1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
|
package tensor
type maskedReduceFn func(Tensor) interface{}
// MaskedReduce applies a reduction function of type maskedReduceFn to mask, and returns
// either an int, or another array
func MaskedReduce(t *Dense, retType Dtype, fn maskedReduceFn, axis ...int) interface{} {
if len(axis) == 0 || t.IsVector() {
return fn(t)
}
ax := axis[0]
if ax >= t.Dims() {
return -1
}
// create object to be used for slicing
slices := make([]Slice, t.Dims())
// calculate shape of tensor to be returned
slices[ax] = makeRS(0, 0)
tt, _ := t.Slice(slices...)
ts := tt.(*Dense)
retVal := NewDense(retType, ts.shape) //retVal is array to be returned
it := NewIterator(retVal.Info())
// iterate through retVal
slices[ax] = makeRS(0, t.shape[ax])
for _, err := it.Next(); err == nil; _, err = it.Next() {
coord := it.Coord()
k := 0
for d := range slices {
if d != ax {
slices[d] = makeRS(coord[k], coord[k]+1)
k++
} else {
slices[d] = nil
}
}
tt, _ = t.Slice(slices...)
ts = tt.(*Dense)
retVal.SetAt(fn(ts), coord...)
}
return retVal
}
// MaskedAny returns True if any mask elements evaluate to True.
// If object is not masked, returns false
// !!! Not the same as numpy's, which looks at data elements and not at mask
// Instead, equivalent to numpy ma.getmask(t).any(axis)
func (t *Dense) MaskedAny(axis ...int) interface{} {
return MaskedReduce(t, Bool, doMaskAny, axis...)
}
// MaskedAll returns True if all mask elements evaluate to True.
// If object is not masked, returns false
// !!! Not the same as numpy's, which looks at data elements and not at mask
// Instead, equivalent to numpy ma.getmask(t).all(axis)
func (t *Dense) MaskedAll(axis ...int) interface{} {
return MaskedReduce(t, Bool, doMaskAll, axis...)
}
// MaskedCount counts the masked elements of the array (optionally along the given axis)
// returns -1 if axis out of bounds
func (t *Dense) MaskedCount(axis ...int) interface{} {
return MaskedReduce(t, Int, doMaskCt, axis...)
}
// NonMaskedCount counts the non-masked elements of the array (optionally along the given axis)
// returns -1 if axis out of bounds
// MaskedCount counts the masked elements of the array (optionally along the given axis)
// returns -1 if axis out of bounds
func (t *Dense) NonMaskedCount(axis ...int) interface{} {
return MaskedReduce(t, Int, doNonMaskCt, axis...)
}
func doMaskAll(T Tensor) interface{} {
switch t := T.(type) {
case *Dense:
if !t.IsMasked() {
return false
}
m := t.mask
if len(t.mask) == t.Size() {
for _, v := range m {
if !v {
return false
}
}
} else {
it := IteratorFromDense(t)
i, _, _ := it.NextValid()
if i != -1 {
return false
}
}
return true
default:
panic("Incompatible type")
}
}
func doMaskAny(T Tensor) interface{} {
switch t := T.(type) {
case *Dense:
if !t.IsMasked() {
return false
}
m := t.mask
if len(t.mask) == t.Size() {
for _, v := range m {
if v {
return true
}
}
} else {
it := IteratorFromDense(t)
i, _, _ := it.NextInvalid()
if i != -1 {
return true
}
}
return false
default:
panic("Incompatible type")
}
}
func doMaskCt(T Tensor) interface{} {
switch t := T.(type) {
case *Dense:
// non masked case
if !t.IsMasked() {
return 0
}
count := 0
m := t.mask
if len(t.mask) == t.Size() {
for _, v := range m {
if v {
count++
}
}
} else {
it := IteratorFromDense(t)
for _, _, err := it.NextInvalid(); err == nil; _, _, err = it.NextInvalid() {
count++
}
}
return count
default:
panic("Incompatible type")
}
}
func doNonMaskCt(T Tensor) interface{} {
switch t := T.(type) {
case *Dense:
if !t.IsMasked() {
return t.Size()
}
return t.Size() - doMaskCt(t).(int)
default:
panic("Incompatible type")
}
}
/* -----------
************ Finding masked data
----------*/
// FlatNotMaskedContiguous is used to find contiguous unmasked data in a masked array.
// Applies to a flattened version of the array.
// Returns:A sorted sequence of slices (start index, end index).
func (t *Dense) FlatNotMaskedContiguous() []Slice {
sliceList := make([]Slice, 0, 4)
it := IteratorFromDense(t)
for start, _, err := it.NextValid(); err == nil; start, _, err = it.NextValid() {
end, _, _ := it.NextInvalid()
if end == -1 {
end = t.Size()
}
sliceList = append(sliceList, makeRS(start, end))
}
return sliceList
}
// FlatMaskedContiguous is used to find contiguous masked data in a masked array.
// Applies to a flattened version of the array.
// Returns:A sorted sequence of slices (start index, end index).
func (t *Dense) FlatMaskedContiguous() []Slice {
sliceList := make([]Slice, 0, 4)
it := IteratorFromDense(t)
for start, _, err := it.NextInvalid(); err == nil; start, _, err = it.NextInvalid() {
end, _, _ := it.NextValid()
if end == -1 {
end = t.Size()
}
sliceList = append(sliceList, makeRS(start, end))
}
return sliceList
}
// FlatNotMaskedEdges is used to find the indices of the first and last unmasked values
// Applies to a flattened version of the array.
// Returns: A pair of ints. -1 if all values are masked.
func (t *Dense) FlatNotMaskedEdges() (int, int) {
if !t.IsMasked() {
return 0, t.Size() - 1
}
var start, end int
it := IteratorFromDense(t)
it.SetForward()
start, _, err := it.NextValid()
if err != nil {
return -1, -1
}
it.SetReverse()
end, _, _ = it.NextValid()
return start, end
}
// FlatMaskedEdges is used to find the indices of the first and last masked values
// Applies to a flattened version of the array.
// Returns: A pair of ints. -1 if all values are unmasked.
func (t *Dense) FlatMaskedEdges() (int, int) {
if !t.IsMasked() {
return 0, t.Size() - 1
}
var start, end int
it := IteratorFromDense(t)
it.SetForward()
start, _, err := it.NextInvalid()
if err != nil {
return -1, -1
}
it.SetReverse()
end, _, _ = it.NextInvalid()
return start, end
}
// ClumpMasked returns a list of slices corresponding to the masked clumps of a 1-D array
// Added to match numpy function names
func (t *Dense) ClumpMasked() []Slice {
return t.FlatMaskedContiguous()
}
// ClumpUnmasked returns a list of slices corresponding to the unmasked clumps of a 1-D array
// Added to match numpy function names
func (t *Dense) ClumpUnmasked() []Slice {
return t.FlatNotMaskedContiguous()
}
|