File: radiotap.go

package info (click to toggle)
golang-github-gopacket-gopacket 1.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 6,004 kB
  • sloc: sh: 301; python: 76; makefile: 10
file content (1678 lines) | stat: -rw-r--r-- 46,492 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
// Copyright 2014 Google, Inc. All rights reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the LICENSE file in the root of the source
// tree.

package layers

import (
	"bytes"
	"encoding/binary"
	"errors"
	"fmt"
	"hash/crc32"
	"strings"

	"github.com/gopacket/gopacket"
)

// align calculates the number of bytes needed to align with the width
// on the offset, returning the number of bytes we need to skip to
// align to the offset (width).
func align(offset uint16, width uint16) uint16 {
	return ((((offset) + ((width) - 1)) & (^((width) - 1))) - offset)
}

type RadioTapPresent uint32

const (
	RadioTapPresentTSFT RadioTapPresent = 1 << iota
	RadioTapPresentFlags
	RadioTapPresentRate
	RadioTapPresentChannel
	RadioTapPresentFHSS
	RadioTapPresentDBMAntennaSignal
	RadioTapPresentDBMAntennaNoise
	RadioTapPresentLockQuality
	RadioTapPresentTxAttenuation
	RadioTapPresentDBTxAttenuation
	RadioTapPresentDBMTxPower
	RadioTapPresentAntenna
	RadioTapPresentDBAntennaSignal
	RadioTapPresentDBAntennaNoise
	RadioTapPresentRxFlags
	RadioTapPresentTxFlags
	RadioTapPresentRtsRetries
	RadioTapPresentDataRetries
	_
	RadioTapPresentMCS
	RadioTapPresentAMPDUStatus
	RadioTapPresentVHT
	RadiotapPresentTimestamp
	RadiotapPresentHE
	RadioTapPresentHEMU
	RadioTapPresentHEUOtherUser
	RadioTapPresentEXT RadioTapPresent = 1 << 31
)

func (r RadioTapPresent) TSFT() bool {
	return r&RadioTapPresentTSFT != 0
}
func (r RadioTapPresent) Flags() bool {
	return r&RadioTapPresentFlags != 0
}
func (r RadioTapPresent) Rate() bool {
	return r&RadioTapPresentRate != 0
}
func (r RadioTapPresent) Channel() bool {
	return r&RadioTapPresentChannel != 0
}
func (r RadioTapPresent) FHSS() bool {
	return r&RadioTapPresentFHSS != 0
}
func (r RadioTapPresent) DBMAntennaSignal() bool {
	return r&RadioTapPresentDBMAntennaSignal != 0
}
func (r RadioTapPresent) DBMAntennaNoise() bool {
	return r&RadioTapPresentDBMAntennaNoise != 0
}
func (r RadioTapPresent) LockQuality() bool {
	return r&RadioTapPresentLockQuality != 0
}
func (r RadioTapPresent) TxAttenuation() bool {
	return r&RadioTapPresentTxAttenuation != 0
}
func (r RadioTapPresent) DBTxAttenuation() bool {
	return r&RadioTapPresentDBTxAttenuation != 0
}
func (r RadioTapPresent) DBMTxPower() bool {
	return r&RadioTapPresentDBMTxPower != 0
}
func (r RadioTapPresent) Antenna() bool {
	return r&RadioTapPresentAntenna != 0
}
func (r RadioTapPresent) DBAntennaSignal() bool {
	return r&RadioTapPresentDBAntennaSignal != 0
}
func (r RadioTapPresent) DBAntennaNoise() bool {
	return r&RadioTapPresentDBAntennaNoise != 0
}
func (r RadioTapPresent) RxFlags() bool {
	return r&RadioTapPresentRxFlags != 0
}
func (r RadioTapPresent) TxFlags() bool {
	return r&RadioTapPresentTxFlags != 0
}
func (r RadioTapPresent) RtsRetries() bool {
	return r&RadioTapPresentRtsRetries != 0
}
func (r RadioTapPresent) DataRetries() bool {
	return r&RadioTapPresentDataRetries != 0
}
func (r RadioTapPresent) MCS() bool {
	return r&RadioTapPresentMCS != 0
}
func (r RadioTapPresent) AMPDUStatus() bool {
	return r&RadioTapPresentAMPDUStatus != 0
}
func (r RadioTapPresent) VHT() bool {
	return r&RadioTapPresentVHT != 0
}
func (r RadioTapPresent) Timestamp() bool {
	return r&RadiotapPresentTimestamp != 0
}
func (r RadioTapPresent) HE() bool {
	return r&RadiotapPresentHE != 0
}
func (r RadioTapPresent) HEMU() bool {
	return r&RadioTapPresentHEMU != 0
}
func (r RadioTapPresent) HEUOtherUser() bool {
	return r&RadioTapPresentHEUOtherUser != 0
}
func (r RadioTapPresent) EXT() bool {
	return r&RadioTapPresentEXT != 0
}

type RadioTapChannelFlags uint16

const (
	RadioTapChannelFlagsTurbo   RadioTapChannelFlags = 0x0010 // Turbo channel
	RadioTapChannelFlagsCCK     RadioTapChannelFlags = 0x0020 // CCK channel
	RadioTapChannelFlagsOFDM    RadioTapChannelFlags = 0x0040 // OFDM channel
	RadioTapChannelFlagsGhz2    RadioTapChannelFlags = 0x0080 // 2 GHz spectrum channel.
	RadioTapChannelFlagsGhz5    RadioTapChannelFlags = 0x0100 // 5 GHz spectrum channel
	RadioTapChannelFlagsPassive RadioTapChannelFlags = 0x0200 // Only passive scan allowed
	RadioTapChannelFlagsDynamic RadioTapChannelFlags = 0x0400 // Dynamic CCK-OFDM channel
	RadioTapChannelFlagsGFSK    RadioTapChannelFlags = 0x0800 // GFSK channel (FHSS PHY)
)

func (r RadioTapChannelFlags) Turbo() bool {
	return r&RadioTapChannelFlagsTurbo != 0
}
func (r RadioTapChannelFlags) CCK() bool {
	return r&RadioTapChannelFlagsCCK != 0
}
func (r RadioTapChannelFlags) OFDM() bool {
	return r&RadioTapChannelFlagsOFDM != 0
}
func (r RadioTapChannelFlags) Ghz2() bool {
	return r&RadioTapChannelFlagsGhz2 != 0
}
func (r RadioTapChannelFlags) Ghz5() bool {
	return r&RadioTapChannelFlagsGhz5 != 0
}
func (r RadioTapChannelFlags) Passive() bool {
	return r&RadioTapChannelFlagsPassive != 0
}
func (r RadioTapChannelFlags) Dynamic() bool {
	return r&RadioTapChannelFlagsDynamic != 0
}
func (r RadioTapChannelFlags) GFSK() bool {
	return r&RadioTapChannelFlagsGFSK != 0
}

// String provides a human readable string for RadioTapChannelFlags.
// This string is possibly subject to change over time; if you're storing this
// persistently, you should probably store the RadioTapChannelFlags value, not its string.
func (a RadioTapChannelFlags) String() string {
	var out bytes.Buffer
	if a.Turbo() {
		out.WriteString("Turbo,")
	}
	if a.CCK() {
		out.WriteString("CCK,")
	}
	if a.OFDM() {
		out.WriteString("OFDM,")
	}
	if a.Ghz2() {
		out.WriteString("Ghz2,")
	}
	if a.Ghz5() {
		out.WriteString("Ghz5,")
	}
	if a.Passive() {
		out.WriteString("Passive,")
	}
	if a.Dynamic() {
		out.WriteString("Dynamic,")
	}
	if a.GFSK() {
		out.WriteString("GFSK,")
	}

	if length := out.Len(); length > 0 {
		return string(out.Bytes()[:length-1]) // strip final comma
	}
	return ""
}

type RadioTapFlags uint8

const (
	RadioTapFlagsCFP           RadioTapFlags = 1 << iota // sent/received during CFP
	RadioTapFlagsShortPreamble                           // sent/received * with short * preamble
	RadioTapFlagsWEP                                     // sent/received * with WEP encryption
	RadioTapFlagsFrag                                    // sent/received * with fragmentation
	RadioTapFlagsFCS                                     // frame includes FCS
	RadioTapFlagsDatapad                                 // frame has padding between * 802.11 header and payload * (to 32-bit boundary)
	RadioTapFlagsBadFCS                                  // does not pass FCS check
	RadioTapFlagsShortGI                                 // HT short GI
)

func (r RadioTapFlags) CFP() bool {
	return r&RadioTapFlagsCFP != 0
}
func (r RadioTapFlags) ShortPreamble() bool {
	return r&RadioTapFlagsShortPreamble != 0
}
func (r RadioTapFlags) WEP() bool {
	return r&RadioTapFlagsWEP != 0
}
func (r RadioTapFlags) Frag() bool {
	return r&RadioTapFlagsFrag != 0
}
func (r RadioTapFlags) FCS() bool {
	return r&RadioTapFlagsFCS != 0
}
func (r RadioTapFlags) Datapad() bool {
	return r&RadioTapFlagsDatapad != 0
}
func (r RadioTapFlags) BadFCS() bool {
	return r&RadioTapFlagsBadFCS != 0
}
func (r RadioTapFlags) ShortGI() bool {
	return r&RadioTapFlagsShortGI != 0
}

// String provides a human readable string for RadioTapFlags.
// This string is possibly subject to change over time; if you're storing this
// persistently, you should probably store the RadioTapFlags value, not its string.
func (a RadioTapFlags) String() string {
	var out bytes.Buffer
	if a.CFP() {
		out.WriteString("CFP,")
	}
	if a.ShortPreamble() {
		out.WriteString("SHORT-PREAMBLE,")
	}
	if a.WEP() {
		out.WriteString("WEP,")
	}
	if a.Frag() {
		out.WriteString("FRAG,")
	}
	if a.FCS() {
		out.WriteString("FCS,")
	}
	if a.Datapad() {
		out.WriteString("DATAPAD,")
	}
	if a.ShortGI() {
		out.WriteString("SHORT-GI,")
	}

	if length := out.Len(); length > 0 {
		return string(out.Bytes()[:length-1]) // strip final comma
	}
	return ""
}

type RadioTapRate uint8

func (a RadioTapRate) String() string {
	return fmt.Sprintf("%v Mb/s", 0.5*float32(a))
}

type RadioTapChannelFrequency uint16

func (a RadioTapChannelFrequency) String() string {
	return fmt.Sprintf("%d MHz", a)
}

type RadioTapRxFlags uint16

const (
	RadioTapRxFlagsBadPlcp RadioTapRxFlags = 0x0002
)

func (self RadioTapRxFlags) BadPlcp() bool {
	return self&RadioTapRxFlagsBadPlcp != 0
}

func (self RadioTapRxFlags) String() string {
	if self.BadPlcp() {
		return "BADPLCP"
	}
	return ""
}

type RadioTapTxFlags uint16

const (
	RadioTapTxFlagsFail RadioTapTxFlags = 1 << iota
	RadioTapTxFlagsCTS
	RadioTapTxFlagsRTS
	RadioTapTxFlagsNoACK
)

func (self RadioTapTxFlags) Fail() bool  { return self&RadioTapTxFlagsFail != 0 }
func (self RadioTapTxFlags) CTS() bool   { return self&RadioTapTxFlagsCTS != 0 }
func (self RadioTapTxFlags) RTS() bool   { return self&RadioTapTxFlagsRTS != 0 }
func (self RadioTapTxFlags) NoACK() bool { return self&RadioTapTxFlagsNoACK != 0 }

func (self RadioTapTxFlags) String() string {
	var tokens []string
	if self.Fail() {
		tokens = append(tokens, "Fail")
	}
	if self.CTS() {
		tokens = append(tokens, "CTS")
	}
	if self.RTS() {
		tokens = append(tokens, "RTS")
	}
	if self.NoACK() {
		tokens = append(tokens, "NoACK")
	}
	return strings.Join(tokens, ",")
}

type RadioTapMCS struct {
	Known RadioTapMCSKnown
	Flags RadioTapMCSFlags
	MCS   uint8
}

func (self RadioTapMCS) String() string {
	var tokens []string
	if self.Known.Bandwidth() {
		token := "?"
		switch self.Flags.Bandwidth() {
		case 0:
			token = "20"
		case 1:
			token = "40"
		case 2:
			token = "40(20L)"
		case 3:
			token = "40(20U)"
		}
		tokens = append(tokens, token)
	}
	if self.Known.MCSIndex() {
		tokens = append(tokens, fmt.Sprintf("MCSIndex#%d", self.MCS))
	}
	if self.Known.GuardInterval() {
		if self.Flags.ShortGI() {
			tokens = append(tokens, fmt.Sprintf("shortGI"))
		} else {
			tokens = append(tokens, fmt.Sprintf("longGI"))
		}
	}
	if self.Known.HTFormat() {
		if self.Flags.Greenfield() {
			tokens = append(tokens, fmt.Sprintf("HT-greenfield"))
		} else {
			tokens = append(tokens, fmt.Sprintf("HT-mixed"))
		}
	}
	if self.Known.FECType() {
		if self.Flags.FECLDPC() {
			tokens = append(tokens, fmt.Sprintf("LDPC"))
		} else {
			tokens = append(tokens, fmt.Sprintf("BCC"))
		}
	}
	if self.Known.STBC() {
		tokens = append(tokens, fmt.Sprintf("STBC#%d", self.Flags.STBC()))
	}
	if self.Known.NESS() {
		num := 0
		if self.Known.NESS1() {
			num |= 0x02
		}
		if self.Flags.NESS0() {
			num |= 0x01
		}
		tokens = append(tokens, fmt.Sprintf("num-of-ESS#%d", num))
	}
	return strings.Join(tokens, ",")
}

type RadioTapMCSKnown uint8

const (
	RadioTapMCSKnownBandwidth RadioTapMCSKnown = 1 << iota
	RadioTapMCSKnownMCSIndex
	RadioTapMCSKnownGuardInterval
	RadioTapMCSKnownHTFormat
	RadioTapMCSKnownFECType
	RadioTapMCSKnownSTBC
	RadioTapMCSKnownNESS
	RadioTapMCSKnownNESS1
)

func (self RadioTapMCSKnown) Bandwidth() bool     { return self&RadioTapMCSKnownBandwidth != 0 }
func (self RadioTapMCSKnown) MCSIndex() bool      { return self&RadioTapMCSKnownMCSIndex != 0 }
func (self RadioTapMCSKnown) GuardInterval() bool { return self&RadioTapMCSKnownGuardInterval != 0 }
func (self RadioTapMCSKnown) HTFormat() bool      { return self&RadioTapMCSKnownHTFormat != 0 }
func (self RadioTapMCSKnown) FECType() bool       { return self&RadioTapMCSKnownFECType != 0 }
func (self RadioTapMCSKnown) STBC() bool          { return self&RadioTapMCSKnownSTBC != 0 }
func (self RadioTapMCSKnown) NESS() bool          { return self&RadioTapMCSKnownNESS != 0 }
func (self RadioTapMCSKnown) NESS1() bool         { return self&RadioTapMCSKnownNESS1 != 0 }

type RadioTapMCSFlags uint8

const (
	RadioTapMCSFlagsBandwidthMask RadioTapMCSFlags = 0x03
	RadioTapMCSFlagsShortGI                        = 0x04
	RadioTapMCSFlagsGreenfield                     = 0x08
	RadioTapMCSFlagsFECLDPC                        = 0x10
	RadioTapMCSFlagsSTBCMask                       = 0x60
	RadioTapMCSFlagsNESS0                          = 0x80
)

func (self RadioTapMCSFlags) Bandwidth() int {
	return int(self & RadioTapMCSFlagsBandwidthMask)
}
func (self RadioTapMCSFlags) ShortGI() bool    { return self&RadioTapMCSFlagsShortGI != 0 }
func (self RadioTapMCSFlags) Greenfield() bool { return self&RadioTapMCSFlagsGreenfield != 0 }
func (self RadioTapMCSFlags) FECLDPC() bool    { return self&RadioTapMCSFlagsFECLDPC != 0 }
func (self RadioTapMCSFlags) STBC() int {
	return int(self&RadioTapMCSFlagsSTBCMask) >> 5
}
func (self RadioTapMCSFlags) NESS0() bool { return self&RadioTapMCSFlagsNESS0 != 0 }

type RadioTapAMPDUStatus struct {
	Reference uint32
	Flags     RadioTapAMPDUStatusFlags
	CRC       uint8
}

func (self RadioTapAMPDUStatus) String() string {
	tokens := []string{
		fmt.Sprintf("ref#%x", self.Reference),
	}
	if self.Flags.ReportZerolen() && self.Flags.IsZerolen() {
		tokens = append(tokens, fmt.Sprintf("zero-length"))
	}
	if self.Flags.LastKnown() && self.Flags.IsLast() {
		tokens = append(tokens, "last")
	}
	if self.Flags.DelimCRCErr() {
		tokens = append(tokens, "delimiter CRC error")
	}
	if self.Flags.DelimCRCKnown() {
		tokens = append(tokens, fmt.Sprintf("delimiter-CRC=%02x", self.CRC))
	}
	return strings.Join(tokens, ",")
}

type RadioTapAMPDUStatusFlags uint16

const (
	RadioTapAMPDUStatusFlagsReportZerolen RadioTapAMPDUStatusFlags = 1 << iota
	RadioTapAMPDUIsZerolen
	RadioTapAMPDULastKnown
	RadioTapAMPDUIsLast
	RadioTapAMPDUDelimCRCErr
	RadioTapAMPDUDelimCRCKnown
)

func (self RadioTapAMPDUStatusFlags) ReportZerolen() bool {
	return self&RadioTapAMPDUStatusFlagsReportZerolen != 0
}
func (self RadioTapAMPDUStatusFlags) IsZerolen() bool   { return self&RadioTapAMPDUIsZerolen != 0 }
func (self RadioTapAMPDUStatusFlags) LastKnown() bool   { return self&RadioTapAMPDULastKnown != 0 }
func (self RadioTapAMPDUStatusFlags) IsLast() bool      { return self&RadioTapAMPDUIsLast != 0 }
func (self RadioTapAMPDUStatusFlags) DelimCRCErr() bool { return self&RadioTapAMPDUDelimCRCErr != 0 }
func (self RadioTapAMPDUStatusFlags) DelimCRCKnown() bool {
	return self&RadioTapAMPDUDelimCRCKnown != 0
}

type RadioTapVHT struct {
	Known      RadioTapVHTKnown
	Flags      RadioTapVHTFlags
	Bandwidth  uint8
	MCSNSS     [4]RadioTapVHTMCSNSS
	Coding     uint8
	GroupId    uint8
	PartialAID uint16
}

func (self RadioTapVHT) String() string {
	var tokens []string
	if self.Known.STBC() {
		if self.Flags.STBC() {
			tokens = append(tokens, "STBC")
		} else {
			tokens = append(tokens, "no STBC")
		}
	}
	if self.Known.TXOPPSNotAllowed() {
		if self.Flags.TXOPPSNotAllowed() {
			tokens = append(tokens, "TXOP doze not allowed")
		} else {
			tokens = append(tokens, "TXOP doze allowed")
		}
	}
	if self.Known.GI() {
		if self.Flags.SGI() {
			tokens = append(tokens, "short GI")
		} else {
			tokens = append(tokens, "long GI")
		}
	}
	if self.Known.SGINSYMDisambiguation() {
		if self.Flags.SGINSYMMod() {
			tokens = append(tokens, "NSYM mod 10=9")
		} else {
			tokens = append(tokens, "NSYM mod 10!=9 or no short GI")
		}
	}
	if self.Known.LDPCExtraOFDMSymbol() {
		if self.Flags.LDPCExtraOFDMSymbol() {
			tokens = append(tokens, "LDPC extra OFDM symbols")
		} else {
			tokens = append(tokens, "no LDPC extra OFDM symbols")
		}
	}
	if self.Known.Beamformed() {
		if self.Flags.Beamformed() {
			tokens = append(tokens, "beamformed")
		} else {
			tokens = append(tokens, "no beamformed")
		}
	}
	if self.Known.Bandwidth() {
		token := "?"
		switch self.Bandwidth & 0x1f {
		case 0:
			token = "20"
		case 1:
			token = "40"
		case 2:
			token = "40(20L)"
		case 3:
			token = "40(20U)"
		case 4:
			token = "80"
		case 5:
			token = "80(40L)"
		case 6:
			token = "80(40U)"
		case 7:
			token = "80(20LL)"
		case 8:
			token = "80(20LU)"
		case 9:
			token = "80(20UL)"
		case 10:
			token = "80(20UU)"
		case 11:
			token = "160"
		case 12:
			token = "160(80L)"
		case 13:
			token = "160(80U)"
		case 14:
			token = "160(40LL)"
		case 15:
			token = "160(40LU)"
		case 16:
			token = "160(40UL)"
		case 17:
			token = "160(40UU)"
		case 18:
			token = "160(20LLL)"
		case 19:
			token = "160(20LLU)"
		case 20:
			token = "160(20LUL)"
		case 21:
			token = "160(20LUU)"
		case 22:
			token = "160(20ULL)"
		case 23:
			token = "160(20ULU)"
		case 24:
			token = "160(20UUL)"
		case 25:
			token = "160(20UUU)"
		}
		tokens = append(tokens, token)
	}
	for i, MCSNSS := range self.MCSNSS {
		if MCSNSS.Present() {
			fec := "?"
			switch self.Coding & (1 << uint8(i)) {
			case 0:
				fec = "BCC"
			case 1:
				fec = "LDPC"
			}
			tokens = append(tokens, fmt.Sprintf("user%d(%s,%s)", i, MCSNSS.String(), fec))
		}
	}
	if self.Known.GroupId() {
		tokens = append(tokens,
			fmt.Sprintf("group=%d", self.GroupId))
	}
	if self.Known.PartialAID() {
		tokens = append(tokens,
			fmt.Sprintf("partial-AID=%d", self.PartialAID))
	}
	return strings.Join(tokens, ",")
}

type RadioTapVHTKnown uint16

const (
	RadioTapVHTKnownSTBC RadioTapVHTKnown = 1 << iota
	RadioTapVHTKnownTXOPPSNotAllowed
	RadioTapVHTKnownGI
	RadioTapVHTKnownSGINSYMDisambiguation
	RadioTapVHTKnownLDPCExtraOFDMSymbol
	RadioTapVHTKnownBeamformed
	RadioTapVHTKnownBandwidth
	RadioTapVHTKnownGroupId
	RadioTapVHTKnownPartialAID
)

func (self RadioTapVHTKnown) STBC() bool { return self&RadioTapVHTKnownSTBC != 0 }
func (self RadioTapVHTKnown) TXOPPSNotAllowed() bool {
	return self&RadioTapVHTKnownTXOPPSNotAllowed != 0
}
func (self RadioTapVHTKnown) GI() bool { return self&RadioTapVHTKnownGI != 0 }
func (self RadioTapVHTKnown) SGINSYMDisambiguation() bool {
	return self&RadioTapVHTKnownSGINSYMDisambiguation != 0
}
func (self RadioTapVHTKnown) LDPCExtraOFDMSymbol() bool {
	return self&RadioTapVHTKnownLDPCExtraOFDMSymbol != 0
}
func (self RadioTapVHTKnown) Beamformed() bool { return self&RadioTapVHTKnownBeamformed != 0 }
func (self RadioTapVHTKnown) Bandwidth() bool  { return self&RadioTapVHTKnownBandwidth != 0 }
func (self RadioTapVHTKnown) GroupId() bool    { return self&RadioTapVHTKnownGroupId != 0 }
func (self RadioTapVHTKnown) PartialAID() bool { return self&RadioTapVHTKnownPartialAID != 0 }

type RadioTapVHTFlags uint8

const (
	RadioTapVHTFlagsSTBC RadioTapVHTFlags = 1 << iota
	RadioTapVHTFlagsTXOPPSNotAllowed
	RadioTapVHTFlagsSGI
	RadioTapVHTFlagsSGINSYMMod
	RadioTapVHTFlagsLDPCExtraOFDMSymbol
	RadioTapVHTFlagsBeamformed
)

func (self RadioTapVHTFlags) STBC() bool { return self&RadioTapVHTFlagsSTBC != 0 }
func (self RadioTapVHTFlags) TXOPPSNotAllowed() bool {
	return self&RadioTapVHTFlagsTXOPPSNotAllowed != 0
}
func (self RadioTapVHTFlags) SGI() bool        { return self&RadioTapVHTFlagsSGI != 0 }
func (self RadioTapVHTFlags) SGINSYMMod() bool { return self&RadioTapVHTFlagsSGINSYMMod != 0 }
func (self RadioTapVHTFlags) LDPCExtraOFDMSymbol() bool {
	return self&RadioTapVHTFlagsLDPCExtraOFDMSymbol != 0
}
func (self RadioTapVHTFlags) Beamformed() bool { return self&RadioTapVHTFlagsBeamformed != 0 }

type RadioTapVHTMCSNSS uint8

func (self RadioTapVHTMCSNSS) Present() bool {
	return self&0x0F != 0
}

func (self RadioTapVHTMCSNSS) String() string {
	return fmt.Sprintf("NSS#%dMCS#%d", uint32(self&0xf), uint32(self>>4))
}

type RadiotapHE struct {
	Data1 RadiotapHEData1
	Data2 RadiotapHEData2
	Data3 RadiotapHEData3
	Data4 RadiotapHEData4
	Data5 RadiotapHEData5
	Data6 RadiotapHEData6
}

func (self RadiotapHE) String() string {
	var tokens []string
	tokens = append(tokens, fmt.Sprintf("HE PPDU Format: %v", self.Data1.HE_PPDUFormat()))
	if self.Data1.BSSColorKnown() {
		tokens = append(tokens, fmt.Sprintf("BSS Color: %d", self.Data3.BSSColor()))
	}
	if self.Data1.BeamChangeKnown() {
		if self.Data3.BeamChange() {
			tokens = append(tokens, "Beam Change")
		} else {
			tokens = append(tokens, "No Beam Change")
		}
	}
	if self.Data1.ULDLKnown() {
		if self.Data3.ULDL() {
			tokens = append(tokens, "UL")
		} else {
			tokens = append(tokens, "DL")
		}
	}
	if self.Data1.DataMCSKnown() {
		tokens = append(tokens, fmt.Sprintf("Data MCS: %d", self.Data3.DataMCS()))
	}
	if self.Data1.DataDCMKnown() {
		if self.Data3.DataDCM() {
			tokens = append(tokens, "Data DCM applied")
		} else {
			tokens = append(tokens, "Data DCM not applied")
		}
	}
	if self.Data1.CodingKnown() {
		tokens = append(tokens, fmt.Sprintf("Coding: %v", self.Data3.Coding()))
	}
	if self.Data1.LDPCExtraSymbolSegmentKnown() {
		if self.Data3.LDPCExtraSymbolSegment() {
			tokens = append(tokens, "LDPC Extra Symbol Segment")
		} else {
			tokens = append(tokens, "No LDPC Extra Symbol Segment")
		}
	}
	if self.Data1.STBCKnown() {
		if self.Data3.STBC() {
			tokens = append(tokens, "STBC")
		} else {
			tokens = append(tokens, "No STBC")
		}
	}
	switch self.Data1.HE_PPDUFormat() {
	case RadiotapHePpduFormatHE_SU:
	case RadiotapHePpduFormatHE_EXT_SU:
		if self.Data1.SpatialReuseKnown() {
			tokens = append(tokens, fmt.Sprintf("Spatial Reuse: %d", self.Data4&0x000f))
		}
	case RadiotapHePpduFormatHE_TRIG:
		if self.Data1.SpatialReuse1Known() {
			tokens = append(tokens, fmt.Sprintf("Spatial Reuse 1: %d", self.Data4&0x000f))
		}
		if self.Data1.SpatialReuse2Known() {
			tokens = append(tokens, fmt.Sprintf("Spatial Reuse 2: %d", self.Data4&0x00f0>>4))
		}
		if self.Data1.SpatialReuse3Known() {
			tokens = append(tokens, fmt.Sprintf("Spatial Reuse 3: %d", self.Data4&0x0f00>>8))
		}
		if self.Data1.SpatialReuse4Known() {
			tokens = append(tokens, fmt.Sprintf("Spatial Reuse 4: %d", self.Data4&0xf000>>12))
		}
	case RadiotapHePpduFormatHE_MU:
		if self.Data1.SpatialReuseKnown() {
			tokens = append(tokens, fmt.Sprintf("Spatial Reuse: %d", self.Data4&0x000f))
		}
		if self.Data1.StaIDKnown() {
			tokens = append(tokens, fmt.Sprintf("STA ID: %d", self.Data4&0x7ff0>>4))
		}
	}
	if self.Data1.DataBWRUAllocationKnown() {
		tokens = append(tokens, fmt.Sprintf("Data BW/RU Allocation: %s", self.Data5.DataBandwidth()))
	}
	if self.Data2.GIKnown() {
		tokens = append(tokens, fmt.Sprintf("GI: %v", self.Data5.Gi()))
	}
	if self.Data2.NumLTFKnown() {
		tokens = append(tokens, fmt.Sprintf("LTF Symbol size: %s", self.Data5.LTFSize()))
		tokens = append(tokens, fmt.Sprintf("Number of LTF symbols: %s", self.Data5.NumLTFSymbols()))
	}
	if self.Data2.PreFECPaddingFactorKnown() {
		tokens = append(tokens, fmt.Sprintf("Pre-FEC Padding Factor: %d", self.Data5.PreFECPaddingFactor()))
	}
	if self.Data2.TxBFKnown() {
		if self.Data5.TxBF() {
			tokens = append(tokens, "TxBF")
		} else {
			tokens = append(tokens, "No TxBF")
		}
	}
	if self.Data2.PEDisambiguityKnown() {
		if self.Data5.PEDisambiguity() {
			tokens = append(tokens, "PE Disambiguity")
		} else {
			tokens = append(tokens, "No PE Disambiguity")
		}
	}
	nSts := self.Data6.NSTS()
	if nSts > 0 {
		tokens = append(tokens, fmt.Sprintf("NSTS: %d", self.Data6.NSTS()))
	} else {
		tokens = append(tokens, "NSTS: unknown")
	}
	if self.Data1.DopplerKnown() {
		if self.Data6.Doppler() {
			tokens = append(tokens, "Doppler")
		} else {
			tokens = append(tokens, "No Doppler")
		}
	}
	if self.Data2.TXOPKnown() {
		tokens = append(tokens, fmt.Sprintf("TXOP: %d", self.Data6.TXOP()))
	}
	if self.Data2.MidamblePeriodicityKnown() {
		tokens = append(tokens, fmt.Sprintf("Midamble Periodicity: %v", self.Data6.MidamblePeriodicity()))
	}
	return strings.Join(tokens, ",")
}

type RadiotapHEData1 uint16

const (
	RadiotapHEData1_HE_PPDUFormatMask          RadiotapHEData1 = 0x0003
	RadiotapHEData1BSSColorKnown               RadiotapHEData1 = 0x0004
	RadiotapHEData1BeamChangeKnown             RadiotapHEData1 = 0x0008
	RadiotapHEData1ULDLKnown                   RadiotapHEData1 = 0x0010
	RadiotapHEData1DataMCSKnown                RadiotapHEData1 = 0x0020
	RadiotapHEData1DataDCMKnown                RadiotapHEData1 = 0x0040
	RadiotapHEData1CodingKnown                 RadiotapHEData1 = 0x0080
	RadiotapHEData1LDPCExtraSymbolSegmentKnown RadiotapHEData1 = 0x0100
	RadiotapHEData1STBCKnown                   RadiotapHEData1 = 0x0200
	RadiotapHEData1SpatialReuseKnown           RadiotapHEData1 = 0x0400
	RadiotapHEData1SpatialReuse1Known          RadiotapHEData1 = 0x0400
	RadiotapHEData1SpatialReuse2Known          RadiotapHEData1 = 0x0800
	RadiotapHEData1StaIDKnown                  RadiotapHEData1 = 0x8000
	RadiotapHEData1SpatialReuse3Known          RadiotapHEData1 = 0x1000
	RadiotapHEData1SpatialReuse4Known          RadiotapHEData1 = 0x2000
	RadiotapHEData1DataBWRUAllocationKnown     RadiotapHEData1 = 0x4000
	RadiotapHEData1DopplerKnown                RadiotapHEData1 = 0x8000
)

func (self RadiotapHEData1) HE_PPDUFormat() RadiotapHePpduFormat {
	return RadiotapHePpduFormat(self & 0x0003)
}

func (self RadiotapHEData1) BSSColorKnown() bool {
	return self&RadiotapHEData1BSSColorKnown != 0
}

func (self RadiotapHEData1) BeamChangeKnown() bool {
	return self&RadiotapHEData1BeamChangeKnown != 0
}

func (self RadiotapHEData1) ULDLKnown() bool {
	return self&RadiotapHEData1ULDLKnown != 0
}

func (self RadiotapHEData1) DataMCSKnown() bool {
	return self&RadiotapHEData1DataMCSKnown != 0
}

func (self RadiotapHEData1) DataDCMKnown() bool {
	return self&RadiotapHEData1DataDCMKnown != 0
}

func (self RadiotapHEData1) CodingKnown() bool {
	return self&RadiotapHEData1CodingKnown != 0
}

func (self RadiotapHEData1) LDPCExtraSymbolSegmentKnown() bool {
	return self&RadiotapHEData1LDPCExtraSymbolSegmentKnown != 0
}

func (self RadiotapHEData1) STBCKnown() bool {
	return self&RadiotapHEData1STBCKnown != 0
}

func (self RadiotapHEData1) SpatialReuseKnown() bool {
	return self&RadiotapHEData1SpatialReuseKnown != 0
}

func (self RadiotapHEData1) SpatialReuse1Known() bool {
	return self&RadiotapHEData1SpatialReuse1Known != 0
}

func (self RadiotapHEData1) SpatialReuse2Known() bool {
	return self&RadiotapHEData1SpatialReuse2Known != 0
}

func (self RadiotapHEData1) StaIDKnown() bool {
	return self&RadiotapHEData1StaIDKnown != 0
}

func (self RadiotapHEData1) SpatialReuse3Known() bool {
	return self&RadiotapHEData1SpatialReuse3Known != 0
}

func (self RadiotapHEData1) SpatialReuse4Known() bool {
	return self&RadiotapHEData1SpatialReuse4Known != 0
}

func (self RadiotapHEData1) DataBWRUAllocationKnown() bool {
	return self&RadiotapHEData1DataBWRUAllocationKnown != 0
}

func (self RadiotapHEData1) DopplerKnown() bool {
	return self&RadiotapHEData1DopplerKnown != 0
}

type RadiotapHePpduFormat uint8

const (
	RadiotapHePpduFormatHE_SU RadiotapHePpduFormat = iota
	RadiotapHePpduFormatHE_EXT_SU
	RadiotapHePpduFormatHE_MU
	RadiotapHePpduFormatHE_TRIG
)

func (self RadiotapHePpduFormat) String() string {
	switch self {
	case RadiotapHePpduFormatHE_SU:
		return "HE SU"
	case RadiotapHePpduFormatHE_EXT_SU:
		return "HE EXT SU"
	case RadiotapHePpduFormatHE_MU:
		return "HE MU"
	case RadiotapHePpduFormatHE_TRIG:
		return "HE TRIG"
	}
	return fmt.Sprintf("HE Unknown(%d)", self)
}

type RadiotapHEData2 uint16

const (
	RadiotapHEData2PriSec80MHzKnown         RadiotapHEData2 = 0x0001
	RadiotapHEData2GIKnown                  RadiotapHEData2 = 0x0002
	RadiotapHEData2NumLTFKnown              RadiotapHEData2 = 0x0004
	RadiotapHEData2PreFECPaddingFactorKnown RadiotapHEData2 = 0x0008
	RadiotapHEData2TxBFKnown                RadiotapHEData2 = 0x0010
	RadiotapHEData2PEDisambiguityKnown      RadiotapHEData2 = 0x0020
	RadiotapHEData2TXOPKnown                RadiotapHEData2 = 0x0040
	RadiotapHEData2MidamblePeriodicityKnown RadiotapHEData2 = 0x0080
	RadiotapHEData2RUAllocationOffset       RadiotapHEData2 = 0x3f00
	RadiotapHEData2RUAllocationOffsetKnown  RadiotapHEData2 = 0x4000
	RadiotapHEData2PriSec80MHz              RadiotapHEData2 = 0x8000
)

func (self RadiotapHEData2) PriSec80MHzKnown() bool {
	return self&RadiotapHEData2PriSec80MHzKnown != 0
}

func (self RadiotapHEData2) GIKnown() bool {
	return self&RadiotapHEData2GIKnown != 0
}

func (self RadiotapHEData2) NumLTFKnown() bool {
	return self&RadiotapHEData2NumLTFKnown != 0
}

func (self RadiotapHEData2) PreFECPaddingFactorKnown() bool {
	return self&RadiotapHEData2PreFECPaddingFactorKnown != 0
}

func (self RadiotapHEData2) TxBFKnown() bool {
	return self&RadiotapHEData2TxBFKnown != 0
}

func (self RadiotapHEData2) PEDisambiguityKnown() bool {
	return self&RadiotapHEData2PEDisambiguityKnown != 0
}

func (self RadiotapHEData2) TXOPKnown() bool {
	return self&RadiotapHEData2TXOPKnown != 0
}

func (self RadiotapHEData2) MidamblePeriodicityKnown() bool {
	return self&RadiotapHEData2MidamblePeriodicityKnown != 0
}

func (self RadiotapHEData2) RUAllocationOffset() int {
	return int(self&RadiotapHEData2RUAllocationOffset) >> 8
}

func (self RadiotapHEData2) RUAllocationOffsetKnown() bool {
	return self&RadiotapHEData2RUAllocationOffsetKnown != 0
}

func (self RadiotapHEData2) PriSec80MHz() bool {
	return self&RadiotapHEData2PriSec80MHz != 0
}

type RadiotapHEPriSec80MHz bool

type RadiotapHEData3 uint16

const (
	RadiotapHEData3BSSColorMask           RadiotapHEData3 = 0x003F
	RadiotapHEData3BeamChange             RadiotapHEData3 = 0x0040
	RadiotapHEData3ULDL                   RadiotapHEData3 = 0x0080
	RadiotapHEData3DataMCSMask            RadiotapHEData3 = 0x0F00
	RadiotapHEData3DataDCM                RadiotapHEData3 = 0x1000
	RadiotapHEData3Coding                 RadiotapHEData3 = 0x2000
	RadiotapHEData3LDPCEXtraSymbolSegment RadiotapHEData3 = 0x4000
	RadiotapHEData3STBC                   RadiotapHEData3 = 0x8000
)

func (self RadiotapHEData3) BSSColor() int {
	return int(self & RadiotapHEData3BSSColorMask)
}

func (self RadiotapHEData3) BeamChange() bool {
	return self&RadiotapHEData3BeamChange != 0
}

func (self RadiotapHEData3) ULDL() bool {
	return self&RadiotapHEData3ULDL != 0
}

func (self RadiotapHEData3) DataMCS() uint8 {
	return uint8((self & RadiotapHEData3DataMCSMask) >> 8)
}

func (self RadiotapHEData3) DataDCM() bool {
	return self&RadiotapHEData3DataDCM != 0
}

func (self RadiotapHEData3) Coding() RadiotapHECoding {
	return self&RadiotapHEData3Coding != 0
}

func (self RadiotapHEData3) LDPCExtraSymbolSegment() bool {
	return self&RadiotapHEData3LDPCEXtraSymbolSegment != 0
}

func (self RadiotapHEData3) STBC() bool {
	return self&RadiotapHEData3STBC != 0
}

type RadiotapHECoding bool

const (
	RadiotapHECodingBCC  RadiotapHECoding = false
	RadiotapHECodingLDPC RadiotapHECoding = true
)

type RadiotapHEData4 uint16

type RadiotapHEData5 uint16

const (
	RadiotapHEData5DataBandwidthMask   RadiotapHEData5 = 0x000F
	RadiotapHEData5GI                  RadiotapHEData5 = 0x0030
	RadiotapHEData5LTFSize             RadiotapHEData5 = 0x00C0
	RadiotapHEData5NumLTFSymbols       RadiotapHEData5 = 0x0700
	RadiotapHEData5PreFECPaddingFactor RadiotapHEData5 = 0x3000
	RadiotapHEData5TxBF                RadiotapHEData5 = 0x4000
	RadiotapHEData5PEDisambiguity      RadiotapHEData5 = 0x8000
)

type DataBandwidth uint8

const (
	DataBandwidth20 DataBandwidth = iota
	DataBandwidth40
	DataBandwidth80
	DataBandwidth160
	DataBandwidth26ToneRU
	DataBandwidth52ToneRU
	DataBandwidth106ToneRU
	DataBandwidth242ToneRU
	DataBandwidth484ToneRU
	DataBandwidth996ToneRU
	DataBandwidth2x996ToneRU
)

func (db DataBandwidth) String() string {
	switch db {
	case DataBandwidth20:
		return "20"
	case DataBandwidth40:
		return "40"
	case DataBandwidth80:
		return "80"
	case DataBandwidth160:
		return "160/80+80"
	case DataBandwidth26ToneRU:
		return "26-tone RU"
	case DataBandwidth52ToneRU:
		return "52-tone RU"
	case DataBandwidth106ToneRU:
		return "106-tone RU"
	case DataBandwidth242ToneRU:
		return "242-tone RU"
	case DataBandwidth484ToneRU:
		return "484-tone RU"
	case DataBandwidth996ToneRU:
		return "996-tone RU"
	case DataBandwidth2x996ToneRU:
		return "2x996-tone RU"
	default:
		return "Unknown"
	}
}

func (self RadiotapHEData5) DataBandwidth() DataBandwidth {
	return DataBandwidth(self & RadiotapHEData5DataBandwidthMask)
}

func (self RadiotapHEData5) Gi() Gi {
	return Gi((self & RadiotapHEData5GI) >> 4)
}

func (self RadiotapHEData5) LTFSize() LTF {
	return LTF((self & RadiotapHEData5LTFSize) >> 6)
}

func (self RadiotapHEData5) NumLTFSymbols() NLTF {
	return NLTF((self & RadiotapHEData5NumLTFSymbols) >> 8)
}

func (self RadiotapHEData5) PreFECPaddingFactor() uint8 {
	return uint8((self & RadiotapHEData5PreFECPaddingFactor) >> 12)
}

func (self RadiotapHEData5) TxBF() bool {
	return self&RadiotapHEData5TxBF != 0
}

func (self RadiotapHEData5) PEDisambiguity() bool {
	return self&RadiotapHEData5PEDisambiguity != 0
}

type Gi uint8

const (
	Gi_0_8us Gi = iota
	Gi_1_6us
	Gi_3_2us
	Gi_reserved
)

func (gi Gi) String() string {
	switch gi {
	case Gi_0_8us:
		return "0.8us"
	case Gi_1_6us:
		return "1.6us"
	case Gi_3_2us:
		return "3.2us"
	default:
		return "Reserved"
	}
}

type LTF uint8

const (
	LTF_unknown LTF = iota
	LTF_1x
	LTF_2x
	LTF_4x
)

func (ltf LTF) String() string {
	switch ltf {
	case LTF_unknown:
		return "Unknown"
	case LTF_1x:
		return "1x"
	case LTF_2x:
		return "2x"
	case LTF_4x:
		return "4x"
	default:
		return "Unknown"
	}
}

type NLTF uint8

const (
	NLTF_1x NLTF = iota
	NLTF_2x
	NLTF_4x
	NLTF_6x
	NLTF_8x
	NLTF_reserved
)

func (nltf NLTF) String() string {
	switch nltf {
	case NLTF_1x:
		return "1x"
	case NLTF_2x:
		return "2x"
	case NLTF_4x:
		return "4x"
	case NLTF_6x:
		return "6x"
	case NLTF_8x:
		return "8x"
	default:
		return "Reserved"
	}
}

type MidamblePeriodicity uint8

const (
	MidamblePeriodicity_10 MidamblePeriodicity = iota
	MidamblePeriodicity_20
)

func (mp MidamblePeriodicity) String() string {
	switch mp {
	case MidamblePeriodicity_10:
		return "10"
	case MidamblePeriodicity_20:
		return "20"
	default:
		return "Unknown"
	}
}

type RadiotapHEData6 uint16

const (
	RadiotapHEData6NSTS             RadiotapHEData6 = 0x000F
	RadiotapHEData6Doppler          RadiotapHEData6 = 0x0010
	RadiotapHEData6TXOP             RadiotapHEData6 = 0x7F00
	RadiotapHEData6MidamblePeriodic RadiotapHEData6 = 0x8000
)

func (self RadiotapHEData6) NSTS() int {
	return int(self & RadiotapHEData6NSTS)
}

func (self RadiotapHEData6) Doppler() bool {
	return self&RadiotapHEData6Doppler != 0
}

func (self RadiotapHEData6) TXOP() int {
	return int((self & RadiotapHEData6TXOP) >> 8)
}

func (self RadiotapHEData6) MidamblePeriodicity() MidamblePeriodicity {
	return MidamblePeriodicity((self & RadiotapHEData6MidamblePeriodic) >> 15)
}

func decodeRadioTap(data []byte, p gopacket.PacketBuilder) error {
	d := &RadioTap{}
	// TODO: Should we set LinkLayer here? And implement LinkFlow
	return decodingLayerDecoder(d, data, p)
}

type RadioTap struct {
	BaseLayer

	// Version 0. Only increases for drastic changes, introduction of compatible new fields does not count.
	Version uint8
	// Length of the whole header in bytes, including it_version, it_pad, it_len, and data fields.
	Length uint16
	// Present is a bitmap telling which fields are present. Set bit 31 (0x80000000) to extend the bitmap by another 32 bits. Additional extensions are made by setting bit 31.
	Present RadioTapPresent
	// TSFT: value in microseconds of the MAC's 64-bit 802.11 Time Synchronization Function timer when the first bit of the MPDU arrived at the MAC. For received frames, only.
	TSFT  uint64
	Flags RadioTapFlags
	// Rate Tx/Rx data rate
	Rate RadioTapRate
	// ChannelFrequency Tx/Rx frequency in MHz, followed by flags
	ChannelFrequency RadioTapChannelFrequency
	ChannelFlags     RadioTapChannelFlags
	// FHSS For frequency-hopping radios, the hop set (first byte) and pattern (second byte).
	FHSS uint16
	// DBMAntennaSignal RF signal power at the antenna, decibel difference from one milliwatt.
	DBMAntennaSignal int8
	// DBMAntennaNoise RF noise power at the antenna, decibel difference from one milliwatt.
	DBMAntennaNoise int8
	// LockQuality Quality of Barker code lock. Unitless. Monotonically nondecreasing with "better" lock strength. Called "Signal Quality" in datasheets.
	LockQuality uint16
	// TxAttenuation Transmit power expressed as unitless distance from max power set at factory calibration.  0 is max power. Monotonically nondecreasing with lower power levels.
	TxAttenuation uint16
	// DBTxAttenuation Transmit power expressed as decibel distance from max power set at factory calibration.  0 is max power.  Monotonically nondecreasing with lower power levels.
	DBTxAttenuation uint16
	// DBMTxPower Transmit power expressed as dBm (decibels from a 1 milliwatt reference). This is the absolute power level measured at the antenna port.
	DBMTxPower int8
	// Antenna Unitless indication of the Rx/Tx antenna for this packet. The first antenna is antenna 0.
	Antenna uint8
	// DBAntennaSignal RF signal power at the antenna, decibel difference from an arbitrary, fixed reference.
	DBAntennaSignal uint8
	// DBAntennaNoise RF noise power at the antenna, decibel difference from an arbitrary, fixed reference point.
	DBAntennaNoise uint8
	//
	RxFlags     RadioTapRxFlags
	TxFlags     RadioTapTxFlags
	RtsRetries  uint8
	DataRetries uint8
	MCS         RadioTapMCS
	AMPDUStatus RadioTapAMPDUStatus
	VHT         RadioTapVHT
	HE          RadiotapHE
}

func (m *RadioTap) LayerType() gopacket.LayerType { return LayerTypeRadioTap }

func (m *RadioTap) DecodeFromBytes(data []byte, df gopacket.DecodeFeedback) error {
	dataLen := uint16(len(data))
	if dataLen < 8 {
		df.SetTruncated()
		return errors.New("RadioTap too small")
	}
	m.Version = uint8(data[0])
	m.Length = binary.LittleEndian.Uint16(data[2:4])
	m.Present = RadioTapPresent(binary.LittleEndian.Uint32(data[4:8]))

	// Truncate the length to avoid panics, might be smaller due to corruption or loss
	if m.Length > dataLen {
		m.Length = dataLen
	}

	offset := uint16(4)

	for (binary.LittleEndian.Uint32(data[offset:offset+4]) & 0x80000000) != 0 {
		// This parser only handles standard radiotap namespace,
		// and expects all fields are packed in the first it_present.
		// Extended bitmap will be just ignored.
		offset += 4
	}
	offset += 4 // skip the bitmap

	if m.Present.TSFT() {
		offset += align(offset, 8)
		m.TSFT = binary.LittleEndian.Uint64(data[offset : offset+8])
		offset += 8
	}
	if m.Present.Flags() {
		m.Flags = RadioTapFlags(data[offset])
		offset++
	}
	if m.Present.Rate() {
		m.Rate = RadioTapRate(data[offset])
		offset++
	}
	if m.Present.Channel() {
		offset += align(offset, 2)
		m.ChannelFrequency = RadioTapChannelFrequency(binary.LittleEndian.Uint16(data[offset : offset+2]))
		offset += 2
		m.ChannelFlags = RadioTapChannelFlags(binary.LittleEndian.Uint16(data[offset : offset+2]))
		offset += 2
	}
	if m.Present.FHSS() {
		m.FHSS = binary.LittleEndian.Uint16(data[offset : offset+2])
		offset += 2
	}
	if m.Present.DBMAntennaSignal() {
		m.DBMAntennaSignal = int8(data[offset])
		offset++
	}
	if m.Present.DBMAntennaNoise() {
		m.DBMAntennaNoise = int8(data[offset])
		offset++
	}
	if m.Present.LockQuality() {
		offset += align(offset, 2)
		m.LockQuality = binary.LittleEndian.Uint16(data[offset : offset+2])
		offset += 2
	}
	if m.Present.TxAttenuation() {
		offset += align(offset, 2)
		m.TxAttenuation = binary.LittleEndian.Uint16(data[offset : offset+2])
		offset += 2
	}
	if m.Present.DBTxAttenuation() {
		offset += align(offset, 2)
		m.DBTxAttenuation = binary.LittleEndian.Uint16(data[offset : offset+2])
		offset += 2
	}
	if m.Present.DBMTxPower() {
		m.DBMTxPower = int8(data[offset])
		offset++
	}
	if m.Present.Antenna() {
		m.Antenna = uint8(data[offset])
		offset++
	}
	if m.Present.DBAntennaSignal() {
		m.DBAntennaSignal = uint8(data[offset])
		offset++
	}
	if m.Present.DBAntennaNoise() {
		m.DBAntennaNoise = uint8(data[offset])
		offset++
	}
	if m.Present.RxFlags() {
		offset += align(offset, 2)
		m.RxFlags = RadioTapRxFlags(binary.LittleEndian.Uint16(data[offset:]))
		offset += 2
	}
	if m.Present.TxFlags() {
		offset += align(offset, 2)
		m.TxFlags = RadioTapTxFlags(binary.LittleEndian.Uint16(data[offset:]))
		offset += 2
	}
	if m.Present.RtsRetries() {
		m.RtsRetries = uint8(data[offset])
		offset++
	}
	if m.Present.DataRetries() {
		m.DataRetries = uint8(data[offset])
		offset++
	}
	if m.Present.MCS() {
		m.MCS = RadioTapMCS{
			RadioTapMCSKnown(data[offset]),
			RadioTapMCSFlags(data[offset+1]),
			uint8(data[offset+2]),
		}
		offset += 3
	}
	if m.Present.AMPDUStatus() {
		offset += align(offset, 4)
		m.AMPDUStatus = RadioTapAMPDUStatus{
			Reference: binary.LittleEndian.Uint32(data[offset:]),
			Flags:     RadioTapAMPDUStatusFlags(binary.LittleEndian.Uint16(data[offset+4:])),
			CRC:       uint8(data[offset+6]),
		}
		offset += 8
	}
	if m.Present.VHT() {
		offset += align(offset, 2)
		m.VHT = RadioTapVHT{
			Known:     RadioTapVHTKnown(binary.LittleEndian.Uint16(data[offset:])),
			Flags:     RadioTapVHTFlags(data[offset+2]),
			Bandwidth: uint8(data[offset+3]),
			MCSNSS: [4]RadioTapVHTMCSNSS{
				RadioTapVHTMCSNSS(data[offset+4]),
				RadioTapVHTMCSNSS(data[offset+5]),
				RadioTapVHTMCSNSS(data[offset+6]),
				RadioTapVHTMCSNSS(data[offset+7]),
			},
			Coding:     uint8(data[offset+8]),
			GroupId:    uint8(data[offset+9]),
			PartialAID: binary.LittleEndian.Uint16(data[offset+10:]),
		}
		offset += 12
	}
	if m.Present.Timestamp() {
		offset += align(offset, 8)
		offset += 12
	}
	if m.Present.HE() {
		offset += align(offset, 2)
		m.HE = RadiotapHE{
			Data1: RadiotapHEData1(binary.LittleEndian.Uint16(data[offset:])),
			Data2: RadiotapHEData2(binary.LittleEndian.Uint16(data[offset+2:])),
			Data3: RadiotapHEData3(binary.LittleEndian.Uint16(data[offset+4:])),
			Data4: RadiotapHEData4(binary.LittleEndian.Uint16(data[offset+6:])),
			Data5: RadiotapHEData5(binary.LittleEndian.Uint16(data[offset+8:])),
			Data6: RadiotapHEData6(binary.LittleEndian.Uint16(data[offset+10:])),
		}
		offset += 12
	}

	payload := data[m.Length:]

	// Remove non standard padding used by some Wi-Fi drivers
	if m.Flags.Datapad() &&
		payload[0]&0xC == 0x8 { //&& // Data frame
		headlen := 24
		if payload[0]&0x8C == 0x88 { // QoS
			headlen += 2
		}
		if payload[1]&0x3 == 0x3 { // 4 addresses
			headlen += 2
		}
		if headlen%4 == 2 {
			payload = append(payload[:headlen], payload[headlen+2:len(payload)]...)
		}
	}

	if !m.Flags.FCS() {
		// Dot11.DecodeFromBytes() expects FCS present and performs a hard chop on the checksum
		// If a user is handing in subslices or packets from a buffered stream, the capacity of the slice
		// may extend beyond the len, rather than expecting callers to enforce cap==len on every packet
		// we take the hit in this one case and do a reallocation.  If the user DOES enforce cap==len
		// then the reallocation will happen anyway on the append.  This is requried because the append
		// write to the memory directly after the payload if there is sufficient capacity, which callers
		// may not expect.
		reallocPayload := make([]byte, len(payload)+4)
		copy(reallocPayload[0:len(payload)], payload)
		h := crc32.NewIEEE()
		h.Write(payload)
		binary.LittleEndian.PutUint32(reallocPayload[len(payload):], h.Sum32())
		payload = reallocPayload
	}
	m.BaseLayer = BaseLayer{Contents: data[:m.Length], Payload: payload}

	return nil
}

func (m RadioTap) SerializeTo(b gopacket.SerializeBuffer, opts gopacket.SerializeOptions) error {
	buf := make([]byte, 1024)

	buf[0] = m.Version
	buf[1] = 0

	binary.LittleEndian.PutUint32(buf[4:8], uint32(m.Present))

	offset := uint16(4)

	for (binary.LittleEndian.Uint32(buf[offset:offset+4]) & 0x80000000) != 0 {
		offset += 4
	}

	offset += 4

	if m.Present.TSFT() {
		offset += align(offset, 8)
		binary.LittleEndian.PutUint64(buf[offset:offset+8], m.TSFT)
		offset += 8
	}

	if m.Present.Flags() {
		buf[offset] = uint8(m.Flags)
		offset++
	}

	if m.Present.Rate() {
		buf[offset] = uint8(m.Rate)
		offset++
	}

	if m.Present.Channel() {
		offset += align(offset, 2)
		binary.LittleEndian.PutUint16(buf[offset:offset+2], uint16(m.ChannelFrequency))
		offset += 2
		binary.LittleEndian.PutUint16(buf[offset:offset+2], uint16(m.ChannelFlags))
		offset += 2
	}

	if m.Present.FHSS() {
		binary.LittleEndian.PutUint16(buf[offset:offset+2], m.FHSS)
		offset += 2
	}

	if m.Present.DBMAntennaSignal() {
		buf[offset] = byte(m.DBMAntennaSignal)
		offset++
	}

	if m.Present.DBMAntennaNoise() {
		buf[offset] = byte(m.DBMAntennaNoise)
		offset++
	}

	if m.Present.LockQuality() {
		offset += align(offset, 2)
		binary.LittleEndian.PutUint16(buf[offset:offset+2], m.LockQuality)
		offset += 2
	}

	if m.Present.TxAttenuation() {
		offset += align(offset, 2)
		binary.LittleEndian.PutUint16(buf[offset:offset+2], m.TxAttenuation)
		offset += 2
	}

	if m.Present.DBTxAttenuation() {
		offset += align(offset, 2)
		binary.LittleEndian.PutUint16(buf[offset:offset+2], m.DBTxAttenuation)
		offset += 2
	}

	if m.Present.DBMTxPower() {
		buf[offset] = byte(m.DBMTxPower)
		offset++
	}

	if m.Present.Antenna() {
		buf[offset] = uint8(m.Antenna)
		offset++
	}

	if m.Present.DBAntennaSignal() {
		buf[offset] = uint8(m.DBAntennaSignal)
		offset++
	}

	if m.Present.DBAntennaNoise() {
		buf[offset] = uint8(m.DBAntennaNoise)
		offset++
	}

	if m.Present.RxFlags() {
		offset += align(offset, 2)
		binary.LittleEndian.PutUint16(buf[offset:offset+2], uint16(m.RxFlags))
		offset += 2
	}

	if m.Present.TxFlags() {
		offset += align(offset, 2)
		binary.LittleEndian.PutUint16(buf[offset:offset+2], uint16(m.TxFlags))
		offset += 2
	}

	if m.Present.RtsRetries() {
		buf[offset] = m.RtsRetries
		offset++
	}

	if m.Present.DataRetries() {
		buf[offset] = m.DataRetries
		offset++
	}

	if m.Present.MCS() {
		buf[offset] = uint8(m.MCS.Known)
		buf[offset+1] = uint8(m.MCS.Flags)
		buf[offset+2] = uint8(m.MCS.MCS)

		offset += 3
	}

	if m.Present.AMPDUStatus() {
		offset += align(offset, 4)

		binary.LittleEndian.PutUint32(buf[offset:offset+4], m.AMPDUStatus.Reference)
		binary.LittleEndian.PutUint16(buf[offset+4:offset+6], uint16(m.AMPDUStatus.Flags))

		buf[offset+6] = m.AMPDUStatus.CRC

		offset += 8
	}

	if m.Present.VHT() {
		offset += align(offset, 2)

		binary.LittleEndian.PutUint16(buf[offset:], uint16(m.VHT.Known))

		buf[offset+2] = uint8(m.VHT.Flags)
		buf[offset+3] = uint8(m.VHT.Bandwidth)
		buf[offset+4] = uint8(m.VHT.MCSNSS[0])
		buf[offset+5] = uint8(m.VHT.MCSNSS[1])
		buf[offset+6] = uint8(m.VHT.MCSNSS[2])
		buf[offset+7] = uint8(m.VHT.MCSNSS[3])
		buf[offset+8] = uint8(m.VHT.Coding)
		buf[offset+9] = uint8(m.VHT.GroupId)

		binary.LittleEndian.PutUint16(buf[offset+10:offset+12], m.VHT.PartialAID)

		offset += 12
	}

	packetBuf, err := b.PrependBytes(int(offset))

	if err != nil {
		return err
	}

	if opts.FixLengths {
		m.Length = offset
	}

	binary.LittleEndian.PutUint16(buf[2:4], m.Length)

	copy(packetBuf, buf)

	return nil
}

func (m *RadioTap) CanDecode() gopacket.LayerClass    { return LayerTypeRadioTap }
func (m *RadioTap) NextLayerType() gopacket.LayerType { return LayerTypeDot11 }