1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
|
package tensor
import "github.com/pkg/errors"
// public API for comparison ops
// Lt performs a elementwise less than comparison (a < b). a and b can either be float64 or *Dense.
// It returns the same Tensor type as its input.
//
// If both operands are *Dense, shape is checked first.
// Even though the underlying data may have the same size (say (2,2) vs (4,1)), if they have different shapes, it will error out.
func Lt(a, b interface{}, opts ...FuncOpt) (retVal Tensor, err error) {
var lter Lter
var ok bool
switch at := a.(type) {
case Tensor:
lter, ok = at.Engine().(Lter)
switch bt := b.(type) {
case Tensor:
if !bt.Shape().IsScalar() && !at.Shape().IsScalar() { // non-scalar Tensor comparison
if !ok {
if lter, ok = bt.Engine().(Lter); !ok {
return nil, errors.Errorf("Neither operands have engines that support Lt")
}
}
return lter.Lt(at, bt, opts...)
} else {
var leftTensor bool
if !bt.Shape().IsScalar() {
leftTensor = false // a Scalar-Tensor * b Tensor
tmp := at
at = bt
bt = tmp
} else {
leftTensor = true // a Tensor * b Scalar-Tensor
}
if !ok {
return nil, errors.Errorf("Engine does not support Lt")
}
return lter.LtScalar(at, bt, leftTensor, opts...)
}
default:
if !ok {
return nil, errors.Errorf("Engine does not support Lt")
}
return lter.LtScalar(at, bt, true, opts...)
}
default:
switch bt := b.(type) {
case Tensor:
if lter, ok = bt.Engine().(Lter); !ok {
return nil, errors.Errorf("Engine does not support Lt")
}
return lter.LtScalar(bt, at, false, opts...)
default:
return nil, errors.Errorf("Unable to perform Lt on %T and %T", a, b)
}
}
}
// Gt performs a elementwise greater than comparison (a > b). a and b can either be float64 or *Dense.
// It returns the same Tensor type as its input.
//
// If both operands are *Dense, shape is checked first.
// Even though the underlying data may have the same size (say (2,2) vs (4,1)), if they have different shapes, it will error out.
func Gt(a, b interface{}, opts ...FuncOpt) (retVal Tensor, err error) {
var gter Gter
var ok bool
switch at := a.(type) {
case Tensor:
gter, ok = at.Engine().(Gter)
switch bt := b.(type) {
case Tensor:
if !bt.Shape().IsScalar() && !at.Shape().IsScalar() { // non-scalar Tensor comparison
if !ok {
if gter, ok = bt.Engine().(Gter); !ok {
return nil, errors.Errorf("Neither operands have engines that support Gt")
}
}
return gter.Gt(at, bt, opts...)
} else {
var leftTensor bool
if !bt.Shape().IsScalar() {
leftTensor = false // a Scalar-Tensor * b Tensor
tmp := at
at = bt
bt = tmp
} else {
leftTensor = true // a Tensor * b Scalar-Tensor
}
if !ok {
return nil, errors.Errorf("Engine does not support Gt")
}
return gter.GtScalar(at, bt, leftTensor, opts...)
}
default:
if !ok {
return nil, errors.Errorf("Engine does not support Gt")
}
return gter.GtScalar(at, bt, true, opts...)
}
default:
switch bt := b.(type) {
case Tensor:
if gter, ok = bt.Engine().(Gter); !ok {
return nil, errors.Errorf("Engine does not support Gt")
}
return gter.GtScalar(bt, at, false, opts...)
default:
return nil, errors.Errorf("Unable to perform Gt on %T and %T", a, b)
}
}
}
// Lte performs a elementwise less than eq comparison (a <= b). a and b can either be float64 or *Dense.
// It returns the same Tensor type as its input.
//
// If both operands are *Dense, shape is checked first.
// Even though the underlying data may have the same size (say (2,2) vs (4,1)), if they have different shapes, it will error out.
func Lte(a, b interface{}, opts ...FuncOpt) (retVal Tensor, err error) {
var lteer Lteer
var ok bool
switch at := a.(type) {
case Tensor:
lteer, ok = at.Engine().(Lteer)
switch bt := b.(type) {
case Tensor:
if !bt.Shape().IsScalar() && !at.Shape().IsScalar() { // non-scalar Tensor comparison
if !ok {
if lteer, ok = bt.Engine().(Lteer); !ok {
return nil, errors.Errorf("Neither operands have engines that support Lte")
}
}
return lteer.Lte(at, bt, opts...)
} else {
var leftTensor bool
if !bt.Shape().IsScalar() {
leftTensor = false // a Scalar-Tensor * b Tensor
tmp := at
at = bt
bt = tmp
} else {
leftTensor = true // a Tensor * b Scalar-Tensor
}
if !ok {
return nil, errors.Errorf("Engine does not support Lte")
}
return lteer.LteScalar(at, bt, leftTensor, opts...)
}
default:
if !ok {
return nil, errors.Errorf("Engine does not support Lte")
}
return lteer.LteScalar(at, bt, true, opts...)
}
default:
switch bt := b.(type) {
case Tensor:
if lteer, ok = bt.Engine().(Lteer); !ok {
return nil, errors.Errorf("Engine does not support Lte")
}
return lteer.LteScalar(bt, at, false, opts...)
default:
return nil, errors.Errorf("Unable to perform Lte on %T and %T", a, b)
}
}
}
// Gte performs a elementwise greater than eq comparison (a >= b). a and b can either be float64 or *Dense.
// It returns the same Tensor type as its input.
//
// If both operands are *Dense, shape is checked first.
// Even though the underlying data may have the same size (say (2,2) vs (4,1)), if they have different shapes, it will error out.
func Gte(a, b interface{}, opts ...FuncOpt) (retVal Tensor, err error) {
var gteer Gteer
var ok bool
switch at := a.(type) {
case Tensor:
gteer, ok = at.Engine().(Gteer)
switch bt := b.(type) {
case Tensor:
if !bt.Shape().IsScalar() && !at.Shape().IsScalar() { // non-scalar Tensor comparison
if !ok {
if gteer, ok = bt.Engine().(Gteer); !ok {
return nil, errors.Errorf("Neither operands have engines that support Gte")
}
}
return gteer.Gte(at, bt, opts...)
} else {
var leftTensor bool
if !bt.Shape().IsScalar() {
leftTensor = false // a Scalar-Tensor * b Tensor
tmp := at
at = bt
bt = tmp
} else {
leftTensor = true // a Tensor * b Scalar-Tensor
}
if !ok {
return nil, errors.Errorf("Engine does not support Gte")
}
return gteer.GteScalar(at, bt, leftTensor, opts...)
}
default:
if !ok {
return nil, errors.Errorf("Engine does not support Gte")
}
return gteer.GteScalar(at, bt, true, opts...)
}
default:
switch bt := b.(type) {
case Tensor:
if gteer, ok = bt.Engine().(Gteer); !ok {
return nil, errors.Errorf("Engine does not support Gte")
}
return gteer.GteScalar(bt, at, false, opts...)
default:
return nil, errors.Errorf("Unable to perform Gte on %T and %T", a, b)
}
}
}
// ElEq performs a elementwise equality comparison (a == b). a and b can either be float64 or *Dense.
// It returns the same Tensor type as its input.
//
// If both operands are *Dense, shape is checked first.
// Even though the underlying data may have the same size (say (2,2) vs (4,1)), if they have different shapes, it will error out.
func ElEq(a, b interface{}, opts ...FuncOpt) (retVal Tensor, err error) {
var eleqer ElEqer
var ok bool
switch at := a.(type) {
case Tensor:
eleqer, ok = at.Engine().(ElEqer)
switch bt := b.(type) {
case Tensor:
if !bt.Shape().IsScalar() && !at.Shape().IsScalar() { // non-scalar Tensor comparison
if !ok {
if eleqer, ok = bt.Engine().(ElEqer); !ok {
return nil, errors.Errorf("Neither operands have engines that support ElEq")
}
}
return eleqer.ElEq(at, bt, opts...)
} else {
var leftTensor bool
if !bt.Shape().IsScalar() {
leftTensor = false // a Scalar-Tensor * b Tensor
tmp := at
at = bt
bt = tmp
} else {
leftTensor = true // a Tensor * b Scalar-Tensor
}
if !ok {
return nil, errors.Errorf("Engine does not support ElEq")
}
return eleqer.EqScalar(at, bt, leftTensor, opts...)
}
default:
if !ok {
return nil, errors.Errorf("Engine does not support ElEq")
}
return eleqer.EqScalar(at, bt, true, opts...)
}
default:
switch bt := b.(type) {
case Tensor:
if eleqer, ok = bt.Engine().(ElEqer); !ok {
return nil, errors.Errorf("Engine does not support ElEq")
}
return eleqer.EqScalar(bt, at, false, opts...)
default:
return nil, errors.Errorf("Unable to perform ElEq on %T and %T", a, b)
}
}
}
// ElNe performs a elementwise equality comparison (a != b). a and b can either be float64 or *Dense.
// It returns the same Tensor type as its input.
//
// If both operands are *Dense, shape is checked first.
// Even though the underlying data may have the same size (say (2,2) vs (4,1)), if they have different shapes, it will error out.
func ElNe(a, b interface{}, opts ...FuncOpt) (retVal Tensor, err error) {
var eleqer ElEqer
var ok bool
switch at := a.(type) {
case Tensor:
eleqer, ok = at.Engine().(ElEqer)
switch bt := b.(type) {
case Tensor:
if !ok {
if eleqer, ok = bt.Engine().(ElEqer); !ok {
return nil, errors.Errorf("Neither operands have engines that support ElEq")
}
}
return eleqer.ElNe(at, bt, opts...)
default:
if !ok {
return nil, errors.Errorf("Engine does not support ElEq")
}
return eleqer.NeScalar(at, bt, true, opts...)
}
default:
switch bt := b.(type) {
case Tensor:
if eleqer, ok = bt.Engine().(ElEqer); !ok {
return nil, errors.Errorf("Engine does not support ElEq")
}
return eleqer.NeScalar(bt, at, false, opts...)
default:
return nil, errors.Errorf("Unable to perform ElEq on %T and %T", a, b)
}
}
}
|