1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
|
// Copyright 2012 Google, Inc. All rights reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the LICENSE file in the root of the source
// tree.
// This binary provides sample code for using the gopacket TCP assembler raw,
// without the help of the tcpreader library. It watches TCP streams and
// reports statistics on completed streams.
//
// It also uses gopacket.DecodingLayerParser instead of the normal
// gopacket.PacketSource, to highlight the methods, pros, and cons of this
// approach.
package main
import (
"flag"
"log"
"time"
"github.com/gopacket/gopacket"
"github.com/gopacket/gopacket/examples/util"
"github.com/gopacket/gopacket/layers"
"github.com/gopacket/gopacket/pcap"
"github.com/gopacket/gopacket/tcpassembly"
)
var iface = flag.String("i", "eth0", "Interface to get packets from")
var snaplen = flag.Int("s", 65536, "SnapLen for pcap packet capture")
var filter = flag.String("f", "tcp", "BPF filter for pcap")
var logAllPackets = flag.Bool("v", false, "Log whenever we see a packet")
var bufferedPerConnection = flag.Int("connection_max_buffer", 0, `
Max packets to buffer for a single connection before skipping over a gap in data
and continuing to stream the connection after the buffer. If zero or less, this
is infinite.`)
var bufferedTotal = flag.Int("total_max_buffer", 0, `
Max packets to buffer total before skipping over gaps in connections and
continuing to stream connection data. If zero or less, this is infinite`)
var flushAfter = flag.String("flush_after", "2m", `
Connections which have buffered packets (they've gotten packets out of order and
are waiting for old packets to fill the gaps) are flushed after they're this old
(their oldest gap is skipped). Any string parsed by time.ParseDuration is
acceptable here`)
var packetCount = flag.Int("c", -1, `
Quit after processing this many packets, flushing all currently buffered
connections. If negative, this is infinite`)
// simpleStreamFactory implements tcpassembly.StreamFactory
type statsStreamFactory struct{}
// statsStream will handle the actual decoding of stats requests.
type statsStream struct {
net, transport gopacket.Flow
bytes, packets, outOfOrder, skipped int64
start, end time.Time
sawStart, sawEnd bool
}
// New creates a new stream. It's called whenever the assembler sees a stream
// it isn't currently following.
func (factory *statsStreamFactory) New(net, transport gopacket.Flow) tcpassembly.Stream {
log.Printf("new stream %v:%v started", net, transport)
s := &statsStream{
net: net,
transport: transport,
start: time.Now(),
}
s.end = s.start
// ReaderStream implements tcpassembly.Stream, so we can return a pointer to it.
return s
}
// Reassembled is called whenever new packet data is available for reading.
// Reassembly objects contain stream data IN ORDER.
func (s *statsStream) Reassembled(reassemblies []tcpassembly.Reassembly) {
for _, reassembly := range reassemblies {
if reassembly.Seen.Before(s.end) {
s.outOfOrder++
} else {
s.end = reassembly.Seen
}
s.bytes += int64(len(reassembly.Bytes))
s.packets += 1
if reassembly.Skip > 0 {
s.skipped += int64(reassembly.Skip)
}
s.sawStart = s.sawStart || reassembly.Start
s.sawEnd = s.sawEnd || reassembly.End
}
}
// ReassemblyComplete is called when the TCP assembler believes a stream has
// finished.
func (s *statsStream) ReassemblyComplete() {
diffSecs := float64(s.end.Sub(s.start)) / float64(time.Second)
log.Printf("Reassembly of stream %v:%v complete - start:%v end:%v bytes:%v packets:%v ooo:%v bps:%v pps:%v skipped:%v",
s.net, s.transport, s.start, s.end, s.bytes, s.packets, s.outOfOrder,
float64(s.bytes)/diffSecs, float64(s.packets)/diffSecs, s.skipped)
}
func main() {
defer util.Run()()
flushDuration, err := time.ParseDuration(*flushAfter)
if err != nil {
log.Fatal("invalid flush duration: ", *flushAfter)
}
log.Printf("starting capture on interface %q", *iface)
// Set up pcap packet capture
handle, err := pcap.OpenLive(*iface, int32(*snaplen), true, flushDuration/2)
if err != nil {
log.Fatal("error opening pcap handle: ", err)
}
if err := handle.SetBPFFilter(*filter); err != nil {
log.Fatal("error setting BPF filter: ", err)
}
// Set up assembly
streamFactory := &statsStreamFactory{}
streamPool := tcpassembly.NewStreamPool(streamFactory)
assembler := tcpassembly.NewAssembler(streamPool)
assembler.MaxBufferedPagesPerConnection = *bufferedPerConnection
assembler.MaxBufferedPagesTotal = *bufferedTotal
log.Println("reading in packets")
// We use a DecodingLayerParser here instead of a simpler PacketSource.
// This approach should be measurably faster, but is also more rigid.
// PacketSource will handle any known type of packet safely and easily,
// but DecodingLayerParser will only handle those packet types we
// specifically pass in. This trade-off can be quite useful, though, in
// high-throughput situations.
var eth layers.Ethernet
var dot1q layers.Dot1Q
var ip4 layers.IPv4
var ip6 layers.IPv6
var ip6extensions layers.IPv6ExtensionSkipper
var tcp layers.TCP
var payload gopacket.Payload
parser := gopacket.NewDecodingLayerParser(layers.LayerTypeEthernet,
ð, &dot1q, &ip4, &ip6, &ip6extensions, &tcp, &payload)
decoded := make([]gopacket.LayerType, 0, 4)
nextFlush := time.Now().Add(flushDuration / 2)
var byteCount int64
start := time.Now()
loop:
for ; *packetCount != 0; *packetCount-- {
// Check to see if we should flush the streams we have
// that haven't seen any new data in a while. Note we set a
// timeout on our PCAP handle, so this should happen even if we
// never see packet data.
if time.Now().After(nextFlush) {
stats, _ := handle.Stats()
log.Printf("flushing all streams that haven't seen packets in the last 2 minutes, pcap stats: %+v", stats)
assembler.FlushOlderThan(time.Now().Add(flushDuration))
nextFlush = time.Now().Add(flushDuration / 2)
}
// To speed things up, we're also using the ZeroCopy method for
// reading packet data. This method is faster than the normal
// ReadPacketData, but the returned bytes in 'data' are
// invalidated by any subsequent ZeroCopyReadPacketData call.
// Note that tcpassembly is entirely compatible with this packet
// reading method. This is another trade-off which might be
// appropriate for high-throughput sniffing: it avoids a packet
// copy, but its cost is much more careful handling of the
// resulting byte slice.
data, ci, err := handle.ZeroCopyReadPacketData()
if err != nil {
log.Printf("error getting packet: %v", err)
continue
}
err = parser.DecodeLayers(data, &decoded)
if err != nil {
log.Printf("error decoding packet: %v", err)
continue
}
if *logAllPackets {
log.Printf("decoded the following layers: %v", decoded)
}
byteCount += int64(len(data))
// Find either the IPv4 or IPv6 address to use as our network
// layer.
foundNetLayer := false
var netFlow gopacket.Flow
for _, typ := range decoded {
switch typ {
case layers.LayerTypeIPv4:
netFlow = ip4.NetworkFlow()
foundNetLayer = true
case layers.LayerTypeIPv6:
netFlow = ip6.NetworkFlow()
foundNetLayer = true
case layers.LayerTypeTCP:
if foundNetLayer {
assembler.AssembleWithTimestamp(netFlow, &tcp, ci.Timestamp)
} else {
log.Println("could not find IPv4 or IPv6 layer, inoring")
}
continue loop
}
}
log.Println("could not find TCP layer")
}
assembler.FlushAll()
log.Printf("processed %d bytes in %v", byteCount, time.Since(start))
}
|