1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
|
// Copyright 2012 Google, Inc. All rights reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the LICENSE file in the root of the source
// tree.
// Package tcpassembly provides TCP stream re-assembly.
//
// The tcpassembly package implements uni-directional TCP reassembly, for use in
// packet-sniffing applications. The caller reads packets off the wire, then
// presents them to an Assembler in the form of gopacket layers.TCP packets
// (github.com/gopacket/gopacket, github.com/gopacket/gopacket/layers).
//
// The Assembler uses a user-supplied
// StreamFactory to create a user-defined Stream interface, then passes packet
// data in stream order to that object. A concurrency-safe StreamPool keeps
// track of all current Streams being reassembled, so multiple Assemblers may
// run at once to assemble packets while taking advantage of multiple cores.
package tcpassembly
import (
"flag"
"fmt"
"log"
"sync"
"time"
"github.com/gopacket/gopacket"
"github.com/gopacket/gopacket/layers"
)
var memLog = flag.Bool("assembly_memuse_log", false, "If true, the github.com/gopacket/gopacket/tcpassembly library will log information regarding its memory use every once in a while.")
var debugLog = flag.Bool("assembly_debug_log", false, "If true, the github.com/gopacket/gopacket/tcpassembly library will log verbose debugging information (at least one line per packet)")
const invalidSequence = -1
const uint32Size = 1 << 32
// Sequence is a TCP sequence number. It provides a few convenience functions
// for handling TCP wrap-around. The sequence should always be in the range
// [0,0xFFFFFFFF]... its other bits are simply used in wrap-around calculations
// and should never be set.
type Sequence int64
// Difference defines an ordering for comparing TCP sequences that's safe for
// roll-overs. It returns:
//
// > 0 : if t comes after s
// < 0 : if t comes before s
// 0 : if t == s
//
// The number returned is the sequence difference, so 4.Difference(8) will
// return 4.
//
// It handles rollovers by considering any sequence in the first quarter of the
// uint32 space to be after any sequence in the last quarter of that space, thus
// wrapping the uint32 space.
func (s Sequence) Difference(t Sequence) int {
if s > uint32Size-uint32Size/4 && t < uint32Size/4 {
t += uint32Size
} else if t > uint32Size-uint32Size/4 && s < uint32Size/4 {
s += uint32Size
}
return int(t - s)
}
// Add adds an integer to a sequence and returns the resulting sequence.
func (s Sequence) Add(t int) Sequence {
return (s + Sequence(t)) & (uint32Size - 1)
}
// Reassembly objects are passed by an Assembler into Streams using the
// Reassembled call. Callers should not need to create these structs themselves
// except for testing.
type Reassembly struct {
// Bytes is the next set of bytes in the stream. May be empty.
Bytes []byte
// Skip is set to non-zero if bytes were skipped between this and the
// last Reassembly. If this is the first packet in a connection and we
// didn't see the start, we have no idea how many bytes we skipped, so
// we set it to -1. Otherwise, it's set to the number of bytes skipped.
Skip int
// Start is set if this set of bytes has a TCP SYN accompanying it.
Start bool
// End is set if this set of bytes has a TCP FIN or RST accompanying it.
End bool
// Seen is the timestamp this set of bytes was pulled off the wire.
Seen time.Time
}
const pageBytes = 1900
// page is used to store TCP data we're not ready for yet (out-of-order
// packets). Unused pages are stored in and returned from a pageCache, which
// avoids memory allocation. Used pages are stored in a doubly-linked list in
// a connection.
type page struct {
Reassembly
seq Sequence
index int
prev, next *page
buf [pageBytes]byte
}
// pageCache is a concurrency-unsafe store of page objects we use to avoid
// memory allocation as much as we can. It grows but never shrinks.
type pageCache struct {
free []*page
pcSize int
size, used int
pages [][]page
pageRequests int64
}
const initialAllocSize = 1024
func newPageCache() *pageCache {
pc := &pageCache{
free: make([]*page, 0, initialAllocSize),
pcSize: initialAllocSize,
}
pc.grow()
return pc
}
// grow exponentially increases the size of our page cache as much as necessary.
func (c *pageCache) grow() {
pages := make([]page, c.pcSize)
c.pages = append(c.pages, pages)
c.size += c.pcSize
for i := range pages {
c.free = append(c.free, &pages[i])
}
if *memLog {
log.Println("PageCache: created", c.pcSize, "new pages")
}
c.pcSize *= 2
}
// next returns a clean, ready-to-use page object.
func (c *pageCache) next(ts time.Time) (p *page) {
if *memLog {
c.pageRequests++
if c.pageRequests&0xFFFF == 0 {
log.Println("PageCache:", c.pageRequests, "requested,", c.used, "used,", len(c.free), "free")
}
}
if len(c.free) == 0 {
c.grow()
}
i := len(c.free) - 1
p, c.free = c.free[i], c.free[:i]
p.prev = nil
p.next = nil
p.Reassembly = Reassembly{Bytes: p.buf[:0], Seen: ts}
c.used++
return p
}
// replace replaces a page into the pageCache.
func (c *pageCache) replace(p *page) {
c.used--
c.free = append(c.free, p)
}
// Stream is implemented by the caller to handle incoming reassembled
// TCP data. Callers create a StreamFactory, then StreamPool uses
// it to create a new Stream for every TCP stream.
//
// assembly will, in order:
// 1. Create the stream via StreamFactory.New
// 2. Call Reassembled 0 or more times, passing in reassembled TCP data in order
// 3. Call ReassemblyComplete one time, after which the stream is dereferenced by assembly.
type Stream interface {
// Reassembled is called zero or more times. assembly guarantees
// that the set of all Reassembly objects passed in during all
// calls are presented in the order they appear in the TCP stream.
// Reassembly objects are reused after each Reassembled call,
// so it's important to copy anything you need out of them
// (specifically out of Reassembly.Bytes) that you need to stay
// around after you return from the Reassembled call.
Reassembled([]Reassembly)
// ReassemblyComplete is called when assembly decides there is
// no more data for this Stream, either because a FIN or RST packet
// was seen, or because the stream has timed out without any new
// packet data (due to a call to FlushOlderThan).
ReassemblyComplete()
}
// StreamFactory is used by assembly to create a new stream for each
// new TCP session.
type StreamFactory interface {
// New should return a new stream for the given TCP key.
New(netFlow, tcpFlow gopacket.Flow) Stream
}
func (p *StreamPool) connections() []*connection {
p.mu.RLock()
conns := make([]*connection, 0, len(p.conns))
for _, conn := range p.conns {
conns = append(conns, conn)
}
p.mu.RUnlock()
return conns
}
// FlushOptions provide options for flushing connections.
type FlushOptions struct {
T time.Time // If nonzero, only connections with data older than T are flushed
CloseAll bool // If true, ALL connections are closed post flush, not just those that correctly see FIN/RST.
}
// FlushWithOptions finds any streams waiting for packets older than
// the given time, and pushes through the data they have (IE: tells
// them to stop waiting and skip the data they're waiting for).
//
// Each Stream maintains a list of zero or more sets of bytes it has received
// out-of-order. For example, if it has processed up through sequence number
// 10, it might have bytes [15-20), [20-25), [30,50) in its list. Each set of
// bytes also has the timestamp it was originally viewed. A flush call will
// look at the smallest subsequent set of bytes, in this case [15-20), and if
// its timestamp is older than the passed-in time, it will push it and all
// contiguous byte-sets out to the Stream's Reassembled function. In this case,
// it will push [15-20), but also [20-25), since that's contiguous. It will
// only push [30-50) if its timestamp is also older than the passed-in time,
// otherwise it will wait until the next FlushOlderThan to see if bytes [25-30)
// come in.
//
// If it pushes all bytes (or there were no sets of bytes to begin with)
// AND the connection has not received any bytes since the passed-in time,
// the connection will be closed.
//
// If CloseAll is set, it will close out connections that have been drained.
// Regardless of the CloseAll setting, connections stale for the specified
// time will be closed.
//
// Returns the number of connections flushed, and of those, the number closed
// because of the flush.
func (a *Assembler) FlushWithOptions(opt FlushOptions) (flushed, closed int) {
conns := a.connPool.connections()
closes := 0
flushes := 0
for _, conn := range conns {
flushed := false
conn.mu.Lock()
if conn.closed {
// Already closed connection, nothing to do here.
conn.mu.Unlock()
continue
}
for conn.first != nil && conn.first.Seen.Before(opt.T) {
a.skipFlush(conn)
flushed = true
if conn.closed {
closes++
break
}
}
if opt.CloseAll && !conn.closed && conn.first == nil && conn.lastSeen.Before(opt.T) {
flushed = true
a.closeConnection(conn)
closes++
}
if flushed {
flushes++
}
conn.mu.Unlock()
}
return flushes, closes
}
// FlushOlderThan calls FlushWithOptions with the CloseAll option set to true.
func (a *Assembler) FlushOlderThan(t time.Time) (flushed, closed int) {
return a.FlushWithOptions(FlushOptions{CloseAll: true, T: t})
}
// FlushAll flushes all remaining data into all remaining connections, closing
// those connections. It returns the total number of connections flushed/closed
// by the call.
func (a *Assembler) FlushAll() (closed int) {
conns := a.connPool.connections()
closed = len(conns)
for _, conn := range conns {
conn.mu.Lock()
for !conn.closed {
a.skipFlush(conn)
}
conn.mu.Unlock()
}
return
}
type key [2]gopacket.Flow
func (k *key) String() string {
return fmt.Sprintf("%s:%s", k[0], k[1])
}
// StreamPool stores all streams created by Assemblers, allowing multiple
// assemblers to work together on stream processing while enforcing the fact
// that a single stream receives its data serially. It is safe
// for concurrency, usable by multiple Assemblers at once.
//
// StreamPool handles the creation and storage of Stream objects used by one or
// more Assembler objects. When a new TCP stream is found by an Assembler, it
// creates an associated Stream by calling its StreamFactory's New method.
// Thereafter (until the stream is closed), that Stream object will receive
// assembled TCP data via Assembler's calls to the stream's Reassembled
// function.
//
// Like the Assembler, StreamPool attempts to minimize allocation. Unlike the
// Assembler, though, it does have to do some locking to make sure that the
// connection objects it stores are accessible to multiple Assemblers.
type StreamPool struct {
conns map[key]*connection
users int
mu sync.RWMutex
factory StreamFactory
free []*connection
all [][]connection
nextAlloc int
newConnectionCount int64
}
func (p *StreamPool) grow() {
conns := make([]connection, p.nextAlloc)
p.all = append(p.all, conns)
for i := range conns {
p.free = append(p.free, &conns[i])
}
if *memLog {
log.Println("StreamPool: created", p.nextAlloc, "new connections")
}
p.nextAlloc *= 2
}
// NewStreamPool creates a new connection pool. Streams will
// be created as necessary using the passed-in StreamFactory.
func NewStreamPool(factory StreamFactory) *StreamPool {
return &StreamPool{
conns: make(map[key]*connection, initialAllocSize),
free: make([]*connection, 0, initialAllocSize),
factory: factory,
nextAlloc: initialAllocSize,
}
}
const assemblerReturnValueInitialSize = 16
// NewAssembler creates a new assembler. Pass in the StreamPool
// to use, may be shared across assemblers.
//
// This sets some sane defaults for the assembler options,
// see DefaultAssemblerOptions for details.
func NewAssembler(pool *StreamPool) *Assembler {
pool.mu.Lock()
pool.users++
pool.mu.Unlock()
return &Assembler{
ret: make([]Reassembly, assemblerReturnValueInitialSize),
pc: newPageCache(),
connPool: pool,
AssemblerOptions: DefaultAssemblerOptions,
}
}
// DefaultAssemblerOptions provides default options for an assembler.
// These options are used by default when calling NewAssembler, so if
// modified before a NewAssembler call they'll affect the resulting Assembler.
//
// Note that the default options can result in ever-increasing memory usage
// unless one of the Flush* methods is called on a regular basis.
var DefaultAssemblerOptions = AssemblerOptions{
MaxBufferedPagesPerConnection: 0, // unlimited
MaxBufferedPagesTotal: 0, // unlimited
}
type connection struct {
key key
pages int
first, last *page
nextSeq Sequence
created, lastSeen time.Time
stream Stream
closed bool
mu sync.Mutex
}
func (c *connection) reset(k key, s Stream, ts time.Time) {
c.key = k
c.pages = 0
c.first, c.last = nil, nil
c.nextSeq = invalidSequence
c.created = ts
c.stream = s
c.closed = false
}
// AssemblerOptions controls the behavior of each assembler. Modify the
// options of each assembler you create to change their behavior.
type AssemblerOptions struct {
// MaxBufferedPagesTotal is an upper limit on the total number of pages to
// buffer while waiting for out-of-order packets. Once this limit is
// reached, the assembler will degrade to flushing every connection it
// gets a packet for. If <= 0, this is ignored.
MaxBufferedPagesTotal int
// MaxBufferedPagesPerConnection is an upper limit on the number of pages
// buffered for a single connection. Should this limit be reached for a
// particular connection, the smallest sequence number will be flushed, along
// with any contiguous data. If <= 0, this is ignored.
MaxBufferedPagesPerConnection int
}
// Assembler handles reassembling TCP streams. It is not safe for
// concurrency... after passing a packet in via the Assemble call, the caller
// must wait for that call to return before calling Assemble again. Callers can
// get around this by creating multiple assemblers that share a StreamPool. In
// that case, each individual stream will still be handled serially (each stream
// has an individual mutex associated with it), however multiple assemblers can
// assemble different connections concurrently.
//
// The Assembler provides (hopefully) fast TCP stream re-assembly for sniffing
// applications written in Go. The Assembler uses the following methods to be
// as fast as possible, to keep packet processing speedy:
//
// # Avoids Lock Contention
//
// Assemblers locks connections, but each connection has an individual lock, and
// rarely will two Assemblers be looking at the same connection. Assemblers
// lock the StreamPool when looking up connections, but they use Reader
// locks initially, and only force a write lock if they need to create a new
// connection or close one down. These happen much less frequently than
// individual packet handling.
//
// Each assembler runs in its own goroutine, and the only state shared between
// goroutines is through the StreamPool. Thus all internal Assembler state
// can be handled without any locking.
//
// NOTE: If you can guarantee that packets going to a set of Assemblers will
// contain information on different connections per Assembler (for example,
// they're already hashed by PF_RING hashing or some other hashing mechanism),
// then we recommend you use a seperate StreamPool per Assembler, thus
// avoiding all lock contention. Only when different Assemblers could receive
// packets for the same Stream should a StreamPool be shared between them.
//
// # Avoids Memory Copying
//
// In the common case, handling of a single TCP packet should result in zero
// memory allocations. The Assembler will look up the connection, figure out
// that the packet has arrived in order, and immediately pass that packet on to
// the appropriate connection's handling code. Only if a packet arrives out of
// order is its contents copied and stored in memory for later.
//
// # Avoids Memory Allocation
//
// Assemblers try very hard to not use memory allocation unless absolutely
// necessary. Packet data for sequential packets is passed directly to streams
// with no copying or allocation. Packet data for out-of-order packets is
// copied into reusable pages, and new pages are only allocated rarely when the
// page cache runs out. Page caches are Assembler-specific, thus not used
// concurrently and requiring no locking.
//
// Internal representations for connection objects are also reused over time.
// Because of this, the most common memory allocation done by the Assembler is
// generally what's done by the caller in StreamFactory.New. If no allocation
// is done there, then very little allocation is done ever, mostly to handle
// large increases in bandwidth or numbers of connections.
//
// TODO: The page caches used by an Assembler will grow to the size necessary
// to handle a workload, and currently will never shrink. This means that
// traffic spikes can result in large memory usage which isn't garbage
// collected when typical traffic levels return.
type Assembler struct {
AssemblerOptions
ret []Reassembly
pc *pageCache
connPool *StreamPool
}
func (p *StreamPool) newConnection(k key, s Stream, ts time.Time) (c *connection) {
if *memLog {
p.newConnectionCount++
if p.newConnectionCount&0x7FFF == 0 {
log.Println("StreamPool:", p.newConnectionCount, "requests,", len(p.conns), "used,", len(p.free), "free")
}
}
if len(p.free) == 0 {
p.grow()
}
index := len(p.free) - 1
c, p.free = p.free[index], p.free[:index]
c.reset(k, s, ts)
return c
}
// getConnection returns a connection. If end is true and a connection
// does not already exist, returns nil. This allows us to check for a
// connection without actually creating one if it doesn't already exist.
func (p *StreamPool) getConnection(k key, end bool, ts time.Time) *connection {
p.mu.RLock()
conn := p.conns[k]
p.mu.RUnlock()
if end || conn != nil {
return conn
}
s := p.factory.New(k[0], k[1])
p.mu.Lock()
conn = p.newConnection(k, s, ts)
if conn2 := p.conns[k]; conn2 != nil {
p.mu.Unlock()
return conn2
}
p.conns[k] = conn
p.mu.Unlock()
return conn
}
// Assemble calls AssembleWithTimestamp with the current timestamp, useful for
// packets being read directly off the wire.
func (a *Assembler) Assemble(netFlow gopacket.Flow, t *layers.TCP) {
a.AssembleWithTimestamp(netFlow, t, time.Now())
}
// AssembleWithTimestamp reassembles the given TCP packet into its appropriate
// stream.
//
// The timestamp passed in must be the timestamp the packet was seen.
// For packets read off the wire, time.Now() should be fine. For packets read
// from PCAP files, CaptureInfo.Timestamp should be passed in. This timestamp
// will affect which streams are flushed by a call to FlushOlderThan.
//
// Each Assemble call results in, in order:
//
// zero or one calls to StreamFactory.New, creating a stream
// zero or one calls to Reassembled on a single stream
// zero or one calls to ReassemblyComplete on the same stream
func (a *Assembler) AssembleWithTimestamp(netFlow gopacket.Flow, t *layers.TCP, timestamp time.Time) {
// Ignore empty TCP packets
if !t.SYN && !t.FIN && !t.RST && len(t.LayerPayload()) == 0 {
if *debugLog {
log.Println("ignoring useless packet")
}
return
}
a.ret = a.ret[:0]
key := key{netFlow, t.TransportFlow()}
var conn *connection
// This for loop handles a race condition where a connection will close, lock
// the connection pool, and remove itself, but before it locked the connection
// pool it's returned to another Assemble statement. This should loop 0-1
// times for the VAST majority of cases.
for {
conn = a.connPool.getConnection(
key, !t.SYN && len(t.LayerPayload()) == 0, timestamp)
if conn == nil {
if *debugLog {
log.Printf("%v got empty packet on otherwise empty connection", key)
}
return
}
conn.mu.Lock()
if !conn.closed {
break
}
conn.mu.Unlock()
}
if conn.lastSeen.Before(timestamp) {
conn.lastSeen = timestamp
}
seq, bytes := Sequence(t.Seq), t.Payload
if conn.nextSeq == invalidSequence {
if t.SYN {
if *debugLog {
log.Printf("%v saw first SYN packet, returning immediately, seq=%v", key, seq)
}
a.ret = append(a.ret, Reassembly{
Bytes: bytes,
Skip: 0,
Start: true,
Seen: timestamp,
})
conn.nextSeq = seq.Add(len(bytes) + 1)
} else {
if *debugLog {
log.Printf("%v waiting for start, storing into connection", key)
}
a.insertIntoConn(t, conn, timestamp)
}
} else if diff := conn.nextSeq.Difference(seq); diff > 0 {
if *debugLog {
log.Printf("%v gap in sequence numbers (%v, %v) diff %v, storing into connection", key, conn.nextSeq, seq, diff)
}
a.insertIntoConn(t, conn, timestamp)
} else {
bytes, conn.nextSeq = byteSpan(conn.nextSeq, seq, bytes)
if *debugLog {
log.Printf("%v found contiguous data (%v, %v), returning immediately", key, seq, conn.nextSeq)
}
a.ret = append(a.ret, Reassembly{
Bytes: bytes,
Skip: 0,
End: t.RST || t.FIN,
Seen: timestamp,
})
}
if len(a.ret) > 0 {
a.sendToConnection(conn)
}
conn.mu.Unlock()
}
func byteSpan(expected, received Sequence, bytes []byte) (toSend []byte, next Sequence) {
if expected == invalidSequence {
return bytes, received.Add(len(bytes))
}
span := int(received.Difference(expected))
if span <= 0 {
return bytes, received.Add(len(bytes))
} else if len(bytes) < span {
return nil, expected
}
return bytes[span:], expected.Add(len(bytes) - span)
}
// sendToConnection sends the current values in a.ret to the connection, closing
// the connection if the last thing sent had End set.
func (a *Assembler) sendToConnection(conn *connection) {
a.addContiguous(conn)
if conn.stream == nil {
panic("why?")
}
conn.stream.Reassembled(a.ret)
if a.ret[len(a.ret)-1].End {
a.closeConnection(conn)
}
}
// addContiguous adds contiguous byte-sets to a connection.
func (a *Assembler) addContiguous(conn *connection) {
for conn.first != nil && conn.nextSeq.Difference(conn.first.seq) <= 0 {
a.addNextFromConn(conn)
}
}
// skipFlush skips the first set of bytes we're waiting for and returns the
// first set of bytes we have. If we have no bytes pending, it closes the
// connection.
func (a *Assembler) skipFlush(conn *connection) {
if *debugLog {
log.Printf("%v skipFlush %v", conn.key, conn.nextSeq)
}
if conn.first == nil {
a.closeConnection(conn)
return
}
a.ret = a.ret[:0]
a.addNextFromConn(conn)
a.addContiguous(conn)
a.sendToConnection(conn)
}
func (p *StreamPool) remove(conn *connection) {
p.mu.Lock()
delete(p.conns, conn.key)
p.free = append(p.free, conn)
p.mu.Unlock()
}
func (a *Assembler) closeConnection(conn *connection) {
if *debugLog {
log.Printf("%v closing", conn.key)
}
conn.stream.ReassemblyComplete()
conn.closed = true
a.connPool.remove(conn)
for p := conn.first; p != nil; p = p.next {
a.pc.replace(p)
}
}
// traverseConn traverses our doubly-linked list of pages for the correct
// position to put the given sequence number. Note that it traverses backwards,
// starting at the highest sequence number and going down, since we assume the
// common case is that TCP packets for a stream will appear in-order, with
// minimal loss or packet reordering.
func (c *connection) traverseConn(seq Sequence) (prev, current *page) {
prev = c.last
for prev != nil && prev.seq.Difference(seq) < 0 {
current = prev
prev = current.prev
}
return
}
// pushBetween inserts the doubly-linked list first-...-last in between the
// nodes prev-next in another doubly-linked list. If prev is nil, makes first
// the new first page in the connection's list. If next is nil, makes last the
// new last page in the list. first/last may point to the same page.
func (c *connection) pushBetween(prev, next, first, last *page) {
// Maintain our doubly linked list
if next == nil || c.last == nil {
c.last = last
} else {
last.next = next
next.prev = last
}
if prev == nil || c.first == nil {
c.first = first
} else {
first.prev = prev
prev.next = first
}
}
func (a *Assembler) insertIntoConn(t *layers.TCP, conn *connection, ts time.Time) {
if conn.first != nil && conn.first.seq == conn.nextSeq {
panic("wtf")
}
p, p2, numPages := a.pagesFromTCP(t, ts)
prev, current := conn.traverseConn(Sequence(t.Seq))
conn.pushBetween(prev, current, p, p2)
conn.pages += numPages
if (a.MaxBufferedPagesPerConnection > 0 && conn.pages >= a.MaxBufferedPagesPerConnection) ||
(a.MaxBufferedPagesTotal > 0 && a.pc.used >= a.MaxBufferedPagesTotal) {
if *debugLog {
log.Printf("%v hit max buffer size: %+v, %v, %v", conn.key, a.AssemblerOptions, conn.pages, a.pc.used)
}
a.addNextFromConn(conn)
}
}
// pagesFromTCP creates a page (or set of pages) from a TCP packet. Note that
// it should NEVER receive a SYN packet, as it doesn't handle sequences
// correctly.
//
// It returns the first and last page in its doubly-linked list of new pages.
func (a *Assembler) pagesFromTCP(t *layers.TCP, ts time.Time) (p, p2 *page, numPages int) {
first := a.pc.next(ts)
current := first
numPages++
seq, bytes := Sequence(t.Seq), t.Payload
for {
length := min(len(bytes), pageBytes)
current.Bytes = current.buf[:length]
copy(current.Bytes, bytes)
current.seq = seq
bytes = bytes[length:]
if len(bytes) == 0 {
break
}
seq = seq.Add(length)
current.next = a.pc.next(ts)
current.next.prev = current
current = current.next
numPages++
}
current.End = t.RST || t.FIN
return first, current, numPages
}
// addNextFromConn pops the first page from a connection off and adds it to the
// return array.
func (a *Assembler) addNextFromConn(conn *connection) {
if conn.nextSeq == invalidSequence {
conn.first.Skip = -1
} else if diff := conn.nextSeq.Difference(conn.first.seq); diff > 0 {
conn.first.Skip = int(diff)
}
conn.first.Bytes, conn.nextSeq = byteSpan(conn.nextSeq, conn.first.seq, conn.first.Bytes)
if *debugLog {
log.Printf("%v adding from conn (%v, %v)", conn.key, conn.first.seq, conn.nextSeq)
}
a.ret = append(a.ret, conn.first.Reassembly)
a.pc.replace(conn.first)
if conn.first == conn.last {
conn.first = nil
conn.last = nil
} else {
conn.first = conn.first.next
conn.first.prev = nil
}
conn.pages--
}
func min(a, b int) int {
if a < b {
return a
}
return b
}
|