1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
|
// Copyright 2014 Google, Inc. All rights reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the LICENSE file in the root of the source
// tree.
package layers
import (
"bytes"
"encoding/binary"
"errors"
"fmt"
"hash/crc32"
"strings"
"github.com/gopacket/gopacket"
)
// align calculates the number of bytes needed to align with the width
// on the offset, returning the number of bytes we need to skip to
// align to the offset (width).
func align(offset uint16, width uint16) uint16 {
return ((((offset) + ((width) - 1)) & (^((width) - 1))) - offset)
}
type RadioTapPresent uint32
const (
RadioTapPresentTSFT RadioTapPresent = 1 << iota
RadioTapPresentFlags
RadioTapPresentRate
RadioTapPresentChannel
RadioTapPresentFHSS
RadioTapPresentDBMAntennaSignal
RadioTapPresentDBMAntennaNoise
RadioTapPresentLockQuality
RadioTapPresentTxAttenuation
RadioTapPresentDBTxAttenuation
RadioTapPresentDBMTxPower
RadioTapPresentAntenna
RadioTapPresentDBAntennaSignal
RadioTapPresentDBAntennaNoise
RadioTapPresentRxFlags
RadioTapPresentTxFlags
RadioTapPresentRtsRetries
RadioTapPresentDataRetries
_
RadioTapPresentMCS
RadioTapPresentAMPDUStatus
RadioTapPresentVHT
RadiotapPresentTimestamp
RadiotapPresentHE
RadioTapPresentHEMU
RadioTapPresentHEUOtherUser
RadioTapPresentEXT RadioTapPresent = 1 << 31
)
func (r RadioTapPresent) TSFT() bool {
return r&RadioTapPresentTSFT != 0
}
func (r RadioTapPresent) Flags() bool {
return r&RadioTapPresentFlags != 0
}
func (r RadioTapPresent) Rate() bool {
return r&RadioTapPresentRate != 0
}
func (r RadioTapPresent) Channel() bool {
return r&RadioTapPresentChannel != 0
}
func (r RadioTapPresent) FHSS() bool {
return r&RadioTapPresentFHSS != 0
}
func (r RadioTapPresent) DBMAntennaSignal() bool {
return r&RadioTapPresentDBMAntennaSignal != 0
}
func (r RadioTapPresent) DBMAntennaNoise() bool {
return r&RadioTapPresentDBMAntennaNoise != 0
}
func (r RadioTapPresent) LockQuality() bool {
return r&RadioTapPresentLockQuality != 0
}
func (r RadioTapPresent) TxAttenuation() bool {
return r&RadioTapPresentTxAttenuation != 0
}
func (r RadioTapPresent) DBTxAttenuation() bool {
return r&RadioTapPresentDBTxAttenuation != 0
}
func (r RadioTapPresent) DBMTxPower() bool {
return r&RadioTapPresentDBMTxPower != 0
}
func (r RadioTapPresent) Antenna() bool {
return r&RadioTapPresentAntenna != 0
}
func (r RadioTapPresent) DBAntennaSignal() bool {
return r&RadioTapPresentDBAntennaSignal != 0
}
func (r RadioTapPresent) DBAntennaNoise() bool {
return r&RadioTapPresentDBAntennaNoise != 0
}
func (r RadioTapPresent) RxFlags() bool {
return r&RadioTapPresentRxFlags != 0
}
func (r RadioTapPresent) TxFlags() bool {
return r&RadioTapPresentTxFlags != 0
}
func (r RadioTapPresent) RtsRetries() bool {
return r&RadioTapPresentRtsRetries != 0
}
func (r RadioTapPresent) DataRetries() bool {
return r&RadioTapPresentDataRetries != 0
}
func (r RadioTapPresent) MCS() bool {
return r&RadioTapPresentMCS != 0
}
func (r RadioTapPresent) AMPDUStatus() bool {
return r&RadioTapPresentAMPDUStatus != 0
}
func (r RadioTapPresent) VHT() bool {
return r&RadioTapPresentVHT != 0
}
func (r RadioTapPresent) Timestamp() bool {
return r&RadiotapPresentTimestamp != 0
}
func (r RadioTapPresent) HE() bool {
return r&RadiotapPresentHE != 0
}
func (r RadioTapPresent) HEMU() bool {
return r&RadioTapPresentHEMU != 0
}
func (r RadioTapPresent) HEUOtherUser() bool {
return r&RadioTapPresentHEUOtherUser != 0
}
func (r RadioTapPresent) EXT() bool {
return r&RadioTapPresentEXT != 0
}
type RadioTapChannelFlags uint16
const (
RadioTapChannelFlagsTurbo RadioTapChannelFlags = 0x0010 // Turbo channel
RadioTapChannelFlagsCCK RadioTapChannelFlags = 0x0020 // CCK channel
RadioTapChannelFlagsOFDM RadioTapChannelFlags = 0x0040 // OFDM channel
RadioTapChannelFlagsGhz2 RadioTapChannelFlags = 0x0080 // 2 GHz spectrum channel.
RadioTapChannelFlagsGhz5 RadioTapChannelFlags = 0x0100 // 5 GHz spectrum channel
RadioTapChannelFlagsPassive RadioTapChannelFlags = 0x0200 // Only passive scan allowed
RadioTapChannelFlagsDynamic RadioTapChannelFlags = 0x0400 // Dynamic CCK-OFDM channel
RadioTapChannelFlagsGFSK RadioTapChannelFlags = 0x0800 // GFSK channel (FHSS PHY)
)
func (r RadioTapChannelFlags) Turbo() bool {
return r&RadioTapChannelFlagsTurbo != 0
}
func (r RadioTapChannelFlags) CCK() bool {
return r&RadioTapChannelFlagsCCK != 0
}
func (r RadioTapChannelFlags) OFDM() bool {
return r&RadioTapChannelFlagsOFDM != 0
}
func (r RadioTapChannelFlags) Ghz2() bool {
return r&RadioTapChannelFlagsGhz2 != 0
}
func (r RadioTapChannelFlags) Ghz5() bool {
return r&RadioTapChannelFlagsGhz5 != 0
}
func (r RadioTapChannelFlags) Passive() bool {
return r&RadioTapChannelFlagsPassive != 0
}
func (r RadioTapChannelFlags) Dynamic() bool {
return r&RadioTapChannelFlagsDynamic != 0
}
func (r RadioTapChannelFlags) GFSK() bool {
return r&RadioTapChannelFlagsGFSK != 0
}
// String provides a human readable string for RadioTapChannelFlags.
// This string is possibly subject to change over time; if you're storing this
// persistently, you should probably store the RadioTapChannelFlags value, not its string.
func (a RadioTapChannelFlags) String() string {
var out bytes.Buffer
if a.Turbo() {
out.WriteString("Turbo,")
}
if a.CCK() {
out.WriteString("CCK,")
}
if a.OFDM() {
out.WriteString("OFDM,")
}
if a.Ghz2() {
out.WriteString("Ghz2,")
}
if a.Ghz5() {
out.WriteString("Ghz5,")
}
if a.Passive() {
out.WriteString("Passive,")
}
if a.Dynamic() {
out.WriteString("Dynamic,")
}
if a.GFSK() {
out.WriteString("GFSK,")
}
if length := out.Len(); length > 0 {
return string(out.Bytes()[:length-1]) // strip final comma
}
return ""
}
type RadioTapFlags uint8
const (
RadioTapFlagsCFP RadioTapFlags = 1 << iota // sent/received during CFP
RadioTapFlagsShortPreamble // sent/received * with short * preamble
RadioTapFlagsWEP // sent/received * with WEP encryption
RadioTapFlagsFrag // sent/received * with fragmentation
RadioTapFlagsFCS // frame includes FCS
RadioTapFlagsDatapad // frame has padding between * 802.11 header and payload * (to 32-bit boundary)
RadioTapFlagsBadFCS // does not pass FCS check
RadioTapFlagsShortGI // HT short GI
)
func (r RadioTapFlags) CFP() bool {
return r&RadioTapFlagsCFP != 0
}
func (r RadioTapFlags) ShortPreamble() bool {
return r&RadioTapFlagsShortPreamble != 0
}
func (r RadioTapFlags) WEP() bool {
return r&RadioTapFlagsWEP != 0
}
func (r RadioTapFlags) Frag() bool {
return r&RadioTapFlagsFrag != 0
}
func (r RadioTapFlags) FCS() bool {
return r&RadioTapFlagsFCS != 0
}
func (r RadioTapFlags) Datapad() bool {
return r&RadioTapFlagsDatapad != 0
}
func (r RadioTapFlags) BadFCS() bool {
return r&RadioTapFlagsBadFCS != 0
}
func (r RadioTapFlags) ShortGI() bool {
return r&RadioTapFlagsShortGI != 0
}
// String provides a human readable string for RadioTapFlags.
// This string is possibly subject to change over time; if you're storing this
// persistently, you should probably store the RadioTapFlags value, not its string.
func (a RadioTapFlags) String() string {
var out bytes.Buffer
if a.CFP() {
out.WriteString("CFP,")
}
if a.ShortPreamble() {
out.WriteString("SHORT-PREAMBLE,")
}
if a.WEP() {
out.WriteString("WEP,")
}
if a.Frag() {
out.WriteString("FRAG,")
}
if a.FCS() {
out.WriteString("FCS,")
}
if a.Datapad() {
out.WriteString("DATAPAD,")
}
if a.ShortGI() {
out.WriteString("SHORT-GI,")
}
if length := out.Len(); length > 0 {
return string(out.Bytes()[:length-1]) // strip final comma
}
return ""
}
type RadioTapRate uint8
func (a RadioTapRate) String() string {
return fmt.Sprintf("%v Mb/s", 0.5*float32(a))
}
type RadioTapChannelFrequency uint16
func (a RadioTapChannelFrequency) String() string {
return fmt.Sprintf("%d MHz", a)
}
type RadioTapRxFlags uint16
const (
RadioTapRxFlagsBadPlcp RadioTapRxFlags = 0x0002
)
func (self RadioTapRxFlags) BadPlcp() bool {
return self&RadioTapRxFlagsBadPlcp != 0
}
func (self RadioTapRxFlags) String() string {
if self.BadPlcp() {
return "BADPLCP"
}
return ""
}
type RadioTapTxFlags uint16
const (
RadioTapTxFlagsFail RadioTapTxFlags = 1 << iota
RadioTapTxFlagsCTS
RadioTapTxFlagsRTS
RadioTapTxFlagsNoACK
)
func (self RadioTapTxFlags) Fail() bool { return self&RadioTapTxFlagsFail != 0 }
func (self RadioTapTxFlags) CTS() bool { return self&RadioTapTxFlagsCTS != 0 }
func (self RadioTapTxFlags) RTS() bool { return self&RadioTapTxFlagsRTS != 0 }
func (self RadioTapTxFlags) NoACK() bool { return self&RadioTapTxFlagsNoACK != 0 }
func (self RadioTapTxFlags) String() string {
var tokens []string
if self.Fail() {
tokens = append(tokens, "Fail")
}
if self.CTS() {
tokens = append(tokens, "CTS")
}
if self.RTS() {
tokens = append(tokens, "RTS")
}
if self.NoACK() {
tokens = append(tokens, "NoACK")
}
return strings.Join(tokens, ",")
}
type RadioTapMCS struct {
Known RadioTapMCSKnown
Flags RadioTapMCSFlags
MCS uint8
}
func (self RadioTapMCS) String() string {
var tokens []string
if self.Known.Bandwidth() {
token := "?"
switch self.Flags.Bandwidth() {
case 0:
token = "20"
case 1:
token = "40"
case 2:
token = "40(20L)"
case 3:
token = "40(20U)"
}
tokens = append(tokens, token)
}
if self.Known.MCSIndex() {
tokens = append(tokens, fmt.Sprintf("MCSIndex#%d", self.MCS))
}
if self.Known.GuardInterval() {
if self.Flags.ShortGI() {
tokens = append(tokens, fmt.Sprintf("shortGI"))
} else {
tokens = append(tokens, fmt.Sprintf("longGI"))
}
}
if self.Known.HTFormat() {
if self.Flags.Greenfield() {
tokens = append(tokens, fmt.Sprintf("HT-greenfield"))
} else {
tokens = append(tokens, fmt.Sprintf("HT-mixed"))
}
}
if self.Known.FECType() {
if self.Flags.FECLDPC() {
tokens = append(tokens, fmt.Sprintf("LDPC"))
} else {
tokens = append(tokens, fmt.Sprintf("BCC"))
}
}
if self.Known.STBC() {
tokens = append(tokens, fmt.Sprintf("STBC#%d", self.Flags.STBC()))
}
if self.Known.NESS() {
num := 0
if self.Known.NESS1() {
num |= 0x02
}
if self.Flags.NESS0() {
num |= 0x01
}
tokens = append(tokens, fmt.Sprintf("num-of-ESS#%d", num))
}
return strings.Join(tokens, ",")
}
type RadioTapMCSKnown uint8
const (
RadioTapMCSKnownBandwidth RadioTapMCSKnown = 1 << iota
RadioTapMCSKnownMCSIndex
RadioTapMCSKnownGuardInterval
RadioTapMCSKnownHTFormat
RadioTapMCSKnownFECType
RadioTapMCSKnownSTBC
RadioTapMCSKnownNESS
RadioTapMCSKnownNESS1
)
func (self RadioTapMCSKnown) Bandwidth() bool { return self&RadioTapMCSKnownBandwidth != 0 }
func (self RadioTapMCSKnown) MCSIndex() bool { return self&RadioTapMCSKnownMCSIndex != 0 }
func (self RadioTapMCSKnown) GuardInterval() bool { return self&RadioTapMCSKnownGuardInterval != 0 }
func (self RadioTapMCSKnown) HTFormat() bool { return self&RadioTapMCSKnownHTFormat != 0 }
func (self RadioTapMCSKnown) FECType() bool { return self&RadioTapMCSKnownFECType != 0 }
func (self RadioTapMCSKnown) STBC() bool { return self&RadioTapMCSKnownSTBC != 0 }
func (self RadioTapMCSKnown) NESS() bool { return self&RadioTapMCSKnownNESS != 0 }
func (self RadioTapMCSKnown) NESS1() bool { return self&RadioTapMCSKnownNESS1 != 0 }
type RadioTapMCSFlags uint8
const (
RadioTapMCSFlagsBandwidthMask RadioTapMCSFlags = 0x03
RadioTapMCSFlagsShortGI = 0x04
RadioTapMCSFlagsGreenfield = 0x08
RadioTapMCSFlagsFECLDPC = 0x10
RadioTapMCSFlagsSTBCMask = 0x60
RadioTapMCSFlagsNESS0 = 0x80
)
func (self RadioTapMCSFlags) Bandwidth() int {
return int(self & RadioTapMCSFlagsBandwidthMask)
}
func (self RadioTapMCSFlags) ShortGI() bool { return self&RadioTapMCSFlagsShortGI != 0 }
func (self RadioTapMCSFlags) Greenfield() bool { return self&RadioTapMCSFlagsGreenfield != 0 }
func (self RadioTapMCSFlags) FECLDPC() bool { return self&RadioTapMCSFlagsFECLDPC != 0 }
func (self RadioTapMCSFlags) STBC() int {
return int(self&RadioTapMCSFlagsSTBCMask) >> 5
}
func (self RadioTapMCSFlags) NESS0() bool { return self&RadioTapMCSFlagsNESS0 != 0 }
type RadioTapAMPDUStatus struct {
Reference uint32
Flags RadioTapAMPDUStatusFlags
CRC uint8
}
func (self RadioTapAMPDUStatus) String() string {
tokens := []string{
fmt.Sprintf("ref#%x", self.Reference),
}
if self.Flags.ReportZerolen() && self.Flags.IsZerolen() {
tokens = append(tokens, fmt.Sprintf("zero-length"))
}
if self.Flags.LastKnown() && self.Flags.IsLast() {
tokens = append(tokens, "last")
}
if self.Flags.DelimCRCErr() {
tokens = append(tokens, "delimiter CRC error")
}
if self.Flags.DelimCRCKnown() {
tokens = append(tokens, fmt.Sprintf("delimiter-CRC=%02x", self.CRC))
}
return strings.Join(tokens, ",")
}
type RadioTapAMPDUStatusFlags uint16
const (
RadioTapAMPDUStatusFlagsReportZerolen RadioTapAMPDUStatusFlags = 1 << iota
RadioTapAMPDUIsZerolen
RadioTapAMPDULastKnown
RadioTapAMPDUIsLast
RadioTapAMPDUDelimCRCErr
RadioTapAMPDUDelimCRCKnown
)
func (self RadioTapAMPDUStatusFlags) ReportZerolen() bool {
return self&RadioTapAMPDUStatusFlagsReportZerolen != 0
}
func (self RadioTapAMPDUStatusFlags) IsZerolen() bool { return self&RadioTapAMPDUIsZerolen != 0 }
func (self RadioTapAMPDUStatusFlags) LastKnown() bool { return self&RadioTapAMPDULastKnown != 0 }
func (self RadioTapAMPDUStatusFlags) IsLast() bool { return self&RadioTapAMPDUIsLast != 0 }
func (self RadioTapAMPDUStatusFlags) DelimCRCErr() bool { return self&RadioTapAMPDUDelimCRCErr != 0 }
func (self RadioTapAMPDUStatusFlags) DelimCRCKnown() bool {
return self&RadioTapAMPDUDelimCRCKnown != 0
}
type RadioTapVHT struct {
Known RadioTapVHTKnown
Flags RadioTapVHTFlags
Bandwidth uint8
MCSNSS [4]RadioTapVHTMCSNSS
Coding uint8
GroupId uint8
PartialAID uint16
}
func (self RadioTapVHT) String() string {
var tokens []string
if self.Known.STBC() {
if self.Flags.STBC() {
tokens = append(tokens, "STBC")
} else {
tokens = append(tokens, "no STBC")
}
}
if self.Known.TXOPPSNotAllowed() {
if self.Flags.TXOPPSNotAllowed() {
tokens = append(tokens, "TXOP doze not allowed")
} else {
tokens = append(tokens, "TXOP doze allowed")
}
}
if self.Known.GI() {
if self.Flags.SGI() {
tokens = append(tokens, "short GI")
} else {
tokens = append(tokens, "long GI")
}
}
if self.Known.SGINSYMDisambiguation() {
if self.Flags.SGINSYMMod() {
tokens = append(tokens, "NSYM mod 10=9")
} else {
tokens = append(tokens, "NSYM mod 10!=9 or no short GI")
}
}
if self.Known.LDPCExtraOFDMSymbol() {
if self.Flags.LDPCExtraOFDMSymbol() {
tokens = append(tokens, "LDPC extra OFDM symbols")
} else {
tokens = append(tokens, "no LDPC extra OFDM symbols")
}
}
if self.Known.Beamformed() {
if self.Flags.Beamformed() {
tokens = append(tokens, "beamformed")
} else {
tokens = append(tokens, "no beamformed")
}
}
if self.Known.Bandwidth() {
token := "?"
switch self.Bandwidth & 0x1f {
case 0:
token = "20"
case 1:
token = "40"
case 2:
token = "40(20L)"
case 3:
token = "40(20U)"
case 4:
token = "80"
case 5:
token = "80(40L)"
case 6:
token = "80(40U)"
case 7:
token = "80(20LL)"
case 8:
token = "80(20LU)"
case 9:
token = "80(20UL)"
case 10:
token = "80(20UU)"
case 11:
token = "160"
case 12:
token = "160(80L)"
case 13:
token = "160(80U)"
case 14:
token = "160(40LL)"
case 15:
token = "160(40LU)"
case 16:
token = "160(40UL)"
case 17:
token = "160(40UU)"
case 18:
token = "160(20LLL)"
case 19:
token = "160(20LLU)"
case 20:
token = "160(20LUL)"
case 21:
token = "160(20LUU)"
case 22:
token = "160(20ULL)"
case 23:
token = "160(20ULU)"
case 24:
token = "160(20UUL)"
case 25:
token = "160(20UUU)"
}
tokens = append(tokens, token)
}
for i, MCSNSS := range self.MCSNSS {
if MCSNSS.Present() {
fec := "?"
switch self.Coding & (1 << uint8(i)) {
case 0:
fec = "BCC"
case 1:
fec = "LDPC"
}
tokens = append(tokens, fmt.Sprintf("user%d(%s,%s)", i, MCSNSS.String(), fec))
}
}
if self.Known.GroupId() {
tokens = append(tokens,
fmt.Sprintf("group=%d", self.GroupId))
}
if self.Known.PartialAID() {
tokens = append(tokens,
fmt.Sprintf("partial-AID=%d", self.PartialAID))
}
return strings.Join(tokens, ",")
}
type RadioTapVHTKnown uint16
const (
RadioTapVHTKnownSTBC RadioTapVHTKnown = 1 << iota
RadioTapVHTKnownTXOPPSNotAllowed
RadioTapVHTKnownGI
RadioTapVHTKnownSGINSYMDisambiguation
RadioTapVHTKnownLDPCExtraOFDMSymbol
RadioTapVHTKnownBeamformed
RadioTapVHTKnownBandwidth
RadioTapVHTKnownGroupId
RadioTapVHTKnownPartialAID
)
func (self RadioTapVHTKnown) STBC() bool { return self&RadioTapVHTKnownSTBC != 0 }
func (self RadioTapVHTKnown) TXOPPSNotAllowed() bool {
return self&RadioTapVHTKnownTXOPPSNotAllowed != 0
}
func (self RadioTapVHTKnown) GI() bool { return self&RadioTapVHTKnownGI != 0 }
func (self RadioTapVHTKnown) SGINSYMDisambiguation() bool {
return self&RadioTapVHTKnownSGINSYMDisambiguation != 0
}
func (self RadioTapVHTKnown) LDPCExtraOFDMSymbol() bool {
return self&RadioTapVHTKnownLDPCExtraOFDMSymbol != 0
}
func (self RadioTapVHTKnown) Beamformed() bool { return self&RadioTapVHTKnownBeamformed != 0 }
func (self RadioTapVHTKnown) Bandwidth() bool { return self&RadioTapVHTKnownBandwidth != 0 }
func (self RadioTapVHTKnown) GroupId() bool { return self&RadioTapVHTKnownGroupId != 0 }
func (self RadioTapVHTKnown) PartialAID() bool { return self&RadioTapVHTKnownPartialAID != 0 }
type RadioTapVHTFlags uint8
const (
RadioTapVHTFlagsSTBC RadioTapVHTFlags = 1 << iota
RadioTapVHTFlagsTXOPPSNotAllowed
RadioTapVHTFlagsSGI
RadioTapVHTFlagsSGINSYMMod
RadioTapVHTFlagsLDPCExtraOFDMSymbol
RadioTapVHTFlagsBeamformed
)
func (self RadioTapVHTFlags) STBC() bool { return self&RadioTapVHTFlagsSTBC != 0 }
func (self RadioTapVHTFlags) TXOPPSNotAllowed() bool {
return self&RadioTapVHTFlagsTXOPPSNotAllowed != 0
}
func (self RadioTapVHTFlags) SGI() bool { return self&RadioTapVHTFlagsSGI != 0 }
func (self RadioTapVHTFlags) SGINSYMMod() bool { return self&RadioTapVHTFlagsSGINSYMMod != 0 }
func (self RadioTapVHTFlags) LDPCExtraOFDMSymbol() bool {
return self&RadioTapVHTFlagsLDPCExtraOFDMSymbol != 0
}
func (self RadioTapVHTFlags) Beamformed() bool { return self&RadioTapVHTFlagsBeamformed != 0 }
type RadioTapVHTMCSNSS uint8
func (self RadioTapVHTMCSNSS) Present() bool {
return self&0x0F != 0
}
func (self RadioTapVHTMCSNSS) String() string {
return fmt.Sprintf("NSS#%dMCS#%d", uint32(self&0xf), uint32(self>>4))
}
type RadiotapHE struct {
Data1 RadiotapHEData1
Data2 RadiotapHEData2
Data3 RadiotapHEData3
Data4 RadiotapHEData4
Data5 RadiotapHEData5
Data6 RadiotapHEData6
}
func (self RadiotapHE) String() string {
var tokens []string
tokens = append(tokens, fmt.Sprintf("HE PPDU Format: %v", self.Data1.HE_PPDUFormat()))
if self.Data1.BSSColorKnown() {
tokens = append(tokens, fmt.Sprintf("BSS Color: %d", self.Data3.BSSColor()))
}
if self.Data1.BeamChangeKnown() {
if self.Data3.BeamChange() {
tokens = append(tokens, "Beam Change")
} else {
tokens = append(tokens, "No Beam Change")
}
}
if self.Data1.ULDLKnown() {
if self.Data3.ULDL() {
tokens = append(tokens, "UL")
} else {
tokens = append(tokens, "DL")
}
}
if self.Data1.DataMCSKnown() {
tokens = append(tokens, fmt.Sprintf("Data MCS: %d", self.Data3.DataMCS()))
}
if self.Data1.DataDCMKnown() {
if self.Data3.DataDCM() {
tokens = append(tokens, "Data DCM applied")
} else {
tokens = append(tokens, "Data DCM not applied")
}
}
if self.Data1.CodingKnown() {
tokens = append(tokens, fmt.Sprintf("Coding: %v", self.Data3.Coding()))
}
if self.Data1.LDPCExtraSymbolSegmentKnown() {
if self.Data3.LDPCExtraSymbolSegment() {
tokens = append(tokens, "LDPC Extra Symbol Segment")
} else {
tokens = append(tokens, "No LDPC Extra Symbol Segment")
}
}
if self.Data1.STBCKnown() {
if self.Data3.STBC() {
tokens = append(tokens, "STBC")
} else {
tokens = append(tokens, "No STBC")
}
}
switch self.Data1.HE_PPDUFormat() {
case RadiotapHePpduFormatHE_SU:
case RadiotapHePpduFormatHE_EXT_SU:
if self.Data1.SpatialReuseKnown() {
tokens = append(tokens, fmt.Sprintf("Spatial Reuse: %d", self.Data4&0x000f))
}
case RadiotapHePpduFormatHE_TRIG:
if self.Data1.SpatialReuse1Known() {
tokens = append(tokens, fmt.Sprintf("Spatial Reuse 1: %d", self.Data4&0x000f))
}
if self.Data1.SpatialReuse2Known() {
tokens = append(tokens, fmt.Sprintf("Spatial Reuse 2: %d", self.Data4&0x00f0>>4))
}
if self.Data1.SpatialReuse3Known() {
tokens = append(tokens, fmt.Sprintf("Spatial Reuse 3: %d", self.Data4&0x0f00>>8))
}
if self.Data1.SpatialReuse4Known() {
tokens = append(tokens, fmt.Sprintf("Spatial Reuse 4: %d", self.Data4&0xf000>>12))
}
case RadiotapHePpduFormatHE_MU:
if self.Data1.SpatialReuseKnown() {
tokens = append(tokens, fmt.Sprintf("Spatial Reuse: %d", self.Data4&0x000f))
}
if self.Data1.StaIDKnown() {
tokens = append(tokens, fmt.Sprintf("STA ID: %d", self.Data4&0x7ff0>>4))
}
}
if self.Data1.DataBWRUAllocationKnown() {
tokens = append(tokens, fmt.Sprintf("Data BW/RU Allocation: %s", self.Data5.DataBandwidth()))
}
if self.Data2.GIKnown() {
tokens = append(tokens, fmt.Sprintf("GI: %v", self.Data5.Gi()))
}
if self.Data2.NumLTFKnown() {
tokens = append(tokens, fmt.Sprintf("LTF Symbol size: %s", self.Data5.LTFSize()))
tokens = append(tokens, fmt.Sprintf("Number of LTF symbols: %s", self.Data5.NumLTFSymbols()))
}
if self.Data2.PreFECPaddingFactorKnown() {
tokens = append(tokens, fmt.Sprintf("Pre-FEC Padding Factor: %d", self.Data5.PreFECPaddingFactor()))
}
if self.Data2.TxBFKnown() {
if self.Data5.TxBF() {
tokens = append(tokens, "TxBF")
} else {
tokens = append(tokens, "No TxBF")
}
}
if self.Data2.PEDisambiguityKnown() {
if self.Data5.PEDisambiguity() {
tokens = append(tokens, "PE Disambiguity")
} else {
tokens = append(tokens, "No PE Disambiguity")
}
}
nSts := self.Data6.NSTS()
if nSts > 0 {
tokens = append(tokens, fmt.Sprintf("NSTS: %d", self.Data6.NSTS()))
} else {
tokens = append(tokens, "NSTS: unknown")
}
if self.Data1.DopplerKnown() {
if self.Data6.Doppler() {
tokens = append(tokens, "Doppler")
} else {
tokens = append(tokens, "No Doppler")
}
}
if self.Data2.TXOPKnown() {
tokens = append(tokens, fmt.Sprintf("TXOP: %d", self.Data6.TXOP()))
}
if self.Data2.MidamblePeriodicityKnown() {
tokens = append(tokens, fmt.Sprintf("Midamble Periodicity: %v", self.Data6.MidamblePeriodicity()))
}
return strings.Join(tokens, ",")
}
type RadiotapHEData1 uint16
const (
RadiotapHEData1_HE_PPDUFormatMask RadiotapHEData1 = 0x0003
RadiotapHEData1BSSColorKnown RadiotapHEData1 = 0x0004
RadiotapHEData1BeamChangeKnown RadiotapHEData1 = 0x0008
RadiotapHEData1ULDLKnown RadiotapHEData1 = 0x0010
RadiotapHEData1DataMCSKnown RadiotapHEData1 = 0x0020
RadiotapHEData1DataDCMKnown RadiotapHEData1 = 0x0040
RadiotapHEData1CodingKnown RadiotapHEData1 = 0x0080
RadiotapHEData1LDPCExtraSymbolSegmentKnown RadiotapHEData1 = 0x0100
RadiotapHEData1STBCKnown RadiotapHEData1 = 0x0200
RadiotapHEData1SpatialReuseKnown RadiotapHEData1 = 0x0400
RadiotapHEData1SpatialReuse1Known RadiotapHEData1 = 0x0400
RadiotapHEData1SpatialReuse2Known RadiotapHEData1 = 0x0800
RadiotapHEData1StaIDKnown RadiotapHEData1 = 0x8000
RadiotapHEData1SpatialReuse3Known RadiotapHEData1 = 0x1000
RadiotapHEData1SpatialReuse4Known RadiotapHEData1 = 0x2000
RadiotapHEData1DataBWRUAllocationKnown RadiotapHEData1 = 0x4000
RadiotapHEData1DopplerKnown RadiotapHEData1 = 0x8000
)
func (self RadiotapHEData1) HE_PPDUFormat() RadiotapHePpduFormat {
return RadiotapHePpduFormat(self & 0x0003)
}
func (self RadiotapHEData1) BSSColorKnown() bool {
return self&RadiotapHEData1BSSColorKnown != 0
}
func (self RadiotapHEData1) BeamChangeKnown() bool {
return self&RadiotapHEData1BeamChangeKnown != 0
}
func (self RadiotapHEData1) ULDLKnown() bool {
return self&RadiotapHEData1ULDLKnown != 0
}
func (self RadiotapHEData1) DataMCSKnown() bool {
return self&RadiotapHEData1DataMCSKnown != 0
}
func (self RadiotapHEData1) DataDCMKnown() bool {
return self&RadiotapHEData1DataDCMKnown != 0
}
func (self RadiotapHEData1) CodingKnown() bool {
return self&RadiotapHEData1CodingKnown != 0
}
func (self RadiotapHEData1) LDPCExtraSymbolSegmentKnown() bool {
return self&RadiotapHEData1LDPCExtraSymbolSegmentKnown != 0
}
func (self RadiotapHEData1) STBCKnown() bool {
return self&RadiotapHEData1STBCKnown != 0
}
func (self RadiotapHEData1) SpatialReuseKnown() bool {
return self&RadiotapHEData1SpatialReuseKnown != 0
}
func (self RadiotapHEData1) SpatialReuse1Known() bool {
return self&RadiotapHEData1SpatialReuse1Known != 0
}
func (self RadiotapHEData1) SpatialReuse2Known() bool {
return self&RadiotapHEData1SpatialReuse2Known != 0
}
func (self RadiotapHEData1) StaIDKnown() bool {
return self&RadiotapHEData1StaIDKnown != 0
}
func (self RadiotapHEData1) SpatialReuse3Known() bool {
return self&RadiotapHEData1SpatialReuse3Known != 0
}
func (self RadiotapHEData1) SpatialReuse4Known() bool {
return self&RadiotapHEData1SpatialReuse4Known != 0
}
func (self RadiotapHEData1) DataBWRUAllocationKnown() bool {
return self&RadiotapHEData1DataBWRUAllocationKnown != 0
}
func (self RadiotapHEData1) DopplerKnown() bool {
return self&RadiotapHEData1DopplerKnown != 0
}
type RadiotapHePpduFormat uint8
const (
RadiotapHePpduFormatHE_SU RadiotapHePpduFormat = iota
RadiotapHePpduFormatHE_EXT_SU
RadiotapHePpduFormatHE_MU
RadiotapHePpduFormatHE_TRIG
)
func (self RadiotapHePpduFormat) String() string {
switch self {
case RadiotapHePpduFormatHE_SU:
return "HE SU"
case RadiotapHePpduFormatHE_EXT_SU:
return "HE EXT SU"
case RadiotapHePpduFormatHE_MU:
return "HE MU"
case RadiotapHePpduFormatHE_TRIG:
return "HE TRIG"
}
return fmt.Sprintf("HE Unknown(%d)", self)
}
type RadiotapHEData2 uint16
const (
RadiotapHEData2PriSec80MHzKnown RadiotapHEData2 = 0x0001
RadiotapHEData2GIKnown RadiotapHEData2 = 0x0002
RadiotapHEData2NumLTFKnown RadiotapHEData2 = 0x0004
RadiotapHEData2PreFECPaddingFactorKnown RadiotapHEData2 = 0x0008
RadiotapHEData2TxBFKnown RadiotapHEData2 = 0x0010
RadiotapHEData2PEDisambiguityKnown RadiotapHEData2 = 0x0020
RadiotapHEData2TXOPKnown RadiotapHEData2 = 0x0040
RadiotapHEData2MidamblePeriodicityKnown RadiotapHEData2 = 0x0080
RadiotapHEData2RUAllocationOffset RadiotapHEData2 = 0x3f00
RadiotapHEData2RUAllocationOffsetKnown RadiotapHEData2 = 0x4000
RadiotapHEData2PriSec80MHz RadiotapHEData2 = 0x8000
)
func (self RadiotapHEData2) PriSec80MHzKnown() bool {
return self&RadiotapHEData2PriSec80MHzKnown != 0
}
func (self RadiotapHEData2) GIKnown() bool {
return self&RadiotapHEData2GIKnown != 0
}
func (self RadiotapHEData2) NumLTFKnown() bool {
return self&RadiotapHEData2NumLTFKnown != 0
}
func (self RadiotapHEData2) PreFECPaddingFactorKnown() bool {
return self&RadiotapHEData2PreFECPaddingFactorKnown != 0
}
func (self RadiotapHEData2) TxBFKnown() bool {
return self&RadiotapHEData2TxBFKnown != 0
}
func (self RadiotapHEData2) PEDisambiguityKnown() bool {
return self&RadiotapHEData2PEDisambiguityKnown != 0
}
func (self RadiotapHEData2) TXOPKnown() bool {
return self&RadiotapHEData2TXOPKnown != 0
}
func (self RadiotapHEData2) MidamblePeriodicityKnown() bool {
return self&RadiotapHEData2MidamblePeriodicityKnown != 0
}
func (self RadiotapHEData2) RUAllocationOffset() int {
return int(self&RadiotapHEData2RUAllocationOffset) >> 8
}
func (self RadiotapHEData2) RUAllocationOffsetKnown() bool {
return self&RadiotapHEData2RUAllocationOffsetKnown != 0
}
func (self RadiotapHEData2) PriSec80MHz() bool {
return self&RadiotapHEData2PriSec80MHz != 0
}
type RadiotapHEPriSec80MHz bool
type RadiotapHEData3 uint16
const (
RadiotapHEData3BSSColorMask RadiotapHEData3 = 0x003F
RadiotapHEData3BeamChange RadiotapHEData3 = 0x0040
RadiotapHEData3ULDL RadiotapHEData3 = 0x0080
RadiotapHEData3DataMCSMask RadiotapHEData3 = 0x0F00
RadiotapHEData3DataDCM RadiotapHEData3 = 0x1000
RadiotapHEData3Coding RadiotapHEData3 = 0x2000
RadiotapHEData3LDPCEXtraSymbolSegment RadiotapHEData3 = 0x4000
RadiotapHEData3STBC RadiotapHEData3 = 0x8000
)
func (self RadiotapHEData3) BSSColor() int {
return int(self & RadiotapHEData3BSSColorMask)
}
func (self RadiotapHEData3) BeamChange() bool {
return self&RadiotapHEData3BeamChange != 0
}
func (self RadiotapHEData3) ULDL() bool {
return self&RadiotapHEData3ULDL != 0
}
func (self RadiotapHEData3) DataMCS() uint8 {
return uint8((self & RadiotapHEData3DataMCSMask) >> 8)
}
func (self RadiotapHEData3) DataDCM() bool {
return self&RadiotapHEData3DataDCM != 0
}
func (self RadiotapHEData3) Coding() RadiotapHECoding {
return self&RadiotapHEData3Coding != 0
}
func (self RadiotapHEData3) LDPCExtraSymbolSegment() bool {
return self&RadiotapHEData3LDPCEXtraSymbolSegment != 0
}
func (self RadiotapHEData3) STBC() bool {
return self&RadiotapHEData3STBC != 0
}
type RadiotapHECoding bool
const (
RadiotapHECodingBCC RadiotapHECoding = false
RadiotapHECodingLDPC RadiotapHECoding = true
)
type RadiotapHEData4 uint16
type RadiotapHEData5 uint16
const (
RadiotapHEData5DataBandwidthMask RadiotapHEData5 = 0x000F
RadiotapHEData5GI RadiotapHEData5 = 0x0030
RadiotapHEData5LTFSize RadiotapHEData5 = 0x00C0
RadiotapHEData5NumLTFSymbols RadiotapHEData5 = 0x0700
RadiotapHEData5PreFECPaddingFactor RadiotapHEData5 = 0x3000
RadiotapHEData5TxBF RadiotapHEData5 = 0x4000
RadiotapHEData5PEDisambiguity RadiotapHEData5 = 0x8000
)
type DataBandwidth uint8
const (
DataBandwidth20 DataBandwidth = iota
DataBandwidth40
DataBandwidth80
DataBandwidth160
DataBandwidth26ToneRU
DataBandwidth52ToneRU
DataBandwidth106ToneRU
DataBandwidth242ToneRU
DataBandwidth484ToneRU
DataBandwidth996ToneRU
DataBandwidth2x996ToneRU
)
func (db DataBandwidth) String() string {
switch db {
case DataBandwidth20:
return "20"
case DataBandwidth40:
return "40"
case DataBandwidth80:
return "80"
case DataBandwidth160:
return "160/80+80"
case DataBandwidth26ToneRU:
return "26-tone RU"
case DataBandwidth52ToneRU:
return "52-tone RU"
case DataBandwidth106ToneRU:
return "106-tone RU"
case DataBandwidth242ToneRU:
return "242-tone RU"
case DataBandwidth484ToneRU:
return "484-tone RU"
case DataBandwidth996ToneRU:
return "996-tone RU"
case DataBandwidth2x996ToneRU:
return "2x996-tone RU"
default:
return "Unknown"
}
}
func (self RadiotapHEData5) DataBandwidth() DataBandwidth {
return DataBandwidth(self & RadiotapHEData5DataBandwidthMask)
}
func (self RadiotapHEData5) Gi() Gi {
return Gi((self & RadiotapHEData5GI) >> 4)
}
func (self RadiotapHEData5) LTFSize() LTF {
return LTF((self & RadiotapHEData5LTFSize) >> 6)
}
func (self RadiotapHEData5) NumLTFSymbols() NLTF {
return NLTF((self & RadiotapHEData5NumLTFSymbols) >> 8)
}
func (self RadiotapHEData5) PreFECPaddingFactor() uint8 {
return uint8((self & RadiotapHEData5PreFECPaddingFactor) >> 12)
}
func (self RadiotapHEData5) TxBF() bool {
return self&RadiotapHEData5TxBF != 0
}
func (self RadiotapHEData5) PEDisambiguity() bool {
return self&RadiotapHEData5PEDisambiguity != 0
}
type Gi uint8
const (
Gi_0_8us Gi = iota
Gi_1_6us
Gi_3_2us
Gi_reserved
)
func (gi Gi) String() string {
switch gi {
case Gi_0_8us:
return "0.8us"
case Gi_1_6us:
return "1.6us"
case Gi_3_2us:
return "3.2us"
default:
return "Reserved"
}
}
type LTF uint8
const (
LTF_unknown LTF = iota
LTF_1x
LTF_2x
LTF_4x
)
func (ltf LTF) String() string {
switch ltf {
case LTF_unknown:
return "Unknown"
case LTF_1x:
return "1x"
case LTF_2x:
return "2x"
case LTF_4x:
return "4x"
default:
return "Unknown"
}
}
type NLTF uint8
const (
NLTF_1x NLTF = iota
NLTF_2x
NLTF_4x
NLTF_6x
NLTF_8x
NLTF_reserved
)
func (nltf NLTF) String() string {
switch nltf {
case NLTF_1x:
return "1x"
case NLTF_2x:
return "2x"
case NLTF_4x:
return "4x"
case NLTF_6x:
return "6x"
case NLTF_8x:
return "8x"
default:
return "Reserved"
}
}
type MidamblePeriodicity uint8
const (
MidamblePeriodicity_10 MidamblePeriodicity = iota
MidamblePeriodicity_20
)
func (mp MidamblePeriodicity) String() string {
switch mp {
case MidamblePeriodicity_10:
return "10"
case MidamblePeriodicity_20:
return "20"
default:
return "Unknown"
}
}
type RadiotapHEData6 uint16
const (
RadiotapHEData6NSTS RadiotapHEData6 = 0x000F
RadiotapHEData6Doppler RadiotapHEData6 = 0x0010
RadiotapHEData6TXOP RadiotapHEData6 = 0x7F00
RadiotapHEData6MidamblePeriodic RadiotapHEData6 = 0x8000
)
func (self RadiotapHEData6) NSTS() int {
return int(self & RadiotapHEData6NSTS)
}
func (self RadiotapHEData6) Doppler() bool {
return self&RadiotapHEData6Doppler != 0
}
func (self RadiotapHEData6) TXOP() int {
return int((self & RadiotapHEData6TXOP) >> 8)
}
func (self RadiotapHEData6) MidamblePeriodicity() MidamblePeriodicity {
return MidamblePeriodicity((self & RadiotapHEData6MidamblePeriodic) >> 15)
}
func decodeRadioTap(data []byte, p gopacket.PacketBuilder) error {
d := &RadioTap{}
// TODO: Should we set LinkLayer here? And implement LinkFlow
return decodingLayerDecoder(d, data, p)
}
type RadioTap struct {
BaseLayer
// Version 0. Only increases for drastic changes, introduction of compatible new fields does not count.
Version uint8
// Length of the whole header in bytes, including it_version, it_pad, it_len, and data fields.
Length uint16
// Present is a bitmap telling which fields are present. Set bit 31 (0x80000000) to extend the bitmap by another 32 bits. Additional extensions are made by setting bit 31.
Present RadioTapPresent
// TSFT: value in microseconds of the MAC's 64-bit 802.11 Time Synchronization Function timer when the first bit of the MPDU arrived at the MAC. For received frames, only.
TSFT uint64
Flags RadioTapFlags
// Rate Tx/Rx data rate
Rate RadioTapRate
// ChannelFrequency Tx/Rx frequency in MHz, followed by flags
ChannelFrequency RadioTapChannelFrequency
ChannelFlags RadioTapChannelFlags
// FHSS For frequency-hopping radios, the hop set (first byte) and pattern (second byte).
FHSS uint16
// DBMAntennaSignal RF signal power at the antenna, decibel difference from one milliwatt.
DBMAntennaSignal int8
// DBMAntennaNoise RF noise power at the antenna, decibel difference from one milliwatt.
DBMAntennaNoise int8
// LockQuality Quality of Barker code lock. Unitless. Monotonically nondecreasing with "better" lock strength. Called "Signal Quality" in datasheets.
LockQuality uint16
// TxAttenuation Transmit power expressed as unitless distance from max power set at factory calibration. 0 is max power. Monotonically nondecreasing with lower power levels.
TxAttenuation uint16
// DBTxAttenuation Transmit power expressed as decibel distance from max power set at factory calibration. 0 is max power. Monotonically nondecreasing with lower power levels.
DBTxAttenuation uint16
// DBMTxPower Transmit power expressed as dBm (decibels from a 1 milliwatt reference). This is the absolute power level measured at the antenna port.
DBMTxPower int8
// Antenna Unitless indication of the Rx/Tx antenna for this packet. The first antenna is antenna 0.
Antenna uint8
// DBAntennaSignal RF signal power at the antenna, decibel difference from an arbitrary, fixed reference.
DBAntennaSignal uint8
// DBAntennaNoise RF noise power at the antenna, decibel difference from an arbitrary, fixed reference point.
DBAntennaNoise uint8
//
RxFlags RadioTapRxFlags
TxFlags RadioTapTxFlags
RtsRetries uint8
DataRetries uint8
MCS RadioTapMCS
AMPDUStatus RadioTapAMPDUStatus
VHT RadioTapVHT
HE RadiotapHE
}
func (m *RadioTap) LayerType() gopacket.LayerType { return LayerTypeRadioTap }
func (m *RadioTap) DecodeFromBytes(data []byte, df gopacket.DecodeFeedback) error {
dataLen := uint16(len(data))
if dataLen < 8 {
df.SetTruncated()
return errors.New("RadioTap too small")
}
m.Version = uint8(data[0])
m.Length = binary.LittleEndian.Uint16(data[2:4])
m.Present = RadioTapPresent(binary.LittleEndian.Uint32(data[4:8]))
// Truncate the length to avoid panics, might be smaller due to corruption or loss
if m.Length > dataLen {
m.Length = dataLen
}
offset := uint16(4)
for (binary.LittleEndian.Uint32(data[offset:offset+4]) & 0x80000000) != 0 {
// This parser only handles standard radiotap namespace,
// and expects all fields are packed in the first it_present.
// Extended bitmap will be just ignored.
offset += 4
}
offset += 4 // skip the bitmap
if m.Present.TSFT() {
offset += align(offset, 8)
m.TSFT = binary.LittleEndian.Uint64(data[offset : offset+8])
offset += 8
}
if m.Present.Flags() {
m.Flags = RadioTapFlags(data[offset])
offset++
}
if m.Present.Rate() {
m.Rate = RadioTapRate(data[offset])
offset++
}
if m.Present.Channel() {
offset += align(offset, 2)
m.ChannelFrequency = RadioTapChannelFrequency(binary.LittleEndian.Uint16(data[offset : offset+2]))
offset += 2
m.ChannelFlags = RadioTapChannelFlags(binary.LittleEndian.Uint16(data[offset : offset+2]))
offset += 2
}
if m.Present.FHSS() {
m.FHSS = binary.LittleEndian.Uint16(data[offset : offset+2])
offset += 2
}
if m.Present.DBMAntennaSignal() {
m.DBMAntennaSignal = int8(data[offset])
offset++
}
if m.Present.DBMAntennaNoise() {
m.DBMAntennaNoise = int8(data[offset])
offset++
}
if m.Present.LockQuality() {
offset += align(offset, 2)
m.LockQuality = binary.LittleEndian.Uint16(data[offset : offset+2])
offset += 2
}
if m.Present.TxAttenuation() {
offset += align(offset, 2)
m.TxAttenuation = binary.LittleEndian.Uint16(data[offset : offset+2])
offset += 2
}
if m.Present.DBTxAttenuation() {
offset += align(offset, 2)
m.DBTxAttenuation = binary.LittleEndian.Uint16(data[offset : offset+2])
offset += 2
}
if m.Present.DBMTxPower() {
m.DBMTxPower = int8(data[offset])
offset++
}
if m.Present.Antenna() {
m.Antenna = uint8(data[offset])
offset++
}
if m.Present.DBAntennaSignal() {
m.DBAntennaSignal = uint8(data[offset])
offset++
}
if m.Present.DBAntennaNoise() {
m.DBAntennaNoise = uint8(data[offset])
offset++
}
if m.Present.RxFlags() {
offset += align(offset, 2)
m.RxFlags = RadioTapRxFlags(binary.LittleEndian.Uint16(data[offset:]))
offset += 2
}
if m.Present.TxFlags() {
offset += align(offset, 2)
m.TxFlags = RadioTapTxFlags(binary.LittleEndian.Uint16(data[offset:]))
offset += 2
}
if m.Present.RtsRetries() {
m.RtsRetries = uint8(data[offset])
offset++
}
if m.Present.DataRetries() {
m.DataRetries = uint8(data[offset])
offset++
}
if m.Present.MCS() {
m.MCS = RadioTapMCS{
RadioTapMCSKnown(data[offset]),
RadioTapMCSFlags(data[offset+1]),
uint8(data[offset+2]),
}
offset += 3
}
if m.Present.AMPDUStatus() {
offset += align(offset, 4)
m.AMPDUStatus = RadioTapAMPDUStatus{
Reference: binary.LittleEndian.Uint32(data[offset:]),
Flags: RadioTapAMPDUStatusFlags(binary.LittleEndian.Uint16(data[offset+4:])),
CRC: uint8(data[offset+6]),
}
offset += 8
}
if m.Present.VHT() {
offset += align(offset, 2)
m.VHT = RadioTapVHT{
Known: RadioTapVHTKnown(binary.LittleEndian.Uint16(data[offset:])),
Flags: RadioTapVHTFlags(data[offset+2]),
Bandwidth: uint8(data[offset+3]),
MCSNSS: [4]RadioTapVHTMCSNSS{
RadioTapVHTMCSNSS(data[offset+4]),
RadioTapVHTMCSNSS(data[offset+5]),
RadioTapVHTMCSNSS(data[offset+6]),
RadioTapVHTMCSNSS(data[offset+7]),
},
Coding: uint8(data[offset+8]),
GroupId: uint8(data[offset+9]),
PartialAID: binary.LittleEndian.Uint16(data[offset+10:]),
}
offset += 12
}
if m.Present.Timestamp() {
offset += align(offset, 8)
offset += 12
}
if m.Present.HE() {
offset += align(offset, 2)
m.HE = RadiotapHE{
Data1: RadiotapHEData1(binary.LittleEndian.Uint16(data[offset:])),
Data2: RadiotapHEData2(binary.LittleEndian.Uint16(data[offset+2:])),
Data3: RadiotapHEData3(binary.LittleEndian.Uint16(data[offset+4:])),
Data4: RadiotapHEData4(binary.LittleEndian.Uint16(data[offset+6:])),
Data5: RadiotapHEData5(binary.LittleEndian.Uint16(data[offset+8:])),
Data6: RadiotapHEData6(binary.LittleEndian.Uint16(data[offset+10:])),
}
offset += 12
}
payload := data[m.Length:]
// Remove non standard padding used by some Wi-Fi drivers
if m.Flags.Datapad() &&
payload[0]&0xC == 0x8 { //&& // Data frame
headlen := 24
if payload[0]&0x8C == 0x88 { // QoS
headlen += 2
}
if payload[1]&0x3 == 0x3 { // 4 addresses
headlen += 2
}
if headlen%4 == 2 {
payload = append(payload[:headlen], payload[headlen+2:len(payload)]...)
}
}
if !m.Flags.FCS() {
// Dot11.DecodeFromBytes() expects FCS present and performs a hard chop on the checksum
// If a user is handing in subslices or packets from a buffered stream, the capacity of the slice
// may extend beyond the len, rather than expecting callers to enforce cap==len on every packet
// we take the hit in this one case and do a reallocation. If the user DOES enforce cap==len
// then the reallocation will happen anyway on the append. This is requried because the append
// write to the memory directly after the payload if there is sufficient capacity, which callers
// may not expect.
reallocPayload := make([]byte, len(payload)+4)
copy(reallocPayload[0:len(payload)], payload)
h := crc32.NewIEEE()
h.Write(payload)
binary.LittleEndian.PutUint32(reallocPayload[len(payload):], h.Sum32())
payload = reallocPayload
}
m.BaseLayer = BaseLayer{Contents: data[:m.Length], Payload: payload}
return nil
}
func (m RadioTap) SerializeTo(b gopacket.SerializeBuffer, opts gopacket.SerializeOptions) error {
buf := make([]byte, 1024)
buf[0] = m.Version
buf[1] = 0
binary.LittleEndian.PutUint32(buf[4:8], uint32(m.Present))
offset := uint16(4)
for (binary.LittleEndian.Uint32(buf[offset:offset+4]) & 0x80000000) != 0 {
offset += 4
}
offset += 4
if m.Present.TSFT() {
offset += align(offset, 8)
binary.LittleEndian.PutUint64(buf[offset:offset+8], m.TSFT)
offset += 8
}
if m.Present.Flags() {
buf[offset] = uint8(m.Flags)
offset++
}
if m.Present.Rate() {
buf[offset] = uint8(m.Rate)
offset++
}
if m.Present.Channel() {
offset += align(offset, 2)
binary.LittleEndian.PutUint16(buf[offset:offset+2], uint16(m.ChannelFrequency))
offset += 2
binary.LittleEndian.PutUint16(buf[offset:offset+2], uint16(m.ChannelFlags))
offset += 2
}
if m.Present.FHSS() {
binary.LittleEndian.PutUint16(buf[offset:offset+2], m.FHSS)
offset += 2
}
if m.Present.DBMAntennaSignal() {
buf[offset] = byte(m.DBMAntennaSignal)
offset++
}
if m.Present.DBMAntennaNoise() {
buf[offset] = byte(m.DBMAntennaNoise)
offset++
}
if m.Present.LockQuality() {
offset += align(offset, 2)
binary.LittleEndian.PutUint16(buf[offset:offset+2], m.LockQuality)
offset += 2
}
if m.Present.TxAttenuation() {
offset += align(offset, 2)
binary.LittleEndian.PutUint16(buf[offset:offset+2], m.TxAttenuation)
offset += 2
}
if m.Present.DBTxAttenuation() {
offset += align(offset, 2)
binary.LittleEndian.PutUint16(buf[offset:offset+2], m.DBTxAttenuation)
offset += 2
}
if m.Present.DBMTxPower() {
buf[offset] = byte(m.DBMTxPower)
offset++
}
if m.Present.Antenna() {
buf[offset] = uint8(m.Antenna)
offset++
}
if m.Present.DBAntennaSignal() {
buf[offset] = uint8(m.DBAntennaSignal)
offset++
}
if m.Present.DBAntennaNoise() {
buf[offset] = uint8(m.DBAntennaNoise)
offset++
}
if m.Present.RxFlags() {
offset += align(offset, 2)
binary.LittleEndian.PutUint16(buf[offset:offset+2], uint16(m.RxFlags))
offset += 2
}
if m.Present.TxFlags() {
offset += align(offset, 2)
binary.LittleEndian.PutUint16(buf[offset:offset+2], uint16(m.TxFlags))
offset += 2
}
if m.Present.RtsRetries() {
buf[offset] = m.RtsRetries
offset++
}
if m.Present.DataRetries() {
buf[offset] = m.DataRetries
offset++
}
if m.Present.MCS() {
buf[offset] = uint8(m.MCS.Known)
buf[offset+1] = uint8(m.MCS.Flags)
buf[offset+2] = uint8(m.MCS.MCS)
offset += 3
}
if m.Present.AMPDUStatus() {
offset += align(offset, 4)
binary.LittleEndian.PutUint32(buf[offset:offset+4], m.AMPDUStatus.Reference)
binary.LittleEndian.PutUint16(buf[offset+4:offset+6], uint16(m.AMPDUStatus.Flags))
buf[offset+6] = m.AMPDUStatus.CRC
offset += 8
}
if m.Present.VHT() {
offset += align(offset, 2)
binary.LittleEndian.PutUint16(buf[offset:], uint16(m.VHT.Known))
buf[offset+2] = uint8(m.VHT.Flags)
buf[offset+3] = uint8(m.VHT.Bandwidth)
buf[offset+4] = uint8(m.VHT.MCSNSS[0])
buf[offset+5] = uint8(m.VHT.MCSNSS[1])
buf[offset+6] = uint8(m.VHT.MCSNSS[2])
buf[offset+7] = uint8(m.VHT.MCSNSS[3])
buf[offset+8] = uint8(m.VHT.Coding)
buf[offset+9] = uint8(m.VHT.GroupId)
binary.LittleEndian.PutUint16(buf[offset+10:offset+12], m.VHT.PartialAID)
offset += 12
}
packetBuf, err := b.PrependBytes(int(offset))
if err != nil {
return err
}
if opts.FixLengths {
m.Length = offset
}
binary.LittleEndian.PutUint16(buf[2:4], m.Length)
copy(packetBuf, buf)
return nil
}
func (m *RadioTap) CanDecode() gopacket.LayerClass { return LayerTypeRadioTap }
func (m *RadioTap) NextLayerType() gopacket.LayerType { return LayerTypeDot11 }
|