1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
|
package tensor
import (
"fmt"
)
func ExampleDense_Slice() {
var T Tensor
T = New(WithBacking(Range(Float64, 0, 9)), WithShape(3, 3))
fmt.Printf("T:\n%v\n", T)
// T[0:2, 0:2]
T, _ = T.Slice(makeRS(0, 2), makeRS(0, 2)) // makeRS is an unexported function that creates a Slice.
fmt.Printf("T[0:2, 0:2]:\n%v\n", T)
// T[:, 1]
T, _ = T.(Slicer).Slice(nil, ss(1)) // ss is unexported
fmt.Printf("T[:, 1]:\n%v\n", T)
// Output:
// T:
// ⎡0 1 2⎤
// ⎢3 4 5⎥
// ⎣6 7 8⎦
//
// T[0:2, 0:2]:
// ⎡0 1⎤
// ⎣3 4⎦
//
// T[:, 1]:
// [1 4]
}
// Slicing works on one dimensional arrays too:
func ExampleDense_Slice_oneDimension() {
var T Tensor
T = New(WithBacking(Range(Float64, 0, 9)))
fmt.Printf("T:\n%v\n\n", T)
T, _ = T.Slice(makeRS(0, 5))
fmt.Printf("T[0:5]:\n%v\n", T)
// Output:
// T:
// [0 1 2 3 ... 5 6 7 8]
//
// T[0:5]:
// [0 1 2 3 4]
}
// Any modifications to the sliced value modifies the original slice as well
func ExampleDense_Slice_viewMutation() {
var T, V Tensor
T = New(WithBacking(Range(Int, 0, 16)), WithShape(4, 4))
fmt.Printf("T:\n%v\n", T)
V, _ = T.Slice(makeRS(1, 3), makeRS(1, 3))
fmt.Printf("V:\n%v\n", V)
// Now we modify V's 0th value
V.(*Dense).Set(0, 1000)
fmt.Printf("V[0] = 1000:\n%v\n", V)
fmt.Printf("T is also mutated:\n%v", T)
// Output:
// T:
// ⎡ 0 1 2 3⎤
// ⎢ 4 5 6 7⎥
// ⎢ 8 9 10 11⎥
// ⎣12 13 14 15⎦
//
// V:
// ⎡ 5 6⎤
// ⎣ 9 10⎦
//
// V[0] = 1000:
// ⎡1000 6⎤
// ⎣ 9 10⎦
//
// T is also mutated:
// ⎡ 0 1 2 3⎤
// ⎢ 4 1000 6 7⎥
// ⎢ 8 9 10 11⎥
// ⎣ 12 13 14 15⎦
//
}
func ExampleView() {
// Slicing creates a "view" on the original tensor
T := New(WithBacking(Range(Int, 0, 16)), WithShape(4, 4))
fmt.Printf("T:\n%v\n", T)
V, _ := T.Slice(makeRS(1, 3), makeRS(1, 3))
fmt.Printf("V:\n%v\n", V)
// Now we modify V's 0th value
V.(*Dense).Set(0, 1000)
fmt.Printf("V[0] = 1000:\n%v\n", V)
fmt.Printf("T is also mutated:\n%v\n", T)
// Now we materialize the views
fmt.Printf("V is Materializable: %v\n", V.IsMaterializable())
T2 := V.Materialize()
fmt.Printf("T2 == V:\n%v\n", T2)
// Once materialized, it is decoupled from the original tensor
T2.(*Dense).Set(0, 999)
fmt.Printf("T2 is mutated:\n%v\nBut T is not mutated:\n%v\nNeither is V:\n%v", T2, T, V)
// Output:
// T:
// ⎡ 0 1 2 3⎤
// ⎢ 4 5 6 7⎥
// ⎢ 8 9 10 11⎥
// ⎣12 13 14 15⎦
//
// V:
// ⎡ 5 6⎤
// ⎣ 9 10⎦
//
// V[0] = 1000:
// ⎡1000 6⎤
// ⎣ 9 10⎦
//
// T is also mutated:
// ⎡ 0 1 2 3⎤
// ⎢ 4 1000 6 7⎥
// ⎢ 8 9 10 11⎥
// ⎣ 12 13 14 15⎦
//
// V is Materializable: true
// T2 == V:
// ⎡1000 6⎤
// ⎣ 9 10⎦
//
// T2 is mutated:
// ⎡999 6⎤
// ⎣ 9 10⎦
//
// But T is not mutated:
// ⎡ 0 1 2 3⎤
// ⎢ 4 1000 6 7⎥
// ⎢ 8 9 10 11⎥
// ⎣ 12 13 14 15⎦
//
// Neither is V:
// ⎡1000 6⎤
// ⎣ 9 10⎦
}
func ExampleDense_Hstack() {
var T, T1, T2, T3 *Dense
var err error
T = New(WithBacking(Range(Float64, 0, 4)), WithShape(2, 2))
T1 = New(WithBacking([]float64{1000, 2000}), WithShape(2, 1))
// Simple example
if T2, err = T.Hstack(T1); err == nil {
fmt.Printf("T.Hstack(T1):\n%v\n", T2)
}
// This fails, because they are not the same shape
T1.Reshape(2)
if _, err = T.Hstack(T1); err != nil {
fmt.Printf("Error: %v\n\n", err)
}
// You can stack more than one, as long as all the tensors have the same shape
T1.Reshape(2, 1)
T3 = T1.Clone().(*Dense)
if T2, err = T.Hstack(T1, T3); err == nil {
fmt.Printf("T.Hstack(T1, T3):\n%v\n", T2)
}
// Compatible shapes can be stacked
T1 = New(Of(Float64), WithShape(2, 3))
if T2, err = T.Hstack(T1); err == nil {
fmt.Printf("Hstacking (2,2) with (2,3):\n%v\n", T2)
}
// Special attention to vectors - vectors can only be stacked with vectors
T = New(WithBacking([]float64{1000, 2000}))
T1 = New(WithBacking([]float64{0, 1}), WithShape(1, 2))
if _, err = T.Hstack(T1); err != nil {
fmt.Printf("Hstacking (2) with (1,2): %v\n", err)
}
// Now let's look at failure conditions, or unhandled situations
// Incompatible shapes cannot be stacked
T1.Reshape(3, 2)
if _, err = T.Hstack(T1); err != nil {
fmt.Printf("Hstacking (2,2) with (3,2): %v\n", err)
}
// Obviously you can't stack a scalar onto tensors (or the other way around)
T1 = New(FromScalar(1.0))
if _, err = T.Hstack(T1); err != nil {
fmt.Printf("Hstacking a scalar onto a tensor: %v\n", err)
}
if _, err = T1.Hstack(T); err != nil {
fmt.Printf("Hstacking a tensor onto a scalar: %v\n", err)
}
// Output:
// T.Hstack(T1):
// ⎡ 0 1 1000⎤
// ⎣ 2 3 2000⎦
//
// Error: Failed to perform Concat: Unable to find new shape that results from concatenation: Dimension mismatch. Expected 2, got 1
//
// T.Hstack(T1, T3):
// ⎡ 0 1 1000 1000⎤
// ⎣ 2 3 2000 2000⎦
//
// Hstacking (2,2) with (2,3):
// ⎡0 1 0 0 0⎤
// ⎣2 3 0 0 0⎦
//
// Hstacking (2) with (1,2): Failed to perform Concat: Unable to find new shape that results from concatenation: Dimension mismatch. Expected 1, got 2
// Hstacking (2,2) with (3,2): Failed to perform Concat: Unable to find new shape that results from concatenation: Dimension mismatch. Expected 1, got 2
// Hstacking a scalar onto a tensor: Tensor has to be at least 1 dimensions
// Hstacking a tensor onto a scalar: Tensor has to be at least 1 dimensions
}
func ExampleDense_Vstack() {
var T, T1, T2, T3 *Dense
var err error
T = New(WithBacking(Range(Float64, 0, 4)), WithShape(2, 2))
T1 = New(WithBacking([]float64{1000, 2000}), WithShape(1, 2))
// Simple example
if T2, err = T.Vstack(T1); err == nil {
fmt.Printf("T.Vstack(T1):\n%v\n", T2)
} else {
fmt.Printf("%+v", err)
}
// You can stack more than one, as long as all the tensors have the same shape
T3 = T1.Clone().(*Dense)
if T2, err = T.Vstack(T1, T3); err == nil {
fmt.Printf("T.Vstack(T1, T3):\n%v\n", T2)
} else {
fmt.Printf("====\nerr %v\n%v\n===\n", err, T3.Shape())
}
// Let's look at failure conditions
// All tensors must be at least 2D
T.Reshape(4)
if _, err = T.Vstack(T1); err != nil {
fmt.Printf("Vstacking (4) with (1, 2): %v\n", err)
}
if _, err = T1.Vstack(T); err != nil {
fmt.Printf("Vstacking (1, 2) with (4): %v\n", err)
}
// Output:
// T.Vstack(T1):
// ⎡ 0 1⎤
// ⎢ 2 3⎥
// ⎣1000 2000⎦
//
// T.Vstack(T1, T3):
// ⎡ 0 1⎤
// ⎢ 2 3⎥
// ⎢1000 2000⎥
// ⎣1000 2000⎦
//
// Vstacking (4) with (1, 2): Tensor has to be at least 2 dimensions
// Vstacking (1, 2) with (4): Tensor has to be at least 2 dimensions
}
func ExampleRepeatReuse() {
var T, T1 *Dense
T = New(WithBacking([]float64{1, 2, 3, 4}), WithShape(1, 4))
T1 = New(Of(Float64), WithShape(3, 4))
var T2 Tensor
var err error
if T2, err = RepeatReuse(T, T1, 0, 3); err != nil {
fmt.Printf("Err %v", err)
}
fmt.Printf("RepeatReuse(T, T1):\n%v", T2)
fmt.Printf("T1 == T2: %t\n", T1 == T2)
// But if your reuse is wrongly shaped, an error occurs
T1 = New(Of(Float64), WithShape(1, 4)) // too small
if _, err = RepeatReuse(T, T1, 0, 3); err != nil {
fmt.Printf("Expected Error: %v\n", err)
}
// Output:
// RepeatReuse(T, T1):
// ⎡1 2 3 4⎤
// ⎢1 2 3 4⎥
// ⎣1 2 3 4⎦
// T1 == T2: true
// Expected Error: Reuse shape is (1, 4). Expected shape is (3, 4)
}
func ExampleRepeat_uncommonUses() {
T := New(WithBacking([]int{1, 2, 3, 4, 5, 6}), WithShape(2, 3))
fmt.Printf("T:\n%v", T)
fmt.Println("Axis 0 has 2 elements. So we will need to write the number of times each element is to be repeated")
fmt.Println("Here, Repeat(T, 0, 3, 2) results in this:")
T1, err := Repeat(T, 0, 3, 2)
if err != nil {
fmt.Printf("Err %v", err)
}
fmt.Printf("%v", T1)
fmt.Println("Observe the 0th element ([1 2 3]) has been repeated 3 times, and the 1st element ([4 5 6]) has been repeated twice")
fmt.Println("")
fmt.Println("We can also repeat on Axis 1. Now along Axis 1 there are 3 elements: ([1 4], [2 5], [3 6])")
fmt.Println("So we have to specify how many times to repeat each element.")
fmt.Println("Repeat(T, 1, 2, 3, 2) yields the following result:")
T1, err = Repeat(T, 1, 2, 3, 2)
if err != nil {
fmt.Printf("Err %v", err)
}
fmt.Printf("%v", T1)
fmt.Println("Once again, observe that the 1st element ([2 5]) has been repeated 3 times, while the rest have been repeated twice")
/*
// TODO break this out to another example
T1, err = Repeat(T, AllAxes, 2, 3, 2, 2, 2, 2)
if err != nil {
fmt.Printf("Err %v", err)
}
fmt.Printf("%#v", T1)
*/
// Output:
// T:
// ⎡1 2 3⎤
// ⎣4 5 6⎦
// Axis 0 has 2 elements. So we will need to write the number of times each element is to be repeated
// Here, Repeat(T, 0, 3, 2) results in this:
// ⎡1 2 3⎤
// ⎢1 2 3⎥
// ⎢1 2 3⎥
// ⎢4 5 6⎥
// ⎣4 5 6⎦
// Observe the 0th element ([1 2 3]) has been repeated 3 times, and the 1st element ([4 5 6]) has been repeated twice
//
// We can also repeat on Axis 1. Now along Axis 1 there are 3 elements: ([1 4], [2 5], [3 6])
// So we have to specify how many times to repeat each element.
// Repeat(T, 1, 2, 3, 2) yields the following result:
// ⎡1 1 2 2 2 3 3⎤
// ⎣4 4 5 5 5 6 6⎦
// Once again, observe that the 1st element ([2 5]) has been repeated 3 times, while the rest have been repeated twice
}
func ExampleT() {
// Usual example of 2D matrix being transposed:
M := New(WithBacking([]int{1, 2, 3, 4, 5, 6}), WithShape(2, 3))
M2, err := T(M)
if err != nil {
fmt.Printf("Err: %v\n", err)
}
fmt.Printf("M:\n%v\nM2:\n%v\n", M, M2)
// T accepts optional parameters describing the permutation of axes.
// In a 2D case, there are only two options: (0, 1) or (1, 0).
// The latter is default if no parameters are passed in.
// The former is a no-op as rearranging a matrix so that the 0th axis becomes the 0th axis
// and the first axis becomes the first axis is not going to do anything.
//
// However, note that M3 is a different result.
M3, err := T(M, 0, 1)
if err != nil {
fmt.Printf("Err: %v\n", err)
}
fmt.Printf("M3:\n%v\nM == M3: %t", M3, M == M3)
// Output:
// M:
// ⎡1 2 3⎤
// ⎣4 5 6⎦
//
// M2:
// ⎡1 4⎤
// ⎢2 5⎥
// ⎣3 6⎦
//
// M3:
// ⎡1 2 3⎤
// ⎣4 5 6⎦
//
// M == M3: false
}
func ExampleT_scalarlike() {
// Be aware when dealing with scalarlike tensors
// scalar/scalarlikes have no effect when calling T()
// but the result is put into a new tensor
S := New(WithBacking([]float32{3.14}), WithShape())
S2, err := T(S)
if err != nil {
fmt.Printf("Err %v", err)
}
fmt.Printf("S: %v S2 %v S == S2: %t\n", S, S2, S == S2)
// however do note that scalars and scalarlikes are not the same thing.
// for example, consider this:
_, err = T(S, 1, 0)
fmt.Printf("error when the axes are more than the shape's dims: %v\n", err)
// but if you have a tensor that is a scalar-like:
S.Reshape(1, 1)
S2, err = T(S, 1, 0)
if err != nil {
fmt.Printf("Err: %v\n", err)
}
fmt.Printf("S:\n%v\nS2:\n%v\nS == S2: %t\n", S, S2, S == S2)
// Output:
// S: 3.14 S2 3.14 S == S2: false
// error when the axes are more than the shape's dims: Dimension mismatch. Expected 0, got 2
// S:
// [[3.14]]
// S2:
// [[3.14]]
// S == S2: false
}
|