1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
|
package tensor
import (
"fmt"
"reflect"
"unsafe"
"github.com/pkg/errors"
"gorgonia.org/tensor/internal/storage"
)
const (
maskCompEvery int = 8
)
// Dense represents a dense tensor - this is the most common form of tensors. It can be used to represent vectors, matrices.. etc
type Dense struct {
AP
array
flag MemoryFlag
e Engine // execution engine for the *Dense
oe standardEngine // optimized engine
// backup AP. When a transpose is done, the old *AP is backed up here, for easy untransposes
old AP
transposeWith []int
// if viewOf != nil, then this *Dense is a view.
viewOf uintptr
mask []bool // mask slice can be used to identify missing or invalid values. len(mask)<=len(v)
maskIsSoft bool
}
// NewDense creates a new *Dense. It tries its best to get from the tensor pool.
func NewDense(dt Dtype, shape Shape, opts ...ConsOpt) *Dense {
return recycledDense(dt, shape, opts...)
}
func recycledDense(dt Dtype, shape Shape, opts ...ConsOpt) (retVal *Dense) {
retVal = recycledDenseNoFix(dt, shape, opts...)
retVal.fix()
if err := retVal.sanity(); err != nil {
panic(err)
}
return
}
func recycledDenseNoFix(dt Dtype, shape Shape, opts ...ConsOpt) (retVal *Dense) {
// size := shape.TotalSize()
//if shape.IsScalar() {
// size = 1
//}
retVal = borrowDense()
retVal.array.t = dt
retVal.AP.zeroWithDims(shape.Dims())
for _, opt := range opts {
opt(retVal)
}
retVal.setShape(shape...)
return
}
func (t *Dense) fromSlice(x interface{}) {
t.array.Header.Raw = nil // GC anything else
t.array.fromSlice(x)
}
func (t *Dense) addMask(mask []bool) {
l := len(mask)
if l > 0 && l != t.len() {
panic("Mask is not same length as data")
}
t.mask = mask
}
func (t *Dense) makeArray(size int) {
switch te := t.e.(type) {
case NonStdEngine:
t.flag = MakeMemoryFlag(t.flag, ManuallyManaged)
case arrayMaker:
te.makeArray(&t.array, t.t, size)
return
default:
}
memsize := calcMemSize(t.t, size)
mem, err := t.e.Alloc(memsize)
if err != nil {
panic(err)
}
t.array.Raw = storage.FromMemory(mem.Uintptr(), uintptr(memsize))
return
}
// Info returns the access pattern which explains how the data in the underlying array is accessed. This is mostly used for debugging.
func (t *Dense) Info() *AP { return &t.AP }
// Dtype returns the data type of the *Dense tensor.
func (t *Dense) Dtype() Dtype { return t.t }
// Data returns the underlying array. If the *Dense represents a scalar value, the scalar value is returned instead
func (t *Dense) Data() interface{} {
if t.IsScalar() {
return t.Get(0)
}
// build a type of []T
shdr := reflect.SliceHeader{
Data: t.array.Uintptr(),
Len: t.array.Len(),
Cap: t.array.Cap(),
}
sliceT := reflect.SliceOf(t.t.Type)
ptr := unsafe.Pointer(&shdr)
val := reflect.Indirect(reflect.NewAt(sliceT, ptr))
return val.Interface()
}
// DataSize returns the size of the underlying array. Typically t.DataSize() == t.Shape().TotalSize()
func (t *Dense) DataSize() int {
if t.IsScalar() {
return 0 // DOUBLE CHECK
}
return t.array.Len()
}
// Engine returns the execution engine associated with this Tensor
func (t *Dense) Engine() Engine { return t.e }
// Reshape reshapes a *Dense. If the tensors need to be materialized (either it's a view or transpose), it will be materialized before the reshape happens
func (t *Dense) Reshape(dims ...int) error {
if t.Shape().TotalSize() != Shape(dims).TotalSize() {
return errors.Errorf("Cannot reshape %v into %v", t.Shape(), dims)
}
if t.viewOf != 0 && t.o.IsNotContiguous() {
return errors.Errorf(methodNYI, "Reshape", "non-contiguous views")
}
if !t.old.IsZero() {
t.Transpose()
}
return t.reshape(dims...)
}
func (t *Dense) reshape(dims ...int) error {
t.setShape(dims...)
return t.sanity()
}
func (t *Dense) unsqueeze(axis int) error {
if axis > t.shape.Dims()+1 {
return errors.Errorf("Cannot unsqueeze on axis %d when the tensor has shape %v", axis, t.shape)
}
t.shape = append(t.shape, 1)
copy(t.shape[axis+1:], t.shape[axis:])
t.shape[axis] = 1
t.strides = append(t.strides, 1)
copy(t.strides[axis+1:], t.strides[axis:])
return nil
}
// ScalarValue returns the scalar value of a *Tensor,
// IF and ONLY IF it's a Tensor representation of a scalar value.
// This is required because operations like a (vec ยท vec) would return a scalar value.
// I didn't want to return interface{} for all the API methods, so the next best solution is to
// wrap the scalar value in a *Tensor
func (t *Dense) ScalarValue() interface{} {
if !t.IsScalar() {
panic(fmt.Sprintf("ScalarValue only works when the Tensor is a representation of a scalar value. The value of the tensor is %v", t))
}
return t.Get(0)
}
// IsView indicates if the Tensor is a view of another (typically from slicing)
func (t *Dense) IsView() bool {
return t.viewOf != 0
}
// IsMaterializeable indicates if the Tensor is materializable - if it has either gone through some transforms or slicing
func (t *Dense) IsMaterializable() bool {
return t.viewOf != 0 || !t.old.IsZero()
}
// IsManuallyManaged returns true if the memory associated with this *Dense is manually managed (by the user)
func (t *Dense) IsManuallyManaged() bool { return t.flag.manuallyManaged() }
// IsNativelyAccessible checks if the pointers are accessible by Go
func (t *Dense) IsNativelyAccessible() bool { return t.flag.nativelyAccessible() }
// Clone clones a *Dense. It creates a copy of the data, and the underlying array will be allocated
func (t *Dense) Clone() interface{} {
if t.e != nil {
retVal := new(Dense)
t.AP.CloneTo(&retVal.AP)
retVal.t = t.t
retVal.e = t.e
retVal.oe = t.oe
retVal.flag = t.flag
retVal.makeArray(t.Len())
if !t.old.IsZero() {
retVal.old = t.old.Clone()
t.old.CloneTo(&retVal.old)
}
copyDense(retVal, t)
retVal.lock()
return retVal
}
panic("Unreachable: No engine")
}
// IsMasked indicates whether tensor is masked
func (t *Dense) IsMasked() bool { return len(t.mask) == t.len() }
// MaskFromDense adds a mask slice to tensor by XORing dense arguments' masks
func (t *Dense) MaskFromDense(tts ...*Dense) {
hasMask := BorrowBools(len(tts))
defer ReturnBools(hasMask)
numMasked := 0
var masked = false
for i, tt := range tts {
if tt != nil {
hasMask[i] = tt.IsMasked()
masked = masked || hasMask[i]
if hasMask[i] {
numMasked++
}
}
}
if numMasked < 1 {
return
}
//Only make mask if none already. This way one of the tts can be t itself
if len(t.mask) < t.DataSize() {
t.makeMask()
}
for i, tt := range tts {
if tt != nil {
n := len(tt.mask)
if hasMask[i] {
for j := range t.mask {
t.mask[j] = t.mask[j] || tt.mask[j%n]
}
}
}
}
}
// Private methods
func (t *Dense) cap() int { return t.array.Cap() }
func (t *Dense) len() int { return t.array.Len() } // exactly the same as DataSize
func (t *Dense) arr() array { return t.array }
func (t *Dense) arrPtr() *array { return &t.array }
func (t *Dense) setShape(s ...int) {
t.unlock()
t.SetShape(s...)
t.lock()
return
}
func (t *Dense) setAP(ap *AP) { t.AP = *ap }
func (t *Dense) fix() {
if t.e == nil {
t.e = StdEng{}
}
if oe, ok := t.e.(standardEngine); ok {
t.oe = oe
}
switch {
case t.IsScalar() && t.array.Header.Raw == nil:
t.makeArray(1)
case t.Shape() == nil && t.array.Header.Raw != nil:
size := t.Len()
if size == 1 {
t.SetShape() // scalar
} else {
t.SetShape(size) // vector
}
case t.array.Header.Raw == nil && t.t != Dtype{}:
size := t.Shape().TotalSize()
t.makeArray(size)
}
if len(t.mask) != t.len() {
t.mask = t.mask[:0]
}
t.lock() // don't put this in a defer - if t.array.Ptr == nil and t.Shape() == nil. then leave it unlocked
}
// makeMask adds a mask slice to tensor if required
func (t *Dense) makeMask() {
var size int
size = t.shape.TotalSize()
if len(t.mask) >= size {
t.mask = t.mask[:size]
}
if cap(t.mask) < size {
t.mask = make([]bool, size)
}
t.mask = t.mask[:size]
memsetBools(t.mask, false)
}
// sanity is a function that sanity checks that a tensor is correct.
func (t *Dense) sanity() error {
if !t.AP.IsZero() && t.Shape() == nil && t.array.Header.Raw == nil {
return errors.New(emptyTensor)
}
size := t.Len()
expected := t.Size()
if t.viewOf == 0 && size != expected && !t.IsScalar() {
return errors.Wrap(errors.Errorf(shapeMismatch, t.Shape(), size), "sanity check failed")
}
// TODO: sanity check for views
return nil
}
// isTransposed returns true if the *Dense holds a transposed array.
func (t *Dense) isTransposed() bool { return t.old.IsZero() }
// oshape returns the original shape
func (t *Dense) oshape() Shape {
if !t.old.IsZero() {
return t.old.Shape()
}
return t.Shape()
}
// ostrides returns the original strides
func (t *Dense) ostrides() []int {
if !t.old.IsZero() {
return t.old.Strides()
}
return t.Strides()
}
// ShallowClone clones the *Dense without making a copy of the underlying array
func (t *Dense) ShallowClone() *Dense {
retVal := borrowDense()
retVal.e = t.e
retVal.oe = t.oe
t.AP.CloneTo(&retVal.AP)
retVal.flag = t.flag
retVal.array = t.array
retVal.old = t.old
retVal.transposeWith = t.transposeWith
retVal.viewOf = t.viewOf
retVal.mask = t.mask
retVal.maskIsSoft = t.maskIsSoft
return retVal
}
func (t *Dense) oldAP() *AP { return &t.old }
func (t *Dense) setOldAP(ap *AP) { t.old = *ap }
func (t *Dense) transposeAxes() []int { return t.transposeWith }
//go:nocheckptr
func (t *Dense) parentTensor() *Dense {
if t.viewOf != 0 {
return (*Dense)(unsafe.Pointer(t.viewOf))
}
return nil
}
func (t *Dense) setParentTensor(d *Dense) {
if d == nil {
t.viewOf = 0
return
}
t.viewOf = uintptr(unsafe.Pointer(d))
}
/* ------ Mask operations */
//ResetMask fills the mask with either false, or the provided boolean value
func (t *Dense) ResetMask(val ...bool) error {
if !t.IsMasked() {
t.makeMask()
}
var fillValue = false
if len(val) > 0 {
fillValue = val[0]
}
memsetBools(t.mask, fillValue)
return nil
}
// HardenMask forces the mask to hard. If mask is hard, then true mask values can not be unset
func (t *Dense) HardenMask() bool {
t.maskIsSoft = false
return t.maskIsSoft
}
// SoftenMask forces the mask to soft
func (t *Dense) SoftenMask() bool {
t.maskIsSoft = true
return t.maskIsSoft
}
// MaskFromSlice makes mask from supplied slice
func (t *Dense) MaskFromSlice(x interface{}) {
t.makeMask()
n := len(t.mask)
switch m := x.(type) {
case []bool:
copy(t.mask, m)
return
case []int:
for i, v := range m {
if v != 0 {
t.mask[i] = true
}
if i >= n {
return
}
}
case []int8:
for i, v := range m {
if v != 0 {
t.mask[i] = true
}
if i >= n {
return
}
}
case []int16:
for i, v := range m {
if v != 0 {
t.mask[i] = true
}
if i >= n {
return
}
}
case []int32:
for i, v := range m {
if v != 0 {
t.mask[i] = true
}
if i >= n {
return
}
}
case []int64:
for i, v := range m {
if v != 0 {
t.mask[i] = true
}
if i >= n {
return
}
}
case []uint:
for i, v := range m {
if v != 0 {
t.mask[i] = true
}
if i >= n {
return
}
}
case []byte:
for i, v := range m {
if v != 0 {
t.mask[i] = true
}
if i >= n {
return
}
}
case []uint16:
for i, v := range m {
if v != 0 {
t.mask[i] = true
}
if i >= n {
return
}
}
case []uint32:
for i, v := range m {
if v != 0 {
t.mask[i] = true
}
if i >= n {
return
}
}
case []uint64:
for i, v := range m {
if v != 0 {
t.mask[i] = true
}
if i >= n {
return
}
}
case []float32:
for i, v := range m {
if v != 0 {
t.mask[i] = true
}
if i >= n {
return
}
}
case []float64:
for i, v := range m {
if v != 0 {
t.mask[i] = true
}
if i >= n {
return
}
}
case []complex64:
for i, v := range m {
if v != 0 {
t.mask[i] = true
}
if i >= n {
return
}
}
case []complex128:
for i, v := range m {
if v != 0 {
t.mask[i] = true
}
if i >= n {
return
}
}
case []string:
for i, v := range m {
if v != "" {
t.mask[i] = true
}
if i >= n {
return
}
}
default:
return
}
}
// Memset sets all the values in the *Dense tensor.
func (t *Dense) Memset(x interface{}) error {
if !t.IsNativelyAccessible() {
return errors.Errorf(inaccessibleData, t)
}
if t.IsMaterializable() {
it := newFlatIterator(&t.AP)
return t.array.memsetIter(x, it)
}
return t.array.Memset(x)
}
// Eq checks that any two things are equal. If the shapes are the same, but the strides are not the same, it's will still be considered the same
func (t *Dense) Eq(other interface{}) bool {
if ot, ok := other.(*Dense); ok {
if ot == t {
return true
}
if !t.Shape().Eq(ot.Shape()) {
return false
}
return t.array.Eq(&ot.array)
}
return false
}
func (t *Dense) Zero() {
if t.IsMaterializable() {
it := newFlatIterator(&t.AP)
if err := t.zeroIter(it); err != nil {
panic(err)
}
}
if t.IsMasked() {
t.ResetMask()
}
t.array.Zero()
}
func (t *Dense) Mask() []bool { return t.mask }
func (t *Dense) SetMask(mask []bool) {
// if len(mask) != t.len() {
// panic("Cannot set mask")
// }
t.mask = mask
}
func (t *Dense) slice(start, end int) {
t.array = t.array.slice(start, end)
}
// RequiresIterator indicates if an iterator is required to read the data in *Dense in the correct fashion
func (t *Dense) RequiresIterator() bool {
if t.len() == 1 {
return false
}
// non continuous slice, transpose, or masked. If it's a slice and contiguous, then iterator is not required
if !t.o.IsContiguous() || !t.old.IsZero() || t.IsMasked() {
return true
}
return false
}
func (t *Dense) Iterator() Iterator { return IteratorFromDense(t) }
func (t *Dense) standardEngine() standardEngine { return t.oe }
|