1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
|
package tensor
import "github.com/pkg/errors"
func (e StdEng) Argmax(t Tensor, axis int) (retVal Tensor, err error) {
switch tt := t.(type) {
case DenseTensor:
return e.argmaxDenseTensor(tt, axis)
default:
return nil, errors.Errorf(typeNYI, "StdEng.Argmax", t)
}
}
func (e StdEng) argmaxDenseTensor(t DenseTensor, axis int) (retVal *Dense, err error) {
if err = unaryCheck(t, ordTypes); err != nil {
return nil, errors.Wrapf(err, opFail, "Argmax")
}
if axis >= len(t.Shape()) {
return nil, errors.Errorf(dimMismatch, len(t.Shape()), axis)
}
dataA := t.hdr()
typ := t.rtype()
// SPECIAL CASE: FLAT ARGMAX
if axis == AllAxes {
var index int
if mt, ok := t.(MaskedTensor); ok && mt.IsMasked() {
if index = e.E.ArgmaxFlatMasked(typ, dataA, mt.Mask()); index == -1 {
return nil, errors.Errorf("t is not supported - %T of %v", t, t.Dtype())
}
} else {
if index = e.E.ArgmaxFlat(typ, dataA); index == -1 {
return nil, errors.Errorf("t is not supported - %T of %v", t, t.Dtype())
}
}
return New(FromScalar(index)), nil
}
// ARGMAX ALONG AXIS
var indices []int
axes := make([]int, len(t.Shape()))
for i := range t.Shape() {
switch {
case i < axis:
axes[i] = i
case i == axis:
axes[len(axes)-1] = i
case i > axis:
axes[i-1] = i
}
}
// be a good citizen - borrow and return, since we're only using this AP to figure out the moves
newAP, _, err := t.Info().T(axes...)
if _, ok := err.(NoOpError); !ok && err != nil {
return
} else if ok {
t.Info().CloneTo(&newAP)
}
it := IteratorFromDense(t)
iteratorLoadAP(it, &newAP)
lastSize := it.Shape()[len(it.Shape())-1]
newShape := it.Shape().Clone()
newShape = newShape[:len(newShape)-1]
// cleanup
defer func() {
newAP.zero()
ReturnInts(newShape)
}()
if mt, ok := t.(MaskedTensor); ok && mt.IsMasked() {
mask := mt.Mask()
if indices, err = e.E.ArgmaxIterMasked(typ, dataA, mask, it, lastSize); err != nil {
return
}
} else {
if indices, err = e.E.ArgmaxIter(typ, dataA, it, lastSize); err != nil {
return
}
}
return New(WithShape(newShape...), WithBacking(indices)), nil
}
func (e StdEng) Argmin(t Tensor, axis int) (retVal Tensor, err error) {
switch tt := t.(type) {
case DenseTensor:
return e.argminDenseTensor(tt, axis)
default:
return nil, errors.Errorf(typeNYI, "StdEng.Argmin", t)
}
}
func (e StdEng) argminDenseTensor(t DenseTensor, axis int) (retVal *Dense, err error) {
if err = unaryCheck(t, ordTypes); err != nil {
return nil, errors.Wrapf(err, opFail, "Argmin")
}
if axis >= len(t.Shape()) {
return nil, errors.Errorf(dimMismatch, len(t.Shape()), axis)
}
dataA := t.hdr()
typ := t.rtype()
// SPECIAL CASE: FLAT ARGMAX
if axis == AllAxes {
var index int
if mt, ok := t.(MaskedTensor); ok && mt.IsMasked() {
if index = e.E.ArgminFlatMasked(typ, dataA, mt.Mask()); index == -1 {
return nil, errors.Errorf("t is not supported - %T of %v", t, t.Dtype())
}
} else {
if index = e.E.ArgminFlat(typ, dataA); index == -1 {
return nil, errors.Errorf("t is not supported - %T of %v", t, t.Dtype())
}
}
return New(FromScalar(index)), nil
}
// ARGMAX ALONG AXIS
var indices []int
axes := make([]int, len(t.Shape()))
for i := range t.Shape() {
switch {
case i < axis:
axes[i] = i
case i == axis:
axes[len(axes)-1] = i
case i > axis:
axes[i-1] = i
}
}
// be a good citizen - borrow and return, since we're only using this AP to figure out the moves
newAP, _, err := t.Info().T(axes...)
if _, ok := err.(NoOpError); !ok && err != nil {
return
} else if ok {
newAP = t.Info().Clone()
}
it := IteratorFromDense(t)
iteratorLoadAP(it, &newAP)
lastSize := it.Shape()[len(it.Shape())-1]
newShape := it.Shape().Clone()
newShape = newShape[:len(newShape)-1]
// cleanup
defer func() {
newAP.zero()
ReturnInts(newShape)
}()
if mt, ok := t.(MaskedTensor); ok && mt.IsMasked() {
mask := mt.Mask()
if indices, err = e.E.ArgminIterMasked(typ, dataA, mask, it, lastSize); err != nil {
return
}
} else {
if indices, err = e.E.ArgminIter(typ, dataA, it, lastSize); err != nil {
return
}
}
return New(WithShape(newShape...), WithBacking(indices)), nil
}
|