1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
|
package tensor
import (
"fmt"
"github.com/pkg/errors"
)
// An AP is an access pattern. It tells the various ndarrays how to access their data through the use of strides
// Through the AP, there are several definitions of things, most notably there are two very specific "special cases":
// Scalar has Dims() of 0.
// - (1)
// Scalarlikes are higher order tensors, but each with a size of 1. The Dims() are not 0.
// - (1, 1)
// - (1, 1, 1)
// - (1, 1, 1, 1), etc
// Vector has Dims() of 1, but its shape can take several forms:
// - (x, 1)
// - (1, x)
// - (x)
// Matrix has Dims() of 2. This is the most basic form. The len(shape) has to be equal to 2 as well
// ndarray has Dims() of n.
type AP struct {
shape Shape // len(shape) is the operational definition of the dimensions
strides []int // strides is usually calculated from shape
fin bool // is this struct change-proof?
o DataOrder
Δ Triangle
}
func makeAP(size int) AP {
return AP{
shape: Shape(BorrowInts(size)),
strides: BorrowInts(size),
}
}
// MakeAP creates an AP, given the shape and strides.
func MakeAP(shape Shape, strides []int, o DataOrder, Δ Triangle) AP {
return AP{
shape: shape,
strides: strides,
o: o,
Δ: Δ,
fin: true,
}
}
// Init initializes an already created AP with a shape and stries.
// It will panic if AP is nil.
func (ap *AP) Init(shape Shape, strides []int) {
ap.shape = shape
ap.strides = strides
ap.fin = true
}
// SetShape is for very specific times when modifying the AP is necessary, such as reshaping and doing I/O related stuff
//
// Caveats:
//
// - SetShape will recalculate the strides.
//
// - If the AP is locked, nothing will happen
func (ap *AP) SetShape(s ...int) {
if !ap.fin {
// scalars are a special case, we don't want to remove it completely
if len(s) == 0 {
if ap.shape == nil || ap.strides == nil {
ap.shape = Shape{}
}
ap.shape = ap.shape[:0]
ap.strides = ap.strides[:0]
return
}
if ap.shape != nil {
ReturnInts(ap.shape)
ap.shape = nil
}
if ap.strides != nil {
ReturnInts(ap.strides)
ap.strides = nil
}
ap.shape = Shape(s).Clone()
ap.strides = ap.calcStrides()
}
}
// Shape returns the shape of the AP
func (ap *AP) Shape() Shape { return ap.shape }
// Strides returns the strides of the AP
func (ap *AP) Strides() []int { return ap.strides }
// Dims returns the dimensions of the shape in the AP
func (ap *AP) Dims() int { return ap.shape.Dims() }
// Size returns the expected array size of the shape
func (ap *AP) Size() int { return ap.shape.TotalSize() }
// String implements fmt.Stringer and runtime.Stringer
func (ap *AP) String() string { return fmt.Sprintf("%v", ap) }
// Format implements fmt.Formatter
func (ap *AP) Format(state fmt.State, c rune) {
fmt.Fprintf(state, "Shape: %v, Stride: %v, Lock: %t", ap.shape, ap.strides, ap.fin)
}
// IsVector returns whether the access pattern falls into one of three possible definitions of vectors:
// vanilla vector (not a row or a col)
// column vector
// row vector
func (ap *AP) IsVector() bool { return ap.shape.IsVector() }
// IsVectorLike returns true if the shape is vector-like (i.e. the shape only has one dim that is a non-1).
func (ap *AP) IsVectorLike() bool {
return ap.shape.IsVectorLike() && allones(ap.strides)
}
// IsColVec returns true when the access pattern has the shape (x, 1)
func (ap *AP) IsColVec() bool { return ap.shape.IsColVec() }
// IsRowVec returns true when the access pattern has the shape (1, x)
func (ap *AP) IsRowVec() bool { return ap.shape.IsRowVec() }
// IsScalar returns true if the access pattern indicates it's a scalar value.
func (ap *AP) IsScalar() bool { return ap.shape.IsScalar() }
// IsScalarEquiv returns true if the access pattern is equivalent to a scalar shape.
func (ap *AP) IsScalarEquiv() bool { return ap.shape.IsScalarEquiv() }
// IsMatrix returns true if it's a matrix. This is mostly a convenience method. RowVec and ColVecs are also considered matrices
func (ap *AP) IsMatrix() bool { return len(ap.shape) == 2 }
// IsZero tell us if the ap has zero size
func (ap *AP) IsZero() bool {
return len(ap.shape) == 0 && len(ap.strides) == 0 && !ap.fin && ap.o == 0 && ap.Δ == 0
}
// Zero zeros out an AP.
func (ap *AP) zero() {
// log.Printf("ZEROING. Called by %v", string(debug.Stack()))
// Jorge's original implementation for zeroing a AP is as below
// but to cater for the (*Dense).fix() method of the *Dense
// a nil shape is used to signal unsetness
// so we cannot just truncate the shape even though it would be a lot more efficient
// ap.shape = ap.shape[:0]
// ap.strides = ap.strides[:0]
ReturnInts([]int(ap.shape))
ReturnInts(ap.strides)
ap.zeroOnly()
}
// side effect free zeroing
func (ap *AP) zeroOnly() {
ap.shape = nil
ap.strides = nil
ap.fin = false
ap.o = 0
ap.Δ = 0
}
func (ap *AP) zeroWithDims(dims int) {
//ap.shape = BorrowInts(dims)
//ap.strides = BorrowInts(dims)
if cap(ap.shape) >= dims {
ap.shape = ap.shape[:dims]
}
ap.shape = BorrowInts(dims)
if cap(ap.strides) >= dims {
ap.strides = ap.strides[:dims]
}
ap.strides = BorrowInts(dims)
}
// Clone clones the *AP. Clearly. It returns AP
func (ap *AP) Clone() (retVal AP) {
retVal = makeAP(cap(ap.shape))
copy(retVal.shape, ap.shape)
copy(retVal.strides, ap.strides)
// handle vectors
retVal.shape = retVal.shape[:len(ap.shape)]
retVal.strides = retVal.strides[:len(ap.strides)]
retVal.fin = ap.fin
retVal.o = ap.o
retVal.Δ = ap.Δ
return
}
func (ap *AP) CloneTo(dest *AP) {
dest.shape = append(dest.shape[:0], ap.shape...)
dest.strides = append(dest.strides[:0], ap.strides...)
dest.fin = ap.fin
dest.o = ap.o
dest.Δ = ap.Δ
}
// DataOrder returns the data order of the AP.
func (ap *AP) DataOrder() DataOrder { return ap.o }
// C returns true if the access pattern is C-contiguous array
func (ap *AP) C() bool { return ap.o.IsRowMajor() && ap.o.IsContiguous() }
// F returns true if the access pattern is Fortran contiguous array
func (ap *AP) F() bool { return ap.o.IsColMajor() && ap.o.IsContiguous() }
// S returns the metadata of the sliced tensor.
func (ap *AP) S(size int, slices ...Slice) (newAP AP, ndStart, ndEnd int, err error) {
if len(slices) > len(ap.shape) {
// error
err = errors.Errorf(dimMismatch, len(ap.shape), len(slices))
return
}
ndEnd = size
newShape := ap.shape.Clone() // the new shape
dims := ap.Dims() // reported dimensions
newStrides := BorrowInts(dims) // the new strides
var outerDim int
order := ap.o
if ap.o.IsRowMajor() || ap.IsVector() {
outerDim = 0
} else {
outerDim = len(ap.shape) - 1
}
for i := 0; i < dims; i++ {
var sl Slice
if i <= len(slices)-1 {
sl = slices[i]
}
size := ap.shape[i]
var stride int
stride = ap.strides[i]
// if ap.IsVector() {
// // handles non-vanilla vectors
// stride = ap.strides[0]
// } else {
// stride = ap.strides[i]
// }
var start, end, step int
if start, end, step, err = SliceDetails(sl, size); err != nil {
err = errors.Wrapf(err, "Unable to get slice details on slice %d with size %d: %v", i, sl, size)
return
}
// a slice where start == end is []
ndStart = ndStart + start*stride
ndEnd = ndEnd - (size-end)*stride
if step > 0 {
if newShape[i] = (end - start) / step; (end-start)%step > 0 && i > 0 {
newShape[i]++
}
newStrides[i] = stride * step
//fix
if newShape[i] <= 0 {
newShape[i] = 1
}
} else {
newShape[i] = (end - start)
newStrides[i] = stride
}
if (sl != nil && (!ap.IsVector() && i != outerDim)) || step > 1 {
order = MakeDataOrder(order, NonContiguous)
}
}
if ndEnd-ndStart == 1 {
// scalars are a special case
newAP = AP{}
newAP.SetShape() // make it a Scalar
newAP.lock()
} else {
// drop any dimension with size 1, except the last dimension
offset := 0
for d := 0; d < dims; d++ {
if newShape[d] == 1 && offset+d <= len(slices)-1 && slices[offset+d] != nil /*&& d != t.dims-1 && dims > 2*/ {
newShape = append(newShape[:d], newShape[d+1:]...)
newStrides = append(newStrides[:d], newStrides[d+1:]...)
d--
dims--
offset++
}
}
newAP = MakeAP(newShape, newStrides, order, ap.Δ)
}
return
}
// T returns the transposed metadata based on the given input
func (ap *AP) T(axes ...int) (retVal AP, a []int, err error) {
// prep axes
if len(axes) > 0 && len(axes) != ap.Dims() {
err = errors.Errorf(dimMismatch, ap.Dims(), len(axes))
return
}
dims := len(ap.shape)
if len(axes) == 0 || axes == nil {
axes = make([]int, dims)
for i := 0; i < dims; i++ {
axes[i] = dims - 1 - i
}
}
a = axes
if ap.shape.IsScalarEquiv() {
return ap.Clone(), a, noopError{}
}
// if axes is 0, 1, 2, 3... then no op
if monotonic, incr1 := IsMonotonicInts(axes); monotonic && incr1 && axes[0] == 0 {
return ap.Clone(), a, noopError{}
}
currentShape := ap.shape
currentStride := ap.strides
shape := make(Shape, len(currentShape))
strides := make([]int, len(currentStride))
switch {
case ap.IsScalar():
return
case ap.IsVector():
if axes[0] == 0 {
return
}
strides[0], strides[1] = 1, 1
shape[0], shape[1] = currentShape[1], currentShape[0]
default:
copy(shape, currentShape)
copy(strides, currentStride)
err = UnsafePermute(axes, shape, strides)
if err != nil {
err = handleNoOp(err)
}
}
o := MakeDataOrder(ap.o, Transposed)
retVal = MakeAP(shape, strides, o, ap.Δ)
retVal.fin = true
return
}
// locking and unlocking is used to ensure that the shape and stride doesn't change (it's not really safe though, as a direct mutation of the strides/shape would still mutate it, but at least the dimensions cannot change)
func (ap *AP) lock() { ap.fin = true }
func (ap *AP) unlock() { ap.fin = false }
func (ap *AP) calcStrides() []int {
switch {
case ap.o.IsRowMajor():
return ap.shape.CalcStrides()
case ap.o.IsColMajor():
return ap.shape.CalcStridesColMajor()
}
panic("unreachable")
}
// setDataOrder is a method such that any tensor that embeds *AP will have the same method
func (ap *AP) setDataOrder(o DataOrder) {
if !o.HasSameOrder(ap.o) {
ap.o = ap.o.toggleColMajor()
}
}
// TransposeIndex returns the new index given the old index
func TransposeIndex(i int, oldShape, pattern, oldStrides, newStrides []int) int {
oldCoord, err := Itol(i, oldShape, oldStrides)
if err != nil {
panic(err) // or return error?
}
/*
coordss, _ := Permute(pattern, oldCoord)
coords := coordss[0]
index, _ := Ltoi(newShape, strides, coords...)
*/
// The above is the "conceptual" algorithm.
// Too many checks above slows things down, so the below is the "optimized" edition
var index int
for i, axis := range pattern {
index += oldCoord[axis] * newStrides[i]
}
return index
}
// UntransposeIndex returns the old index given the new index
func UntransposeIndex(i int, oldShape, pattern, oldStrides, newStrides []int) int {
newPattern := make([]int, len(pattern))
for i, p := range pattern {
newPattern[p] = i
}
return TransposeIndex(i, oldShape, newPattern, oldStrides, newStrides)
}
// BroadcastStrides handles broadcasting from different shapes.
//
// Deprecated: this function will be unexported
func BroadcastStrides(destShape, srcShape Shape, destStrides, srcStrides []int) (retVal []int, err error) {
dims := len(destShape)
start := dims - len(srcShape)
if destShape.IsVector() && srcShape.IsVector() {
return []int{srcStrides[0]}, nil
}
if start < 0 {
//error
err = errors.Errorf(dimMismatch, dims, len(srcShape))
return
}
retVal = BorrowInts(len(destStrides))
for i := dims - 1; i >= start; i-- {
s := srcShape[i-start]
switch {
case s == 1:
retVal[i] = 0
case s != destShape[i]:
// error
err = errors.Errorf("Cannot broadcast from %v to %v", srcShape, destShape)
return
default:
retVal[i] = srcStrides[i-start]
}
}
for i := 0; i < start; i++ {
retVal[i] = 0
}
return
}
|