1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
|
package tensor
import (
"github.com/pkg/errors"
)
// T performs a thunked transpose. It doesn't actually do anything, except store extra information about the post-transposed shapes and strides
// Usually this is more than enough, as BLAS will handle the rest of the transpose
func (t *Dense) T(axes ...int) (err error) {
var transform AP
if transform, axes, err = t.AP.T(axes...); err != nil {
return handleNoOp(err)
}
// is there any old transposes that need to be done first?
// this is important, because any old transposes for dim >=3 are merely permutations of the strides
if !t.old.IsZero() {
if t.IsVector() {
// the transform that was calculated was a waste of time - return it to the pool then untranspose
t.UT()
return
}
// check if the current axes are just a reverse of the previous transpose's
isReversed := true
for i, s := range t.oshape() {
if transform.Shape()[i] != s {
isReversed = false
break
}
}
// if it is reversed, well, we just restore the backed up one
if isReversed {
t.UT()
return
}
// cool beans. No funny reversals. We'd have to actually do transpose then
t.Transpose()
}
// swap out the old and the new
t.old = t.AP
t.transposeWith = axes
t.AP = transform
return nil
}
// UT is a quick way to untranspose a currently transposed *Dense
// The reason for having this is quite simply illustrated by this problem:
// T = NewTensor(WithShape(2,3,4))
// T.T(1,2,0)
//
// To untranspose that, we'd need to apply a transpose of (2,0,1).
// This means having to keep track and calculate the transposes.
// Instead, here's a helpful convenience function to instantly untranspose any previous transposes.
//
// Nothing will happen if there was no previous transpose
func (t *Dense) UT() {
if !t.old.IsZero() {
ReturnInts(t.transposeWith)
t.AP = t.old
t.old.zeroOnly()
t.transposeWith = nil
}
}
// SafeT is exactly like T(), except it returns a new *Dense. The data is also copied over, unmoved.
func (t *Dense) SafeT(axes ...int) (retVal *Dense, err error) {
var transform AP
if transform, axes, err = t.AP.T(axes...); err != nil {
if err = handleNoOp(err); err != nil {
return
}
}
retVal = recycledDense(t.t, Shape{t.len()}, WithEngine(t.e))
copyDense(retVal, t)
retVal.e = t.e
retVal.oe = t.oe
retVal.AP = transform
t.AP.CloneTo(&retVal.old)
retVal.transposeWith = axes
return
}
// At returns the value at the given coordinate
func (t *Dense) At(coords ...int) (interface{}, error) {
if !t.IsNativelyAccessible() {
return nil, errors.Errorf(inaccessibleData, t)
}
if len(coords) != t.Dims() {
return nil, errors.Errorf(dimMismatch, t.Dims(), len(coords))
}
at, err := t.at(coords...)
if err != nil {
return nil, errors.Wrap(err, "At()")
}
return t.Get(at), nil
}
// MaskAt returns the value of the mask at a given coordinate
// returns false (valid) if not tensor is not masked
func (t *Dense) MaskAt(coords ...int) (bool, error) {
if !t.IsMasked() {
return false, nil
}
if !t.IsNativelyAccessible() {
return false, errors.Errorf(inaccessibleData, t)
}
if len(coords) != t.Dims() {
return true, errors.Errorf(dimMismatch, t.Dims(), len(coords))
}
at, err := t.maskAt(coords...)
if err != nil {
return true, errors.Wrap(err, "MaskAt()")
}
return t.mask[at], nil
}
// SetAt sets the value at the given coordinate
func (t *Dense) SetAt(v interface{}, coords ...int) error {
if !t.IsNativelyAccessible() {
return errors.Errorf(inaccessibleData, t)
}
if len(coords) != t.Dims() {
return errors.Errorf(dimMismatch, t.Dims(), len(coords))
}
at, err := t.at(coords...)
if err != nil {
return errors.Wrap(err, "SetAt()")
}
t.Set(at, v)
return nil
}
// SetMaskAtDataIndex set the value of the mask at a given index
func (t *Dense) SetMaskAtIndex(v bool, i int) error {
if !t.IsMasked() {
return nil
}
t.mask[i] = v
return nil
}
// SetMaskAt sets the mask value at the given coordinate
func (t *Dense) SetMaskAt(v bool, coords ...int) error {
if !t.IsMasked() {
return nil
}
if !t.IsNativelyAccessible() {
return errors.Errorf(inaccessibleData, t)
}
if len(coords) != t.Dims() {
return errors.Errorf(dimMismatch, t.Dims(), len(coords))
}
at, err := t.maskAt(coords...)
if err != nil {
return errors.Wrap(err, "SetAt()")
}
t.mask[at] = v
return nil
}
// CopyTo copies the underlying data to the destination *Dense. The original data is untouched.
// Note: CopyTo doesn't care about the metadata of the destination *Dense. Take for example:
// T = NewTensor(WithShape(6))
// T2 = NewTensor(WithShape(2,3))
// err = T.CopyTo(T2) // err == nil
//
// The only time that this will fail is if the underlying sizes are different
func (t *Dense) CopyTo(other *Dense) error {
if other == t {
return nil // nothing to copy to. Maybe return NoOpErr?
}
if other.Size() != t.Size() {
return errors.Errorf(sizeMismatch, t.Size(), other.Size())
}
// easy peasy lemon squeezy
if t.viewOf == 0 && other.viewOf == 0 {
copyDense(other, t)
return nil
}
// TODO: use copyDenseIter
return errors.Errorf(methodNYI, "CopyTo", "views")
}
// Narrow narrows the tensor.
func (t *Dense) Narrow(dim, start, length int) (View, error) {
dim = resolveAxis(dim, t.Dims())
slices := make([]Slice, MinInt(dim+1, t.Dims()))
slices[dim] = S(start, start+length, 1)
return t.Slice(slices...)
}
// Slice performs slicing on the *Dense Tensor. It returns a view which shares the same underlying memory as the original *Dense.
//
// Given:
// T = NewTensor(WithShape(2,2), WithBacking(RangeFloat64(0,4)))
// V, _ := T.Slice(nil, singleSlice(1)) // T[:, 1]
//
// Any modification to the values in V, will be reflected in T as well.
//
// The method treats <nil> as equivalent to a colon slice. T.Slice(nil) is equivalent to T[:] in Numpy syntax
func (t *Dense) Slice(slices ...Slice) (retVal View, err error) {
var newAP AP
var ndStart, ndEnd int
if newAP, ndStart, ndEnd, err = t.AP.S(t.len(), slices...); err != nil {
return
}
view := borrowDense()
view.t = t.t
view.e = t.e
view.oe = t.oe
view.flag = t.flag
view.AP = newAP
view.setParentTensor(t)
t.sliceInto(ndStart, ndEnd, &view.array)
if t.IsMasked() {
view.mask = t.mask[ndStart:ndEnd]
}
return view, err
}
// SliceInto is a convenience method. It does NOT copy the values - it simply updates the AP of the view.
// The underlying data is the same.
// This method will override ALL the metadata in view.
func (t *Dense) SliceInto(view *Dense, slices ...Slice) (retVal View, err error) {
var newAP AP
var ndStart, ndEnd int
if newAP, ndStart, ndEnd, err = t.AP.S(t.len(), slices...); err != nil {
return
}
view.AP.zero()
view.t = t.t
view.e = t.e
view.oe = t.oe
view.flag = t.flag
view.AP = newAP
view.setParentTensor(t)
t.sliceInto(ndStart, ndEnd, &view.array)
if t.IsMasked() {
view.mask = t.mask[ndStart:ndEnd]
}
return view, err
}
// RollAxis rolls the axis backwards until it lies in the given position.
//
// This method was adapted from Numpy's Rollaxis. The licence for Numpy is a BSD-like licence and can be found here: https://github.com/numpy/numpy/blob/master/LICENSE.txt
//
// As a result of being adapted from Numpy, the quirks are also adapted. A good guide reducing the confusion around rollaxis can be found here: http://stackoverflow.com/questions/29891583/reason-why-numpy-rollaxis-is-so-confusing (see answer by hpaulj)
func (t *Dense) RollAxis(axis, start int, safe bool) (retVal *Dense, err error) {
dims := t.Dims()
if !(axis >= 0 && axis < dims) {
err = errors.Errorf(invalidAxis, axis, dims)
return
}
if !(start >= 0 && start <= dims) {
err = errors.Wrap(errors.Errorf(invalidAxis, axis, dims), "Start axis is wrong")
return
}
if axis < start {
start--
}
if axis == start {
retVal = t
return
}
axes := BorrowInts(dims)
defer ReturnInts(axes)
for i := 0; i < dims; i++ {
axes[i] = i
}
copy(axes[axis:], axes[axis+1:])
copy(axes[start+1:], axes[start:])
axes[start] = axis
if safe {
return t.SafeT(axes...)
}
err = t.T(axes...)
retVal = t
return
}
/* Private Methods */
// returns the new index given the old index
func (t *Dense) transposeIndex(i int, transposePat, strides []int) int {
oldCoord, err := Itol(i, t.oshape(), t.ostrides())
if err != nil {
err = errors.Wrapf(err, "transposeIndex ItoL failure. i %d original shape %v. original strides %v", i, t.oshape(), t.ostrides())
panic(err)
}
/*
coordss, _ := Permute(transposePat, oldCoord)
coords := coordss[0]
expShape := t.Shape()
index, _ := Ltoi(expShape, strides, coords...)
*/
// The above is the "conceptual" algorithm.
// Too many checks above slows things down, so the below is the "optimized" edition
var index int
for i, axis := range transposePat {
index += oldCoord[axis] * strides[i]
}
return index
}
// at returns the index at which the coordinate is referring to.
// This function encapsulates the addressing of elements in a contiguous block.
// For a 2D ndarray, ndarray.at(i,j) is
// at = ndarray.strides[0]*i + ndarray.strides[1]*j
// This is of course, extensible to any number of dimensions.
func (t *Dense) at(coords ...int) (at int, err error) {
return Ltoi(t.Shape(), t.Strides(), coords...)
}
// maskat returns the mask index at which the coordinate is referring to.
func (t *Dense) maskAt(coords ...int) (at int, err error) {
//TODO: Add check for non-masked tensor
return t.at(coords...)
}
|