent)
if err2 != nil {
continue //Skip if we can't get the certificate
}
if compareCertificatesByRaw(systemCert, loginCert) {
continue outerLoop // Found a match, skip this login identity.
}
}
// If we get here, no match was found in loginLeafIdents, so it's safe to append to our filtered results.
filteredLeafIdents = append(filteredLeafIdents, systemIdent)
filteredLeafs = append(filteredLeafs, leafs[i])
}
leafIdents = filteredLeafIdents
leafs = filteredLeafs
}
var leaf *x509.Certificate
var leafIdent C.SecIdentityRef
// Select the first match from the final results.
if len(leafs) > 0 {
leaf = leafs[0]
leafIdent = leafIdents[0]
} else {
return nil, fmt.Errorf("no key found with issuer common name %q", issuerCN)
}
caSearch := C.CFDictionaryCreateMutable(C.kCFAllocatorDefault, 0, &C.kCFTypeDictionaryKeyCallBacks, &C.kCFTypeDictionaryValueCallBacks)
defer C.CFRelease(C.CFTypeRef(unsafe.Pointer(caSearch)))
// Get identities (certificates).
C.CFDictionaryAddValue(caSearch, unsafe.Pointer(C.kSecClass), unsafe.Pointer(C.kSecClassCertificate))
// For each identity, give us the reference to it.
C.CFDictionaryAddValue(caSearch, unsafe.Pointer(C.kSecReturnRef), unsafe.Pointer(C.kCFBooleanTrue))
// Be sure to list out all the matches.
C.CFDictionaryAddValue(caSearch, unsafe.Pointer(C.kSecMatchLimit), unsafe.Pointer(C.kSecMatchLimitAll))
// Do the matching-item copy.
var caMatches C.CFTypeRef
if errno := C.SecItemCopyMatching((C.CFDictionaryRef)(caSearch), &caMatches); errno != C.errSecSuccess {
return nil, keychainError(errno)
}
defer C.CFRelease(caMatches)
certRefs := C.CFArrayRef(caMatches)
// Validate and dump the certs into golang x509 Certificates.
var allCerts []*x509.Certificate
for i := 0; i < int(C.CFArrayGetCount(certRefs)); i++ {
refDict := C.CFArrayGetValueAtIndex(certRefs, C.CFIndex(i))
if xc, err := certRefToX509(C.SecCertificateRef(refDict)); err == nil {
allCerts = append(allCerts, xc)
}
}
// Build a certificate chain from leaf by matching prev.RawIssuer to
// next.RawSubject across all valid certificates in the keychain.
var (
certs []*x509.Certificate
prev, next *x509.Certificate
)
for prev = leaf; prev != nil; prev, next = next, nil {
certs = append(certs, prev)
for _, xc := range allCerts {
if certIn(xc, certs) {
continue // finite chains only, mmmmkay.
}
if bytes.Equal(prev.RawIssuer, xc.RawSubject) && prev.CheckSignatureFrom(xc) == nil {
// Prefer certificates with later expirations.
if next == nil || xc.NotAfter.After(next.NotAfter) {
next = xc
}
}
}
}
if len(certs) == 0 {
return nil, fmt.Errorf("no key found with issuer common name %q", issuerCN)
}
skr, err := identityToPrivateSecKeyRef(leafIdent)
if err != nil {
return nil, err
}
pubKey, err := identityToPublicSecKeyRef(leafIdent)
if err != nil {
return nil, err
}
defer C.CFRelease(C.CFTypeRef(skr))
return newKey(skr, certs, pubKey)
}
// identityToX509 converts a single CFDictionary that contains the item ref and
// attribute dictionary into an x509.Certificate.
func identityToX509(ident C.SecIdentityRef) (*x509.Certificate, error) {
var certRef C.SecCertificateRef
if errno := C.SecIdentityCopyCertificate(ident, &certRef); errno != 0 {
return nil, keychainError(errno)
}
defer C.CFRelease(C.CFTypeRef(certRef))
return certRefToX509(certRef)
}
// certRefToX509 converts a single C.SecCertificateRef into an *x509.Certificate.
func certRefToX509(certRef C.SecCertificateRef) (*x509.Certificate, error) {
// Export the PEM-encoded certificate to a CFDataRef.
var certPEMData C.CFDataRef
if errno := C.SecItemExport(C.CFTypeRef(certRef), C.kSecFormatUnknown, C.kSecItemPemArmour, nil, &certPEMData); errno != 0 {
return nil, keychainError(errno)
}
defer C.CFRelease(C.CFTypeRef(certPEMData))
certPEM := cfDataToBytes(certPEMData)
// This part based on crypto/tls.
var certDERBlock *pem.Block
for {
certDERBlock, certPEM = pem.Decode(certPEM)
if certDERBlock == nil {
return nil, fmt.Errorf("failed to parse certificate PEM data")
}
if certDERBlock.Type == "CERTIFICATE" {
// found it
break
}
}
// Check the certificate is OK by the x509 library, and obtain the
// public key algorithm (which I assume is the same as the private key
// algorithm). This also filters out certs missing critical extensions.
xc, err := x509.ParseCertificate(certDERBlock.Bytes)
if err != nil {
return nil, err
}
switch xc.PublicKey.(type) {
case *rsa.PublicKey, *ecdsa.PublicKey:
default:
return nil, fmt.Errorf("unsupported key type %T", xc.PublicKey)
}
// Check the certificate is valid
if n := time.Now(); n.Before(xc.NotBefore) || n.After(xc.NotAfter) {
return nil, fmt.Errorf("certificate not valid")
}
return xc, nil
}
// identityToSecKeyRef converts a single CFDictionary that contains the item ref and
// attribute dictionary into a SecKeyRef for its private key.
func identityToPrivateSecKeyRef(ident C.SecIdentityRef) (C.SecKeyRef, error) {
// Get the private key (ref). Note that "Copy" in "CopyPrivateKey"
// refers to "the create rule" of CoreFoundation memory management, and
// does not actually copy the private key---it gives us a copy of the
// reference that we now own.
var ref C.SecKeyRef
if errno := C.SecIdentityCopyPrivateKey(C.SecIdentityRef(ident), &ref); errno != 0 {
return 0, keychainError(errno)
}
return ref, nil
}
func identityToPublicSecKeyRef(ident C.SecIdentityRef) (C.SecKeyRef, error) {
var key C.SecKeyRef
var certRef C.SecCertificateRef
if errno := C.SecIdentityCopyCertificate(ident, &certRef); errno != 0 {
return 0, keychainError(errno)
}
defer C.CFRelease(C.CFTypeRef(certRef))
key = C.SecCertificateCopyKey(certRef)
if key == invalidKey {
return 0, fmt.Errorf("public key was NULL. Key might have an encoding issue or use an unsupported algorithm")
}
return key, nil
}
func stringIn(s string, ss []string) bool {
for _, s2 := range ss {
if s == s2 {
return true
}
}
return false
}
func certIn(xc *x509.Certificate, xcs []*x509.Certificate) bool {
for _, xc2 := range xcs {
if xc.Equal(xc2) {
return true
}
}
return false
}
func (k *Key) getPaddingSize() int {
algorithms, algoErr := k.getEncryptAlgorithm()
if algoErr != nil {
fmt.Printf("algorithm is unsupported. only RSA algorithms are supported. %v", algoErr)
}
// Each padding scheme has varying number of bytes.
pssPaddingBytes := 20
oaepPaddingBytes := 130
pkcsPaddingBytes := 11
switch algorithms {
case C.kSecKeyAlgorithmRSASignatureDigestPSSSHA256,
C.kSecKeyAlgorithmRSASignatureDigestPSSSHA384,
C.kSecKeyAlgorithmRSASignatureDigestPSSSHA512:
return pssPaddingBytes
case C.kSecKeyAlgorithmRSAEncryptionOAEPSHA256,
C.kSecKeyAlgorithmRSAEncryptionOAEPSHA384,
C.kSecKeyAlgorithmRSAEncryptionOAEPSHA512:
return oaepPaddingBytes
case C.kSecKeyAlgorithmRSASignatureDigestPKCS1v15SHA256,
C.kSecKeyAlgorithmRSASignatureDigestPKCS1v15SHA384,
C.kSecKeyAlgorithmRSASignatureDigestPKCS1v15SHA512:
return pkcsPaddingBytes
default:
return int(unknownSecKeyAlgorithm)
}
}
func (k *Key) checkDataSize(plaintext []byte) error {
// Plaintext data must be smaller than the key's block size minus padding space.
sizeLim := uint64(C.SecKeyGetBlockSize(k.publicKeyRef)) - uint64(k.getPaddingSize())
if uint64(len(plaintext)) >= sizeLim {
return fmt.Errorf("plaintext is too long")
}
return nil
}
func (k *Key) getRSAEncryptAlgorithm() (C.SecKeyAlgorithm, error) {
var algorithms map[crypto.Hash]C.CFStringRef
switch pub := k.Public().(type) {
case *rsa.PublicKey:
if C.SecKeyIsAlgorithmSupported(k.publicKeyRef, C.kSecKeyOperationTypeEncrypt, C.kSecKeyAlgorithmRSASignatureDigestPSSSHA256) == 1 {
algorithms = rsaPSSAlgorithms
} else if C.SecKeyIsAlgorithmSupported(k.publicKeyRef, C.kSecKeyOperationTypeEncrypt, C.kSecKeyAlgorithmRSAEncryptionOAEPSHA256) == 1 {
algorithms = rsaOAEPAlgorithms
} else if C.SecKeyIsAlgorithmSupported(k.publicKeyRef, C.kSecKeyOperationTypeEncrypt, C.kSecKeyAlgorithmRSASignatureDigestPKCS1v15SHA256) == 1 {
algorithms = rsaPKCS1v15Algorithms
} else {
return unknownSecKeyAlgorithm, fmt.Errorf("unknown RSA argument. Only supports PSS, OAEP, and PKCS1v1.5 %T", pub)
}
default:
return unknownSecKeyAlgorithm, fmt.Errorf("algorithm is unsupported. only RSA algorithms are supported. %T", pub)
}
return algorithms[k.hash], nil
}
func (k *Key) getEncryptAlgorithm() (C.SecKeyAlgorithm, error) {
if k.hash == 0 {
k.hash = crypto.SHA256
}
return k.getRSAEncryptAlgorithm()
}
func (k *Key) getRSADecryptAlgorithm() (C.SecKeyAlgorithm, error) {
var algorithms map[crypto.Hash]C.CFStringRef
switch pub := k.Public().(type) {
case *rsa.PublicKey:
if C.SecKeyIsAlgorithmSupported(k.publicKeyRef, C.kSecKeyOperationTypeDecrypt, C.kSecKeyAlgorithmRSASignatureDigestPSSSHA256) == 1 {
algorithms = rsaPSSAlgorithms
} else if C.SecKeyIsAlgorithmSupported(k.publicKeyRef, C.kSecKeyOperationTypeDecrypt, C.kSecKeyAlgorithmRSAEncryptionOAEPSHA256) == 1 {
algorithms = rsaOAEPAlgorithms
} else if C.SecKeyIsAlgorithmSupported(k.publicKeyRef, C.kSecKeyOperationTypeDecrypt, C.kSecKeyAlgorithmRSASignatureDigestPKCS1v15SHA256) == 1 {
algorithms = rsaPKCS1v15Algorithms
} else {
return unknownSecKeyAlgorithm, fmt.Errorf("unknown RSA argument. Only supports PSS, OAEP, and PKCS1v1.5 %T", pub)
}
default:
return unknownSecKeyAlgorithm, fmt.Errorf("algorithm is unsupported. only RSA algorithms are supported. %T", pub)
}
return algorithms[k.hash], nil
}
func (k *Key) getDecryptAlgorithm() (C.SecKeyAlgorithm, error) {
return k.getRSADecryptAlgorithm()
}
// Encrypt encrypts a plaintext message digest using the public key. Here, we pass off the encryption to Keychain library.
func (k *Key) Encrypt(plaintext []byte, opts any) ([]byte, error) {
if hash, ok := opts.(crypto.Hash); ok {
k.hash = hash
} else {
return nil, fmt.Errorf("Unsupported encrypt opts: %v", opts)
}
pub := k.publicKeyRef
algorithm, err := k.getEncryptAlgorithm()
if err != nil {
return nil, err
}
if err := k.checkDataSize(plaintext); err != nil {
return nil, err
}
msg := bytesToCFData(plaintext)
var cfErr C.CFErrorRef
bytes := C.SecKeyCreateEncryptedData(pub, algorithm, msg, &cfErr)
if cfErr != 0 {
return nil, cfErrorFromRef(cfErr)
}
ciphertext := cfDataToBytes(bytes)
return ciphertext, cfErrorFromRef(cfErr)
}
// Decrypt decrypts a ciphertext message digest using the private key. Here, we pass off the decryption to Keychain library.
// Currently, only *rsa.OAEPOptions is supported for opts.
func (k *Key) Decrypt(ciphertext []byte, opts crypto.DecrypterOpts) ([]byte, error) {
if oaepOpts, ok := opts.(*rsa.OAEPOptions); ok {
k.hash = oaepOpts.Hash
} else {
return nil, fmt.Errorf("Unsupported DecrypterOpts: %v", opts)
}
priv := k.privateKeyRef
algorithm, err := k.getDecryptAlgorithm()
if err != nil {
return nil, err
}
msg := bytesToCFData(ciphertext)
var cfErr C.CFErrorRef
bytes := C.SecKeyCreateDecryptedData(priv, algorithm, msg, &cfErr)
if cfErr != 0 {
return nil, cfErrorFromRef(cfErr)
}
plaintext := cfDataToBytes(bytes)
return plaintext, cfErrorFromRef(cfErr)
}
var osStatusDescriptions = map[C.OSStatus]string{
C.errSecSuccess: "No error",
C.errSecUnimplemented: "Function or operation not implemented.",
C.errSecParam: "One or more parameters passed to the function were not valid.",
C.errSecAllocate: "Failed to allocate memory.",
C.errSecNotAvailable: "No keychain is available. You may need to restart your computer.",
C.errSecDuplicateItem: "The specified item already exists in the keychain.",
C.errSecItemNotFound: "The specified item could not be found in the keychain.",
C.errSecInteractionNotAllowed: "User interaction is not allowed.",
C.errSecDecode: "Unable to decode the provided data.",
C.errSecPolicyNotFound: "The specified policy could not be found.",
C.errSecPkcs12VerifyFailure: "MAC verification failed during PKCS12 import (wrong password?)",
}
// Helper function to get OSStatus description
// See (https://cdn.nsoftware.com/help/legacy/sbb/ref_err_appleerrorcodes.html)
func osStatusDescription(status C.OSStatus) string {
if description, ok := osStatusDescriptions[status]; ok {
return description
}
return "Unknown OSStatus"
}
// ImportPKCS12Cred imports a PKCS12 file containing a client certificate and private key into the keychain
func ImportPKCS12Cred(credPath string, password string) error {
// 1. Load the .p12 file
keyData, err := os.ReadFile(credPath)
if err != nil {
return fmt.Errorf("error reading private key file: %w", err)
}
// 2. Create options dictionary with password
optionsKeys := []C.CFTypeRef{
C.CFTypeRef(C.kSecImportExportPassphrase),
}
optionsValues := []C.CFTypeRef{
C.CFTypeRef(C.CFStringCreateWithCString(C.kCFAllocatorDefault, C.CString(password), C.kCFStringEncodingUTF8)),
}
optionsDict := C.CFDictionaryCreate(C.kCFAllocatorDefault,
(*unsafe.Pointer)(unsafe.Pointer(&optionsKeys[0])),
(*unsafe.Pointer)(unsafe.Pointer(&optionsValues[0])),
C.CFIndex(len(optionsKeys)),
&C.kCFTypeDictionaryKeyCallBacks,
&C.kCFTypeDictionaryValueCallBacks,
)
defer C.CFRelease(C.CFTypeRef(optionsDict))
// 3. Import the .p12 data with password
status := C.SecPKCS12Import(bytesToCFData(keyData), optionsDict, nil)
if status != C.errSecSuccess {
return fmt.Errorf("failed to import PKCS#12 data: %s", osStatusDescription(status))
}
return nil
}
|