1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
|
// Code generated by genlib2. DO NOT EDIT.
package tensor
import "reflect"
// Ones creates a *Dense with the provided shape and type
func Ones(dt Dtype, shape ...int) *Dense {
d := recycledDense(dt, shape)
switch d.t.Kind() {
case reflect.Int:
d.Memset(int(1))
case reflect.Int8:
d.Memset(int8(1))
case reflect.Int16:
d.Memset(int16(1))
case reflect.Int32:
d.Memset(int32(1))
case reflect.Int64:
d.Memset(int64(1))
case reflect.Uint:
d.Memset(uint(1))
case reflect.Uint8:
d.Memset(uint8(1))
case reflect.Uint16:
d.Memset(uint16(1))
case reflect.Uint32:
d.Memset(uint32(1))
case reflect.Uint64:
d.Memset(uint64(1))
case reflect.Float32:
d.Memset(float32(1))
case reflect.Float64:
d.Memset(float64(1))
case reflect.Complex64:
d.Memset(complex64(1))
case reflect.Complex128:
d.Memset(complex128(1))
case reflect.Bool:
d.Memset(true)
default:
// TODO: add a Oner interface
}
return d
}
// I creates the identity matrix (usually a square) matrix with 1s across the diagonals, and zeroes elsewhere, like so:
// Matrix(4,4)
// ⎡1 0 0 0⎤
// ⎢0 1 0 0⎥
// ⎢0 0 1 0⎥
// ⎣0 0 0 1⎦
// While technically an identity matrix is a square matrix, in attempt to keep feature parity with Numpy,
// the I() function allows you to create non square matrices, as well as an index to start the diagonals.
//
// For example:
// T = I(Float64, 4, 4, 1)
// Yields:
// ⎡0 1 0 0⎤
// ⎢0 0 1 0⎥
// ⎢0 0 0 1⎥
// ⎣0 0 0 0⎦
//
// The index k can also be a negative number:
// T = I(Float64, 4, 4, -1)
// Yields:
// ⎡0 0 0 0⎤
// ⎢1 0 0 0⎥
// ⎢0 1 0 0⎥
// ⎣0 0 1 0⎦
func I(dt Dtype, r, c, k int) *Dense {
ret := New(Of(dt), WithShape(r, c))
i := k
if k < 0 {
i = (-k) * c
}
var s *Dense
var err error
end := c - k
if end > r {
s, err = sliceDense(ret, nil)
} else {
s, err = sliceDense(ret, rs{0, end, 1})
}
if err != nil {
panic(err)
}
var nexts []int
iter := newFlatIterator(&s.AP)
nexts, err = iter.Slice(rs{i, s.Size(), c + 1})
switch s.t.Kind() {
case reflect.Int:
data := s.Ints()
for _, v := range nexts {
data[v] = 1
}
case reflect.Int8:
data := s.Int8s()
for _, v := range nexts {
data[v] = 1
}
case reflect.Int16:
data := s.Int16s()
for _, v := range nexts {
data[v] = 1
}
case reflect.Int32:
data := s.Int32s()
for _, v := range nexts {
data[v] = 1
}
case reflect.Int64:
data := s.Int64s()
for _, v := range nexts {
data[v] = 1
}
case reflect.Uint:
data := s.Uints()
for _, v := range nexts {
data[v] = 1
}
case reflect.Uint8:
data := s.Uint8s()
for _, v := range nexts {
data[v] = 1
}
case reflect.Uint16:
data := s.Uint16s()
for _, v := range nexts {
data[v] = 1
}
case reflect.Uint32:
data := s.Uint32s()
for _, v := range nexts {
data[v] = 1
}
case reflect.Uint64:
data := s.Uint64s()
for _, v := range nexts {
data[v] = 1
}
case reflect.Float32:
data := s.Float32s()
for _, v := range nexts {
data[v] = 1
}
case reflect.Float64:
data := s.Float64s()
for _, v := range nexts {
data[v] = 1
}
case reflect.Complex64:
data := s.Complex64s()
for _, v := range nexts {
data[v] = 1
}
case reflect.Complex128:
data := s.Complex128s()
for _, v := range nexts {
data[v] = 1
}
}
// TODO: create Oner interface for custom types
return ret
}
|