1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
|
// Copyright 2012 Google, Inc. All rights reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the LICENSE file in the root of the source
// tree.
//go:build linux
package pcapgo
import (
"fmt"
"io"
"net"
"runtime"
"sync"
"sync/atomic"
"syscall"
"time"
"unsafe"
"golang.org/x/net/bpf"
"golang.org/x/sys/unix"
"github.com/gopacket/gopacket"
)
var hdrLen = unix.CmsgSpace(0)
var auxLen = unix.CmsgSpace(int(unsafe.Sizeof(unix.TpacketAuxdata{})))
var timensLen = unix.CmsgSpace(int(unsafe.Sizeof(unix.Timespec{})))
var timeLen = unix.CmsgSpace(int(unsafe.Sizeof(unix.Timeval{})))
func htons(data uint16) uint16 { return data<<8 | data>>8 }
// EthernetHandle holds shared buffers and file descriptor of af_packet socket
type EthernetHandle struct {
fd uintptr
buffer []byte
oob []byte
ancil []interface{}
mu sync.Mutex
intf int
addr net.HardwareAddr
}
// readOne reads a packet from the handle and returns a capture info + vlan info
func (h *EthernetHandle) readOne() (ci gopacket.CaptureInfo, vlan int, haveVlan bool, err error) {
// we could use unix.Recvmsg, but that does a memory allocation (for the returned sockaddr) :(
var msg unix.Msghdr
var sa unix.RawSockaddrLinklayer
var handle = atomic.LoadUintptr(&h.fd)
/*
* check if the handle got closed already
* if so return EOF to also stop waiting for packets
*/
if int(handle) < 0 {
err = io.EOF
return
}
msg.Name = (*byte)(unsafe.Pointer(&sa))
msg.Namelen = uint32(unsafe.Sizeof(sa))
var iov unix.Iovec
if len(h.buffer) > 0 {
iov.Base = &h.buffer[0]
iov.SetLen(len(h.buffer))
}
msg.Iov = &iov
msg.Iovlen = 1
if len(h.oob) > 0 {
msg.Control = &h.oob[0]
msg.SetControllen(len(h.oob))
}
/*
* use msg_trunc, so we know packet size without auxdata, which might be missing
*/
n, _, e := syscall.Syscall(unix.SYS_RECVMSG, handle, uintptr(unsafe.Pointer(&msg)), uintptr(unix.MSG_TRUNC))
switch {
case e.Temporary() || e.Timeout():
return ci, 0, false, e
case e != 0:
return ci, 0, false, fmt.Errorf("couldn't read packet: %w", e)
}
if sa.Family == unix.AF_PACKET {
ci.InterfaceIndex = int(sa.Ifindex)
} else {
ci.InterfaceIndex = h.intf
}
// custom aux parsing so we don't allocate stuff (unix.ParseSocketControlMessage allocates a slice)
// we're getting at most 2 cmsgs anyway and know which ones they are (auxdata + timestamp(ns))
oob := h.oob[:msg.Controllen]
gotAux := false
for len(oob) > hdrLen { // > hdrLen, because we also need something after the cmsg header
hdr := (*unix.Cmsghdr)(unsafe.Pointer(&oob[0]))
switch {
case hdr.Level == unix.SOL_PACKET && hdr.Type == unix.PACKET_AUXDATA && len(oob) >= auxLen:
aux := (*unix.TpacketAuxdata)(unsafe.Pointer(&oob[hdrLen]))
ci.CaptureLength = int(n)
ci.Length = int(aux.Len)
vlan = int(aux.Vlan_tci)
haveVlan = (aux.Status & unix.TP_STATUS_VLAN_VALID) != 0
gotAux = true
case hdr.Level == unix.SOL_SOCKET && hdr.Type == unix.SO_TIMESTAMPNS && len(oob) >= timensLen:
tstamp := (*unix.Timespec)(unsafe.Pointer(&oob[hdrLen]))
ci.Timestamp = time.Unix(int64(tstamp.Sec), int64(tstamp.Nsec))
case hdr.Level == unix.SOL_SOCKET && hdr.Type == unix.SO_TIMESTAMP && len(oob) >= timeLen:
tstamp := (*unix.Timeval)(unsafe.Pointer(&oob[hdrLen]))
ci.Timestamp = time.Unix(int64(tstamp.Sec), int64(tstamp.Usec)*1000)
}
oob = oob[unix.CmsgSpace(int(hdr.Len))-hdrLen:]
}
if !gotAux {
// fallback for no aux cmsg
ci.CaptureLength = int(n)
ci.Length = int(n)
haveVlan = false
}
// fix up capture length if we needed to truncate
if ci.CaptureLength > len(h.buffer) {
ci.CaptureLength = len(h.buffer)
}
if ci.Timestamp.IsZero() {
// we got no timestamp info -> emulate it
ci.Timestamp = time.Now()
}
return ci, vlan, haveVlan, nil
}
// ReadPacketData implements gopacket.PacketDataSource. If this was captured on a vlan, the vlan id will be in the AncillaryData[0]
func (h *EthernetHandle) ReadPacketData() ([]byte, gopacket.CaptureInfo, error) {
h.mu.Lock()
ci, vlan, haveVlan, err := h.readOne()
if err != nil {
h.mu.Unlock()
return nil, gopacket.CaptureInfo{}, fmt.Errorf("couldn't read packet data: %s", err)
}
b := make([]byte, ci.CaptureLength)
copy(b, h.buffer)
h.mu.Unlock()
if haveVlan {
ci.AncillaryData = []interface{}{vlan}
}
return b, ci, nil
}
// ZeroCopyReadPacketData implements gopacket.ZeroCopyPacketDataSource. If this was captured on a vlan, the vlan id will be in the AncillaryData[0].
// This function does not allocate memory. Beware that the next call to ZeroCopyReadPacketData will overwrite existing slices (returned data AND AncillaryData)!
// Due to shared buffers this must not be called concurrently
func (h *EthernetHandle) ZeroCopyReadPacketData() ([]byte, gopacket.CaptureInfo, error) {
ci, vlan, haveVlan, err := h.readOne()
if err != nil {
return nil, gopacket.CaptureInfo{}, fmt.Errorf("couldn't read packet data: %s", err)
}
if haveVlan {
h.ancil[0] = vlan
ci.AncillaryData = h.ancil
}
return h.buffer[:ci.CaptureLength], ci, nil
}
// Close closes the underlying socket
func (h *EthernetHandle) Close() (err error) {
if handle := atomic.LoadUintptr(&h.fd); handle != 0 {
_ = unix.Shutdown(int(handle), unix.SHUT_RDWR)
// close no matter if shutdown returned an error or not to make sure the socket is closed
err = unix.Close(int(handle))
atomic.SwapUintptr(&h.fd, 0)
runtime.SetFinalizer(h, nil)
}
return err
}
// SetCaptureLength sets the maximum capture length to the given value
func (h *EthernetHandle) SetCaptureLength(len int) error {
if len < 0 {
return fmt.Errorf("illegal capture length %d. Must be at least 0", len)
}
h.buffer = make([]byte, len)
return nil
}
// GetCaptureLength returns the maximum capture length
func (h *EthernetHandle) GetCaptureLength() int {
return len(h.buffer)
}
// SetBPF attaches the given BPF filter to the socket. After this, only the packets for which the filter returns a value greater than zero are received.
// If a filter was already attached, it will be overwritten. To remove the filter, provide an empty slice.
func (h *EthernetHandle) SetBPF(filter []bpf.RawInstruction) error {
if len(filter) == 0 {
return unix.SetsockoptInt(int(h.fd), unix.SOL_SOCKET, unix.SO_DETACH_FILTER, 0)
}
f := make([]unix.SockFilter, len(filter))
for i := range filter {
f[i].Code = filter[i].Op
f[i].Jf = filter[i].Jf
f[i].Jt = filter[i].Jt
f[i].K = filter[i].K
}
fprog := &unix.SockFprog{
Len: uint16(len(filter)),
Filter: &f[0],
}
return unix.SetsockoptSockFprog(int(h.fd), unix.SOL_SOCKET, unix.SO_ATTACH_FILTER, fprog)
}
// LocalAddr returns the local network address
func (h *EthernetHandle) LocalAddr() net.HardwareAddr {
// Hardware Address might have changed. Fetch new one and fall back to the stored one if fetching interface fails
intf, err := net.InterfaceByIndex(h.intf)
if err == nil {
h.addr = intf.HardwareAddr
}
return h.addr
}
// SetPromiscuous sets promiscous mode to the required value. If it is enabled, traffic not destined for the interface will also be captured.
func (h *EthernetHandle) SetPromiscuous(b bool) error {
mreq := unix.PacketMreq{
Ifindex: int32(h.intf),
Type: unix.PACKET_MR_PROMISC,
}
opt := unix.PACKET_ADD_MEMBERSHIP
if !b {
opt = unix.PACKET_DROP_MEMBERSHIP
}
return unix.SetsockoptPacketMreq(int(h.fd), unix.SOL_PACKET, opt, &mreq)
}
// Stats returns number of packets and dropped packets. This will be the number of packets/dropped packets since the last call to stats (not the cummulative sum!).
func (h *EthernetHandle) Stats() (*unix.TpacketStats, error) {
return unix.GetsockoptTpacketStats(int(h.fd), unix.SOL_PACKET, unix.PACKET_STATISTICS)
}
// NewEthernetHandle implements pcap.OpenLive for network devices.
// If you want better performance have a look at github.com/gopacket/gopacket/afpacket.
// SetCaptureLength can be used to limit the maximum capture length.
func NewEthernetHandle(ifname string) (*EthernetHandle, error) {
intf, err := net.InterfaceByName(ifname)
if err != nil {
return nil, fmt.Errorf("couldn't query interface %s: %s", ifname, err)
}
fd, err := unix.Socket(unix.AF_PACKET, unix.SOCK_RAW, int(htons(unix.ETH_P_ALL)))
if err != nil {
return nil, fmt.Errorf("couldn't open packet socket: %s", err)
}
addr := unix.SockaddrLinklayer{
Protocol: htons(unix.ETH_P_ALL),
Ifindex: intf.Index,
}
if err := unix.Bind(fd, &addr); err != nil {
return nil, fmt.Errorf("couldn't bind to interface %s: %s", ifname, err)
}
ooblen := 0
if err := unix.SetsockoptInt(fd, unix.SOL_PACKET, unix.PACKET_AUXDATA, 1); err != nil {
// we can't get auxdata -> no vlan info
} else {
ooblen += auxLen
}
if err := unix.SetsockoptInt(fd, unix.SOL_SOCKET, unix.SO_TIMESTAMPNS, 1); err != nil {
// no nanosecond resolution :( -> try ms
if err := unix.SetsockoptInt(fd, unix.SOL_SOCKET, unix.SO_TIMESTAMP, 1); err != nil {
// if this doesn't work we well use time.Now() -> ignore errors here
} else {
ooblen += timeLen
}
} else {
ooblen += timensLen
}
handle := &EthernetHandle{
fd: uintptr(fd),
buffer: make([]byte, intf.MTU),
oob: make([]byte, ooblen),
ancil: make([]interface{}, 1),
intf: intf.Index,
addr: intf.HardwareAddr,
}
runtime.SetFinalizer(handle, (*EthernetHandle).Close)
return handle, nil
}
|