1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
|
// Copyright 2012 Google, Inc. All rights reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the LICENSE file in the root of the source
// tree.
// Package reassembly provides TCP stream re-assembly.
//
// The reassembly package implements uni-directional TCP reassembly, for use in
// packet-sniffing applications. The caller reads packets off the wire, then
// presents them to an Assembler in the form of gopacket layers.TCP packets
// (github.com/gopacket/gopacket, github.com/gopacket/gopacket/layers).
//
// The Assembler uses a user-supplied
// StreamFactory to create a user-defined Stream interface, then passes packet
// data in stream order to that object. A concurrency-safe StreamPool keeps
// track of all current Streams being reassembled, so multiple Assemblers may
// run at once to assemble packets while taking advantage of multiple cores.
//
// TODO: Add simplest example
package reassembly
import (
"encoding/hex"
"flag"
"fmt"
"log"
"sync"
"time"
"github.com/gopacket/gopacket"
"github.com/gopacket/gopacket/layers"
)
// TODO:
// - push to Stream on Ack
// - implement chunked (cheap) reads and Reader() interface
// - better organize file: split files: 'mem', 'misc' (seq + flow)
var defaultDebug = false
var debugLog = flag.Bool("assembly_debug_log", defaultDebug, "If true, the github.com/gopacket/gopacket/reassembly library will log verbose debugging information (at least one line per packet)")
const invalidSequence = -1
const uint32Max = 0xFFFFFFFF
// Sequence is a TCP sequence number. It provides a few convenience functions
// for handling TCP wrap-around. The sequence should always be in the range
// [0,0xFFFFFFFF]... its other bits are simply used in wrap-around calculations
// and should never be set.
type Sequence int64
// Difference defines an ordering for comparing TCP sequences that's safe for
// roll-overs. It returns:
//
// > 0 : if t comes after s
// < 0 : if t comes before s
// 0 : if t == s
//
// The number returned is the sequence difference, so 4.Difference(8) will
// return 4.
//
// It handles rollovers by considering any sequence in the first quarter of the
// uint32 space to be after any sequence in the last quarter of that space, thus
// wrapping the uint32 space.
func (s Sequence) Difference(t Sequence) int {
if s > uint32Max-uint32Max/4 && t < uint32Max/4 {
t += uint32Max
} else if t > uint32Max-uint32Max/4 && s < uint32Max/4 {
s += uint32Max
}
return int(t - s)
}
// Add adds an integer to a sequence and returns the resulting sequence.
func (s Sequence) Add(t int) Sequence {
return (s + Sequence(t)) & uint32Max
}
// TCPAssemblyStats provides some figures for a ScatterGather
type TCPAssemblyStats struct {
// For this ScatterGather
Chunks int
Packets int
// For the half connection, since last call to ReassembledSG()
QueuedBytes int
QueuedPackets int
OverlapBytes int
OverlapPackets int
}
// ScatterGather is used to pass reassembled data and metadata of reassembled
// packets to a Stream via ReassembledSG
type ScatterGather interface {
// Returns the length of available bytes and saved bytes
Lengths() (int, int)
// Returns the bytes up to length (shall be <= available bytes)
Fetch(length int) []byte
// Tell to keep from offset
KeepFrom(offset int)
// Return CaptureInfo of packet corresponding to given offset
CaptureInfo(offset int) gopacket.CaptureInfo
// Return some info about the reassembled chunks
Info() (direction TCPFlowDirection, start bool, end bool, skip int)
// Return some stats regarding the state of the stream
Stats() TCPAssemblyStats
}
// byteContainer is either a page or a livePacket
type byteContainer interface {
getBytes() []byte
length() int
convertToPages(*pageCache, int, AssemblerContext) (*page, *page, int)
captureInfo() gopacket.CaptureInfo
assemblerContext() AssemblerContext
release(*pageCache) int
isStart() bool
isEnd() bool
getSeq() Sequence
isPacket() bool
}
// Implements a ScatterGather
type reassemblyObject struct {
all []byteContainer
Skip int
Direction TCPFlowDirection
saved int
toKeep int
// stats
queuedBytes int
queuedPackets int
overlapBytes int
overlapPackets int
}
func (rl *reassemblyObject) Lengths() (int, int) {
l := 0
for _, r := range rl.all {
l += r.length()
}
return l, rl.saved
}
func (rl *reassemblyObject) Fetch(l int) []byte {
if l <= rl.all[0].length() {
return rl.all[0].getBytes()[:l]
}
bytes := make([]byte, 0, l)
for _, bc := range rl.all {
bytes = append(bytes, bc.getBytes()...)
}
return bytes[:l]
}
func (rl *reassemblyObject) KeepFrom(offset int) {
rl.toKeep = offset
}
func (rl *reassemblyObject) CaptureInfo(offset int) gopacket.CaptureInfo {
if offset < 0 {
return gopacket.CaptureInfo{}
}
current := 0
for _, r := range rl.all {
if current+r.length() > offset {
return r.captureInfo()
}
current += r.length()
}
// Invalid offset
return gopacket.CaptureInfo{}
}
func (rl *reassemblyObject) Info() (TCPFlowDirection, bool, bool, int) {
return rl.Direction, rl.all[0].isStart(), rl.all[len(rl.all)-1].isEnd(), rl.Skip
}
func (rl *reassemblyObject) Stats() TCPAssemblyStats {
packets := int(0)
for _, r := range rl.all {
if r.isPacket() {
packets++
}
}
return TCPAssemblyStats{
Chunks: len(rl.all),
Packets: packets,
QueuedBytes: rl.queuedBytes,
QueuedPackets: rl.queuedPackets,
OverlapBytes: rl.overlapBytes,
OverlapPackets: rl.overlapPackets,
}
}
const pageBytes = 1900
// TCPFlowDirection distinguish the two half-connections directions.
//
// TCPDirClientToServer is assigned to half-connection for the first received
// packet, hence might be wrong if packets are not received in order.
// It's up to the caller (e.g. in Accept()) to decide if the direction should
// be interpretted differently.
type TCPFlowDirection bool
// Value are not really useful
const (
TCPDirClientToServer TCPFlowDirection = false
TCPDirServerToClient TCPFlowDirection = true
)
func (dir TCPFlowDirection) String() string {
switch dir {
case TCPDirClientToServer:
return "client->server"
case TCPDirServerToClient:
return "server->client"
}
return ""
}
// Reverse returns the reversed direction
func (dir TCPFlowDirection) Reverse() TCPFlowDirection {
return !dir
}
/* page: implements a byteContainer */
// page is used to store TCP data we're not ready for yet (out-of-order
// packets). Unused pages are stored in and returned from a pageCache, which
// avoids memory allocation. Used pages are stored in a doubly-linked list in
// a connection.
type page struct {
bytes []byte
seq Sequence
prev, next *page
buf [pageBytes]byte
ac AssemblerContext // only set for the first page of a packet
seen time.Time
start, end bool
}
func (p *page) getBytes() []byte {
return p.bytes
}
func (p *page) captureInfo() gopacket.CaptureInfo {
return p.ac.GetCaptureInfo()
}
func (p *page) assemblerContext() AssemblerContext {
return p.ac
}
func (p *page) convertToPages(pc *pageCache, skip int, ac AssemblerContext) (*page, *page, int) {
if skip != 0 {
p.bytes = p.bytes[skip:]
p.seq = p.seq.Add(skip)
}
p.prev, p.next = nil, nil
return p, p, 1
}
func (p *page) length() int {
return len(p.bytes)
}
func (p *page) release(pc *pageCache) int {
pc.replace(p)
return 1
}
func (p *page) isStart() bool {
return p.start
}
func (p *page) isEnd() bool {
return p.end
}
func (p *page) getSeq() Sequence {
return p.seq
}
func (p *page) isPacket() bool {
return p.ac != nil
}
func (p *page) String() string {
return fmt.Sprintf("page@%p{seq: %v, bytes:%d, -> nextSeq:%v} (prev:%p, next:%p)", p, p.seq, len(p.bytes), p.seq+Sequence(len(p.bytes)), p.prev, p.next)
}
/* livePacket: implements a byteContainer */
type livePacket struct {
bytes []byte
start bool
end bool
ac AssemblerContext
seq Sequence
}
func (lp *livePacket) getBytes() []byte {
return lp.bytes
}
func (lp *livePacket) captureInfo() gopacket.CaptureInfo {
return lp.ac.GetCaptureInfo()
}
func (lp *livePacket) assemblerContext() AssemblerContext {
return lp.ac
}
func (lp *livePacket) length() int {
return len(lp.bytes)
}
func (lp *livePacket) isStart() bool {
return lp.start
}
func (lp *livePacket) isEnd() bool {
return lp.end
}
func (lp *livePacket) getSeq() Sequence {
return lp.seq
}
func (lp *livePacket) isPacket() bool {
return true
}
// Creates a page (or set of pages) from a TCP packet: returns the first and last
// page in its doubly-linked list of new pages.
func (lp *livePacket) convertToPages(pc *pageCache, skip int, ac AssemblerContext) (*page, *page, int) {
ts := lp.captureInfo().Timestamp
first := pc.next(ts)
current := first
current.prev = nil
first.ac = ac
numPages := 1
seq, bytes := lp.seq.Add(skip), lp.bytes[skip:]
for {
length := min(len(bytes), pageBytes)
current.bytes = current.buf[:length]
copy(current.bytes, bytes)
current.seq = seq
bytes = bytes[length:]
if len(bytes) == 0 {
current.end = lp.isEnd()
current.next = nil
break
}
seq = seq.Add(length)
current.next = pc.next(ts)
current.next.prev = current
current = current.next
current.ac = nil
numPages++
}
return first, current, numPages
}
func (lp *livePacket) estimateNumberOfPages() int {
return (len(lp.bytes) + pageBytes + 1) / pageBytes
}
func (lp *livePacket) release(*pageCache) int {
return 0
}
// Stream is implemented by the caller to handle incoming reassembled
// TCP data. Callers create a StreamFactory, then StreamPool uses
// it to create a new Stream for every TCP stream.
//
// assembly will, in order:
// 1. Create the stream via StreamFactory.New
// 2. Call ReassembledSG 0 or more times, passing in reassembled TCP data in order
// 3. Call ReassemblyComplete one time, after which the stream is dereferenced by assembly.
type Stream interface {
// Tell whether the TCP packet should be accepted, start could be modified to force a start even if no SYN have been seen
Accept(tcp *layers.TCP, ci gopacket.CaptureInfo, dir TCPFlowDirection, nextSeq Sequence, start *bool, ac AssemblerContext) bool
// ReassembledSG is called zero or more times.
// ScatterGather is reused after each Reassembled call,
// so it's important to copy anything you need out of it,
// especially bytes (or use KeepFrom())
ReassembledSG(sg ScatterGather, ac AssemblerContext)
// ReassemblyComplete is called when assembly decides there is
// no more data for this Stream, either because a FIN or RST packet
// was seen, or because the stream has timed out without any new
// packet data (due to a call to FlushCloseOlderThan).
// It should return true if the connection should be removed from the pool
// It can return false if it want to see subsequent packets with Accept(), e.g. to
// see FIN-ACK, for deeper state-machine analysis.
ReassemblyComplete(ac AssemblerContext) bool
}
// StreamFactory is used by assembly to create a new stream for each
// new TCP session.
type StreamFactory interface {
// New should return a new stream for the given TCP key.
New(netFlow, tcpFlow gopacket.Flow, tcp *layers.TCP, ac AssemblerContext) Stream
}
type key [2]gopacket.Flow
func (k *key) String() string {
return fmt.Sprintf("%s:%s", k[0], k[1])
}
func (k *key) Reverse() key {
return key{
k[0].Reverse(),
k[1].Reverse(),
}
}
const assemblerReturnValueInitialSize = 16
/* one-way connection, i.e. halfconnection */
type halfconnection struct {
dir TCPFlowDirection
pages int // Number of pages used (both in first/last and saved)
saved *page // Doubly-linked list of in-order pages (seq < nextSeq) already given to Stream who told us to keep
first, last *page // Doubly-linked list of out-of-order pages (seq > nextSeq)
nextSeq Sequence // sequence number of in-order received bytes
ackSeq Sequence
created, lastSeen time.Time
stream Stream
closed bool
// for stats
queuedBytes int
queuedPackets int
overlapBytes int
overlapPackets int
}
func (half *halfconnection) String() string {
closed := ""
if half.closed {
closed = "closed "
}
return fmt.Sprintf("%screated:%v, last:%v", closed, half.created, half.lastSeen)
}
// Dump returns a string (crypticly) describing the halfconnction
func (half *halfconnection) Dump() string {
s := fmt.Sprintf("pages: %d\n"+
"nextSeq: %d\n"+
"ackSeq: %d\n"+
"Seen : %s\n"+
"dir: %s\n", half.pages, half.nextSeq, half.ackSeq, half.lastSeen, half.dir)
nb := 0
for p := half.first; p != nil; p = p.next {
s += fmt.Sprintf(" Page[%d] %s len: %d\n", nb, p, len(p.bytes))
nb++
}
return s
}
/* Bi-directionnal connection */
type connection struct {
key key // client->server
c2s, s2c halfconnection
mu sync.Mutex
}
func (c *connection) reset(k key, s Stream, ts time.Time) {
c.key = k
base := halfconnection{
nextSeq: invalidSequence,
ackSeq: invalidSequence,
created: ts,
lastSeen: ts,
stream: s,
}
c.c2s, c.s2c = base, base
c.c2s.dir, c.s2c.dir = TCPDirClientToServer, TCPDirServerToClient
}
func (c *connection) lastSeen() time.Time {
if c.c2s.lastSeen.Before(c.s2c.lastSeen) {
return c.s2c.lastSeen
}
return c.c2s.lastSeen
}
func (c *connection) String() string {
return fmt.Sprintf("c2s: %s, s2c: %s", &c.c2s, &c.s2c)
}
/*
* Assembler
*/
// DefaultAssemblerOptions provides default options for an assembler.
// These options are used by default when calling NewAssembler, so if
// modified before a NewAssembler call they'll affect the resulting Assembler.
//
// Note that the default options can result in ever-increasing memory usage
// unless one of the Flush* methods is called on a regular basis.
var DefaultAssemblerOptions = AssemblerOptions{
MaxBufferedPagesPerConnection: 0, // unlimited
MaxBufferedPagesTotal: 0, // unlimited
}
// AssemblerOptions controls the behavior of each assembler. Modify the
// options of each assembler you create to change their behavior.
type AssemblerOptions struct {
// MaxBufferedPagesTotal is an upper limit on the total number of pages to
// buffer while waiting for out-of-order packets. Once this limit is
// reached, the assembler will degrade to flushing every connection it
// gets a packet for. If <= 0, this is ignored.
MaxBufferedPagesTotal int
// MaxBufferedPagesPerConnection is an upper limit on the number of pages
// buffered for a single connection. Should this limit be reached for a
// particular connection, the smallest sequence number will be flushed, along
// with any contiguous data. If <= 0, this is ignored.
MaxBufferedPagesPerConnection int
}
// Assembler handles reassembling TCP streams. It is not safe for
// concurrency... after passing a packet in via the Assemble call, the caller
// must wait for that call to return before calling Assemble again. Callers can
// get around this by creating multiple assemblers that share a StreamPool. In
// that case, each individual stream will still be handled serially (each stream
// has an individual mutex associated with it), however multiple assemblers can
// assemble different connections concurrently.
//
// The Assembler provides (hopefully) fast TCP stream re-assembly for sniffing
// applications written in Go. The Assembler uses the following methods to be
// as fast as possible, to keep packet processing speedy:
//
// # Avoids Lock Contention
//
// Assemblers locks connections, but each connection has an individual lock, and
// rarely will two Assemblers be looking at the same connection. Assemblers
// lock the StreamPool when looking up connections, but they use Reader
// locks initially, and only force a write lock if they need to create a new
// connection or close one down. These happen much less frequently than
// individual packet handling.
//
// Each assembler runs in its own goroutine, and the only state shared between
// goroutines is through the StreamPool. Thus all internal Assembler state
// can be handled without any locking.
//
// NOTE: If you can guarantee that packets going to a set of Assemblers will
// contain information on different connections per Assembler (for example,
// they're already hashed by PF_RING hashing or some other hashing mechanism),
// then we recommend you use a seperate StreamPool per Assembler, thus
// avoiding all lock contention. Only when different Assemblers could receive
// packets for the same Stream should a StreamPool be shared between them.
//
// # Avoids Memory Copying
//
// In the common case, handling of a single TCP packet should result in zero
// memory allocations. The Assembler will look up the connection, figure out
// that the packet has arrived in order, and immediately pass that packet on to
// the appropriate connection's handling code. Only if a packet arrives out of
// order is its contents copied and stored in memory for later.
//
// # Avoids Memory Allocation
//
// Assemblers try very hard to not use memory allocation unless absolutely
// necessary. Packet data for sequential packets is passed directly to streams
// with no copying or allocation. Packet data for out-of-order packets is
// copied into reusable pages, and new pages are only allocated rarely when the
// page cache runs out. Page caches are Assembler-specific, thus not used
// concurrently and requiring no locking.
//
// Internal representations for connection objects are also reused over time.
// Because of this, the most common memory allocation done by the Assembler is
// generally what's done by the caller in StreamFactory.New. If no allocation
// is done there, then very little allocation is done ever, mostly to handle
// large increases in bandwidth or numbers of connections.
//
// TODO: The page caches used by an Assembler will grow to the size necessary
// to handle a workload, and currently will never shrink. This means that
// traffic spikes can result in large memory usage which isn't garbage
// collected when typical traffic levels return.
type Assembler struct {
AssemblerOptions
ret []byteContainer
pc *pageCache
connPool *StreamPool
cacheLP livePacket
cacheSG reassemblyObject
start bool
}
// NewAssembler creates a new assembler. Pass in the StreamPool
// to use, may be shared across assemblers.
//
// This sets some sane defaults for the assembler options,
// see DefaultAssemblerOptions for details.
func NewAssembler(pool *StreamPool) *Assembler {
pool.mu.Lock()
pool.users++
pool.mu.Unlock()
return &Assembler{
ret: make([]byteContainer, 0, assemblerReturnValueInitialSize),
pc: newPageCache(),
connPool: pool,
AssemblerOptions: DefaultAssemblerOptions,
}
}
// Dump returns a short string describing the page usage of the Assembler
func (a *Assembler) Dump() string {
s := ""
s += fmt.Sprintf("pageCache: used: %d:", a.pc.used)
return s
}
// AssemblerContext provides method to get metadata
type AssemblerContext interface {
GetCaptureInfo() gopacket.CaptureInfo
}
// Implements AssemblerContext for Assemble()
type assemblerSimpleContext gopacket.CaptureInfo
func (asc *assemblerSimpleContext) GetCaptureInfo() gopacket.CaptureInfo {
return gopacket.CaptureInfo(*asc)
}
// Assemble calls AssembleWithContext with the current timestamp, useful for
// packets being read directly off the wire.
func (a *Assembler) Assemble(netFlow gopacket.Flow, t *layers.TCP) {
ctx := assemblerSimpleContext(gopacket.CaptureInfo{Timestamp: time.Now()})
a.AssembleWithContext(netFlow, t, &ctx)
}
type assemblerAction struct {
nextSeq Sequence
queue bool
}
// AssembleWithContext reassembles the given TCP packet into its appropriate
// stream.
//
// The timestamp passed in must be the timestamp the packet was seen.
// For packets read off the wire, time.Now() should be fine. For packets read
// from PCAP files, CaptureInfo.Timestamp should be passed in. This timestamp
// will affect which streams are flushed by a call to FlushCloseOlderThan.
//
// Each AssembleWithContext call results in, in order:
//
// zero or one call to StreamFactory.New, creating a stream
// zero or one call to ReassembledSG on a single stream
// zero or one call to ReassemblyComplete on the same stream
func (a *Assembler) AssembleWithContext(netFlow gopacket.Flow, t *layers.TCP, ac AssemblerContext) {
var conn *connection
var half *halfconnection
var rev *halfconnection
a.ret = a.ret[:0]
key := key{netFlow, t.TransportFlow()}
ci := ac.GetCaptureInfo()
timestamp := ci.Timestamp
conn, half, rev = a.connPool.getConnection(key, false, timestamp, t, ac)
if conn == nil {
if *debugLog {
log.Printf("%v got empty packet on otherwise empty connection", key)
}
return
}
conn.mu.Lock()
defer conn.mu.Unlock()
if half.lastSeen.Before(timestamp) {
half.lastSeen = timestamp
}
a.start = half.nextSeq == invalidSequence && t.SYN
if *debugLog {
if half.nextSeq < rev.ackSeq {
log.Printf("Delay detected on %v, data is acked but not assembled yet (acked %v, nextSeq %v)", key, rev.ackSeq, half.nextSeq)
}
}
if !half.stream.Accept(t, ci, half.dir, half.nextSeq, &a.start, ac) {
if *debugLog {
log.Printf("Ignoring packet")
}
return
}
if half.closed {
// this way is closed
if *debugLog {
log.Printf("%v got packet on closed half", key)
}
return
}
seq, ack, bytes := Sequence(t.Seq), Sequence(t.Ack), t.Payload
if t.ACK {
half.ackSeq = ack
}
// TODO: push when Ack is seen ??
action := assemblerAction{
nextSeq: Sequence(invalidSequence),
queue: true,
}
a.dump("AssembleWithContext()", half)
if half.nextSeq == invalidSequence {
if t.SYN {
if *debugLog {
log.Printf("%v saw first SYN packet, returning immediately, seq=%v", key, seq)
}
seq = seq.Add(1)
half.nextSeq = seq
action.queue = false
} else if a.start {
if *debugLog {
log.Printf("%v start forced", key)
}
half.nextSeq = seq
action.queue = false
} else {
if *debugLog {
log.Printf("%v waiting for start, storing into connection", key)
}
}
} else {
diff := half.nextSeq.Difference(seq)
if diff > 0 {
if *debugLog {
log.Printf("%v gap in sequence numbers (%v, %v) diff %v, storing into connection", key, half.nextSeq, seq, diff)
}
} else {
if *debugLog {
log.Printf("%v found contiguous data (%v, %v), returning immediately: len:%d", key, seq, half.nextSeq, len(bytes))
}
action.queue = false
}
}
action = a.handleBytes(bytes, seq, half, t.SYN, t.RST || t.FIN, action, ac)
if len(a.ret) > 0 {
action.nextSeq = a.sendToConnection(conn, half, ac)
}
if action.nextSeq != invalidSequence {
half.nextSeq = action.nextSeq
if t.FIN {
half.nextSeq = half.nextSeq.Add(1)
}
}
if *debugLog {
log.Printf("%v nextSeq:%d", key, half.nextSeq)
}
}
// Overlap strategies:
// - new packet overlaps with sent packets:
// 1) discard new overlapping part
// 2) overwrite old overlapped (TODO)
// - new packet overlaps existing queued packets:
// a) consider "age" by timestamp (TODO)
// b) consider "age" by being present
// Then
// 1) discard new overlapping part
// 2) overwrite queued part
func (a *Assembler) checkOverlap(half *halfconnection, queue bool, ac AssemblerContext) {
var next *page
cur := half.last
bytes := a.cacheLP.bytes
start := a.cacheLP.seq
end := start.Add(len(bytes))
a.dump("before checkOverlap", half)
// [s6 : e6]
// [s1:e1][s2:e2] -- [s3:e3] -- [s4:e4][s5:e5]
// [s <--ds-- : --de--> e]
for cur != nil {
if *debugLog {
log.Printf("cur = %p (%s)\n", cur, cur)
}
// end < cur.start: continue (5)
if end.Difference(cur.seq) > 0 {
if *debugLog {
log.Printf("case 5\n")
}
next = cur
cur = cur.prev
continue
}
curEnd := cur.seq.Add(len(cur.bytes))
// start > cur.end: stop (1)
if start.Difference(curEnd) <= 0 {
if *debugLog {
log.Printf("case 1\n")
}
break
}
diffStart := start.Difference(cur.seq)
diffEnd := end.Difference(curEnd)
// end > cur.end && start < cur.start: drop (3)
if diffEnd <= 0 && diffStart >= 0 {
if *debugLog {
log.Printf("case 3\n")
}
if cur.isPacket() {
half.overlapPackets++
}
half.overlapBytes += len(cur.bytes)
// update links
if cur.prev != nil {
cur.prev.next = cur.next
} else {
half.first = cur.next
}
if cur.next != nil {
cur.next.prev = cur.prev
} else {
half.last = cur.prev
}
tmp := cur.prev
half.pages -= cur.release(a.pc)
cur = tmp
continue
}
// end > cur.end && start < cur.end: drop cur's end (2)
if diffEnd < 0 && start.Difference(curEnd) > 0 {
if *debugLog {
log.Printf("case 2\n")
}
cur.bytes = cur.bytes[:-start.Difference(cur.seq)]
break
} else
// start < cur.start && end > cur.start: drop cur's start (4)
if diffStart > 0 && end.Difference(cur.seq) < 0 {
if *debugLog {
log.Printf("case 4\n")
}
cur.bytes = cur.bytes[-end.Difference(cur.seq):]
cur.seq = cur.seq.Add(-end.Difference(cur.seq))
next = cur
} else
// end < cur.end && start > cur.start: replace bytes inside cur (6)
if diffEnd >= 0 && diffStart <= 0 {
if *debugLog {
log.Printf("case 6\n")
}
copy(cur.bytes[-diffStart:-diffStart+len(bytes)], bytes)
bytes = bytes[:0]
} else {
if *debugLog {
log.Printf("no overlap\n")
}
next = cur
}
cur = cur.prev
}
// Split bytes into pages, and insert in queue
a.cacheLP.bytes = bytes
a.cacheLP.seq = start
if len(bytes) > 0 && queue {
p, p2, numPages := a.cacheLP.convertToPages(a.pc, 0, ac)
half.queuedPackets++
half.queuedBytes += len(bytes)
half.pages += numPages
if cur != nil {
if *debugLog {
log.Printf("adding %s after %s", p, cur)
}
cur.next = p
p.prev = cur
} else {
if *debugLog {
log.Printf("adding %s as first", p)
}
half.first = p
}
if next != nil {
if *debugLog {
log.Printf("setting %s as next of new %s", next, p2)
}
p2.next = next
next.prev = p2
} else {
if *debugLog {
log.Printf("setting %s as last", p2)
}
half.last = p2
}
}
a.dump("After checkOverlap", half)
}
// Warning: this is a low-level dumper, i.e. a.ret or a.cacheSG might
// be strange, but it could be ok.
func (a *Assembler) dump(text string, half *halfconnection) {
if !*debugLog {
return
}
log.Printf("%s: dump\n", text)
if half != nil {
p := half.first
if p == nil {
log.Printf(" * half.first = %p, no chunks queued\n", p)
} else {
s := 0
nb := 0
log.Printf(" * half.first = %p, queued chunks:", p)
for p != nil {
log.Printf("\t%s bytes:%s\n", p, hex.EncodeToString(p.bytes))
s += len(p.bytes)
nb++
p = p.next
}
log.Printf("\t%d chunks for %d bytes", nb, s)
}
log.Printf(" * half.last = %p\n", half.last)
log.Printf(" * half.saved = %p\n", half.saved)
p = half.saved
for p != nil {
log.Printf("\tseq:%d %s bytes:%s\n", p.getSeq(), p, hex.EncodeToString(p.bytes))
p = p.next
}
}
log.Printf(" * a.ret\n")
for i, r := range a.ret {
log.Printf("\t%d: %v b:%s\n", i, r.captureInfo(), hex.EncodeToString(r.getBytes()))
}
log.Printf(" * a.cacheSG.all\n")
for i, r := range a.cacheSG.all {
log.Printf("\t%d: %v b:%s\n", i, r.captureInfo(), hex.EncodeToString(r.getBytes()))
}
}
func (a *Assembler) overlapExisting(half *halfconnection, start, end Sequence, bytes []byte) ([]byte, Sequence) {
if half.nextSeq == invalidSequence {
// no start yet
return bytes, start
}
diff := start.Difference(half.nextSeq)
if diff == 0 {
return bytes, start
}
s := 0
e := len(bytes)
// TODO: depending on strategy, we might want to shrink half.saved if possible
if e != 0 {
if *debugLog {
log.Printf("Overlap detected: ignoring current packet's first %d bytes", diff)
}
half.overlapPackets++
half.overlapBytes += diff
}
s += diff
if s >= e {
// Completely included in sent
s = e
}
bytes = bytes[s:]
return bytes, half.nextSeq
}
// Prepare send or queue
func (a *Assembler) handleBytes(bytes []byte, seq Sequence, half *halfconnection, start bool, end bool, action assemblerAction, ac AssemblerContext) assemblerAction {
a.cacheLP.bytes = bytes
a.cacheLP.start = start
a.cacheLP.end = end
a.cacheLP.seq = seq
a.cacheLP.ac = ac
if action.queue {
a.checkOverlap(half, true, ac)
if (a.MaxBufferedPagesPerConnection > 0 && half.pages >= a.MaxBufferedPagesPerConnection) ||
(a.MaxBufferedPagesTotal > 0 && a.pc.used >= a.MaxBufferedPagesTotal) {
if *debugLog {
log.Printf("hit max buffer size: %+v, %v, %v", a.AssemblerOptions, half.pages, a.pc.used)
}
action.queue = false
a.addNextFromConn(half)
}
a.dump("handleBytes after queue", half)
} else {
a.cacheLP.bytes, a.cacheLP.seq = a.overlapExisting(half, seq, seq.Add(len(bytes)), a.cacheLP.bytes)
a.checkOverlap(half, false, ac)
if len(a.cacheLP.bytes) != 0 || end || start {
a.ret = append(a.ret, &a.cacheLP)
}
a.dump("handleBytes after no queue", half)
}
return action
}
func (a *Assembler) setStatsToSG(half *halfconnection) {
a.cacheSG.queuedBytes = half.queuedBytes
half.queuedBytes = 0
a.cacheSG.queuedPackets = half.queuedPackets
half.queuedPackets = 0
a.cacheSG.overlapBytes = half.overlapBytes
half.overlapBytes = 0
a.cacheSG.overlapPackets = half.overlapPackets
half.overlapPackets = 0
}
// Build the ScatterGather object, i.e. prepend saved bytes and
// append continuous bytes.
func (a *Assembler) buildSG(half *halfconnection) (bool, Sequence) {
// find if there are skipped bytes
skip := -1
if half.nextSeq != invalidSequence {
skip = half.nextSeq.Difference(a.ret[0].getSeq())
}
last := a.ret[0].getSeq().Add(a.ret[0].length())
// Prepend saved bytes
saved := a.addPending(half, a.ret[0].getSeq())
// Append continuous bytes
nextSeq := a.addContiguous(half, last)
a.cacheSG.all = a.ret
a.cacheSG.Direction = half.dir
a.cacheSG.Skip = skip
a.cacheSG.saved = saved
a.cacheSG.toKeep = -1
a.setStatsToSG(half)
a.dump("after buildSG", half)
return a.ret[len(a.ret)-1].isEnd(), nextSeq
}
func (a *Assembler) cleanSG(half *halfconnection, ac AssemblerContext) {
cur := 0
ndx := 0
skip := 0
a.dump("cleanSG(start)", half)
var r byteContainer
// Find first page to keep
if a.cacheSG.toKeep < 0 {
ndx = len(a.cacheSG.all)
} else {
skip = a.cacheSG.toKeep
found := false
for ndx, r = range a.cacheSG.all {
if a.cacheSG.toKeep < cur+r.length() {
found = true
break
}
cur += r.length()
if skip >= r.length() {
skip -= r.length()
}
}
if !found {
ndx++
}
}
// Release consumed pages
for _, r := range a.cacheSG.all[:ndx] {
if r == half.saved {
if half.saved.next != nil {
half.saved.next.prev = nil
}
half.saved = half.saved.next
} else if r == half.first {
if half.first.next != nil {
half.first.next.prev = nil
}
if half.first == half.last {
half.first, half.last = nil, nil
} else {
half.first = half.first.next
}
}
half.pages -= r.release(a.pc)
}
a.dump("after consumed release", half)
// Keep un-consumed pages
nbKept := 0
half.saved = nil
var saved *page
for _, r := range a.cacheSG.all[ndx:] {
preConvertLen := r.length()
first, last, nb := r.convertToPages(a.pc, skip, ac)
// Update skip count as we move from one container to the next.
if delta := preConvertLen - r.length(); delta > skip {
skip = 0
} else {
skip -= delta
}
if half.saved == nil {
half.saved = first
} else {
saved.next = first
first.prev = saved
}
saved = last
nbKept += nb
}
if *debugLog {
log.Printf("Remaining %d chunks in SG\n", nbKept)
log.Printf("%s\n", a.Dump())
a.dump("after cleanSG()", half)
}
}
// sendToConnection sends the current values in a.ret to the connection, closing
// the connection if the last thing sent had End set.
func (a *Assembler) sendToConnection(conn *connection, half *halfconnection, ac AssemblerContext) Sequence {
if *debugLog {
log.Printf("sendToConnection\n")
}
end, nextSeq := a.buildSG(half)
half.stream.ReassembledSG(&a.cacheSG, ac)
a.cleanSG(half, ac)
if end {
a.closeHalfConnection(conn, half)
}
if *debugLog {
log.Printf("after sendToConnection: nextSeq: %d\n", nextSeq)
}
return nextSeq
}
func (a *Assembler) addPending(half *halfconnection, firstSeq Sequence) int {
if half.saved == nil {
return 0
}
s := 0
ret := []byteContainer{}
for p := half.saved; p != nil; p = p.next {
if *debugLog {
log.Printf("adding pending @%p %s (%s)\n", p, p, hex.EncodeToString(p.bytes))
}
ret = append(ret, p)
s += len(p.bytes)
}
if half.saved.seq.Add(s) != firstSeq {
// non-continuous saved: drop them
var next *page
for p := half.saved; p != nil; p = next {
next = p.next
p.release(a.pc)
}
half.saved = nil
ret = []byteContainer{}
s = 0
}
a.ret = append(ret, a.ret...)
return s
}
// addContiguous adds contiguous byte-sets to a connection.
func (a *Assembler) addContiguous(half *halfconnection, lastSeq Sequence) Sequence {
page := half.first
if page == nil {
if *debugLog {
log.Printf("addContiguous(%d): no pages\n", lastSeq)
}
return lastSeq
}
if lastSeq == invalidSequence {
lastSeq = page.seq
}
for page != nil && lastSeq.Difference(page.seq) == 0 {
if *debugLog {
log.Printf("addContiguous: lastSeq: %d, first.seq=%d, page.seq=%d\n", half.nextSeq, half.first.seq, page.seq)
}
lastSeq = lastSeq.Add(len(page.bytes))
a.ret = append(a.ret, page)
half.first = page.next
if half.first == nil {
half.last = nil
}
if page.next != nil {
page.next.prev = nil
}
page = page.next
}
return lastSeq
}
// skipFlush skips the first set of bytes we're waiting for and returns the
// first set of bytes we have. If we have no bytes saved, it closes the
// connection.
func (a *Assembler) skipFlush(conn *connection, half *halfconnection) {
if *debugLog {
log.Printf("skipFlush %v\n", half.nextSeq)
}
// Well, it's embarassing it there is still something in half.saved
// FIXME: change API to give back saved + new/no packets
if half.first == nil {
a.closeHalfConnection(conn, half)
return
}
a.ret = a.ret[:0]
a.addNextFromConn(half)
nextSeq := a.sendToConnection(conn, half, a.ret[0].assemblerContext())
if nextSeq != invalidSequence {
half.nextSeq = nextSeq
}
}
func (a *Assembler) closeHalfConnection(conn *connection, half *halfconnection) {
if *debugLog {
log.Printf("%v closing", conn)
}
half.closed = true
for p := half.first; p != nil; p = p.next {
// FIXME: it should be already empty
a.pc.replace(p)
half.pages--
}
if conn.s2c.closed && conn.c2s.closed {
if half.stream.ReassemblyComplete(nil) { //FIXME: which context to pass ?
a.connPool.remove(conn)
}
}
}
// addNextFromConn pops the first page from a connection off and adds it to the
// return array.
func (a *Assembler) addNextFromConn(conn *halfconnection) {
if conn.first == nil {
return
}
if *debugLog {
log.Printf(" adding from conn (%v, %v) %v (%d)\n", conn.first.seq, conn.nextSeq, conn.nextSeq-conn.first.seq, len(conn.first.bytes))
}
a.ret = append(a.ret, conn.first)
conn.first = conn.first.next
if conn.first != nil {
conn.first.prev = nil
} else {
conn.last = nil
}
}
// FlushOptions provide options for flushing connections.
type FlushOptions struct {
T time.Time // If nonzero, only connections with data older than T are flushed
TC time.Time // If nonzero, only connections with data older than TC are closed (if no FIN/RST received)
}
// FlushWithOptions finds any streams waiting for packets older than
// the given time T, and pushes through the data they have (IE: tells
// them to stop waiting and skip the data they're waiting for).
//
// It also closes streams older than TC (that can be set to zero, to keep
// long-lived stream alive, but to flush data anyway).
//
// Each Stream maintains a list of zero or more sets of bytes it has received
// out-of-order. For example, if it has processed up through sequence number
// 10, it might have bytes [15-20), [20-25), [30,50) in its list. Each set of
// bytes also has the timestamp it was originally viewed. A flush call will
// look at the smallest subsequent set of bytes, in this case [15-20), and if
// its timestamp is older than the passed-in time, it will push it and all
// contiguous byte-sets out to the Stream's Reassembled function. In this case,
// it will push [15-20), but also [20-25), since that's contiguous. It will
// only push [30-50) if its timestamp is also older than the passed-in time,
// otherwise it will wait until the next FlushCloseOlderThan to see if bytes
// [25-30) come in.
//
// Returns the number of connections flushed, and of those, the number closed
// because of the flush.
func (a *Assembler) FlushWithOptions(opt FlushOptions) (flushed, closed int) {
conns := a.connPool.connections()
closes := 0
flushes := 0
for _, conn := range conns {
remove := false
conn.mu.Lock()
for _, half := range []*halfconnection{&conn.s2c, &conn.c2s} {
flushed, closed := a.flushClose(conn, half, opt.T, opt.TC)
if flushed {
flushes++
}
if closed {
closes++
}
}
if conn.s2c.closed && conn.c2s.closed && conn.s2c.lastSeen.Before(opt.TC) && conn.c2s.lastSeen.Before(opt.TC) {
remove = true
}
conn.mu.Unlock()
if remove {
a.connPool.remove(conn)
}
}
return flushes, closes
}
// FlushCloseOlderThan flushes and closes streams older than given time
func (a *Assembler) FlushCloseOlderThan(t time.Time) (flushed, closed int) {
return a.FlushWithOptions(FlushOptions{T: t, TC: t})
}
func (a *Assembler) flushClose(conn *connection, half *halfconnection, t time.Time, tc time.Time) (bool, bool) {
flushed, closed := false, false
if half.closed {
return flushed, closed
}
for half.first != nil && half.first.seen.Before(t) {
flushed = true
a.skipFlush(conn, half)
if half.closed {
closed = true
return flushed, closed
}
}
// Close the connection only if both halfs of the connection last seen before tc.
if !half.closed && half.first == nil && conn.lastSeen().Before(tc) {
a.closeHalfConnection(conn, half)
closed = true
}
return flushed, closed
}
// FlushAll flushes all remaining data into all remaining connections and closes
// those connections. It returns the total number of connections flushed/closed
// by the call.
func (a *Assembler) FlushAll() (closed int) {
conns := a.connPool.connections()
closed = len(conns)
for _, conn := range conns {
conn.mu.Lock()
for _, half := range []*halfconnection{&conn.s2c, &conn.c2s} {
for !half.closed {
a.skipFlush(conn, half)
}
if !half.closed {
a.closeHalfConnection(conn, half)
}
}
conn.mu.Unlock()
}
return
}
func min(a, b int) int {
if a < b {
return a
}
return b
}
|