1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
|
package tensor
import (
"runtime"
)
func requiresOrderedIterator(e Engine, t Tensor) bool {
if t.IsScalar() {
return false
}
if t.RequiresIterator() {
return true
}
switch tt := t.(type) {
case DenseTensor:
return !e.WorksWith(tt.DataOrder())
case SparseTensor:
return true
}
panic("Unreachable")
}
// Iterator is the generic iterator interface.
// It's used to iterate across multi-dimensional slices, no matter the underlying data arrangement
type Iterator interface {
// Start returns the first index
Start() (int, error)
// Next returns the next index. Next is defined as the next value in the coordinates
// For example: let x be a (5,5) matrix that is row-major. Current index is for the coordinate (3,3).
// Next() returns the index of (3,4).
//
// If there is no underlying data store for (3,4) - say for example, the matrix is a sparse matrix, it return an error.
// If however, there is an underlying data store for (3,4), but it's not valid (for example, masked tensors), it will not return an error.
//
// Second example: let x be a (5,5) matrix that is col-major. Current index is for coordinate (3,3).
// Next() returns the index of (4,3).
Next() (int, error)
// NextValidity is like Next, but returns the validity of the value at the index as well.
NextValidity() (int, bool, error)
// NextValid returns the next valid index, as well as a skip count.
NextValid() (int, int, error)
// NextInvalid returns the next invalid index, as well as a skip count.
NextInvalid() (int, int, error)
// Reset resets the iterator
Reset()
// SetReverse tells the iterator to iterate in reverse
SetReverse()
// SetForward tells the iterator to iterate forwards
SetForward()
// Coord returns the coordinates
Coord() []int
// Done returns true when the iterator is done iterating.
Done() bool
// Shape returns the shape of the multidimensional tensor it's iterating on.
Shape() Shape
}
// NewIterator creates a new Iterator from an ap. The type of iterator depends on number of
// aps passed, and whether they are masked or not
func NewIterator(aps ...*AP) Iterator {
switch len(aps) {
case 0:
return nil
case 1:
return newFlatIterator(aps[0])
default:
return NewMultIterator(aps...)
}
}
// IteratorFromDense creates a new Iterator from a list of dense tensors
func IteratorFromDense(tts ...DenseTensor) Iterator {
switch len(tts) {
case 0:
return nil
case 1:
if mt, ok := tts[0].(MaskedTensor); ok && mt.IsMasked() {
return FlatMaskedIteratorFromDense(mt)
}
return FlatIteratorFromDense(tts[0])
default:
return MultIteratorFromDense(tts...)
}
}
func destroyIterator(it Iterator) {
switch itt := it.(type) {
case *MultIterator:
destroyMultIterator(itt)
}
}
func iteratorLoadAP(it Iterator, ap *AP) {
switch itt := it.(type) {
case *FlatIterator:
itt.AP = ap
case *FlatMaskedIterator:
itt.AP = ap
case *MultIterator: // Do nothing, TODO: perhaps add something here
}
}
/* FLAT ITERATOR */
// FlatIterator is an iterator that iterates over Tensors according to the data's layout.
// It utilizes the *AP of a Tensor to determine what the next index is.
// This data structure is similar to Numpy's flatiter, with some standard Go based restrictions of course
// (such as, not allowing negative indices)
type FlatIterator struct {
*AP
//state
track []int
nextIndex int
lastIndex int
size int
done bool
veclikeDim int // the dimension of a vectorlike shape that is not a 1.
reverse bool // if true, iterator starts at end of array and runs backwards
isScalar bool
isVector bool
outerFirst bool
}
// newFlatIterator creates a new FlatIterator.
func newFlatIterator(ap *AP) *FlatIterator {
var dim int
if ap.IsVectorLike() {
for d, i := range ap.shape {
if i != 1 {
dim = d
break
}
}
}
return &FlatIterator{
AP: ap,
track: make([]int, len(ap.shape)),
size: ap.shape.TotalSize(),
veclikeDim: dim,
isScalar: ap.IsScalar(),
isVector: ap.IsVectorLike(),
}
}
// FlatIteratorFromDense creates a new FlatIterator from a dense tensor
func FlatIteratorFromDense(tt DenseTensor) *FlatIterator {
return newFlatIterator(tt.Info())
}
// SetReverse initializes iterator to run backwards
func (it *FlatIterator) SetReverse() {
it.reverse = true
it.Reset()
return
}
// SetForward initializes iterator to run forwards
func (it *FlatIterator) SetForward() {
it.reverse = false
it.Reset()
return
}
//Start begins iteration
func (it *FlatIterator) Start() (int, error) {
it.Reset()
return it.Next()
}
//Done checks whether iterators are done
func (it *FlatIterator) Done() bool {
return it.done
}
// Next returns the index of the current coordinate.
func (it *FlatIterator) Next() (int, error) {
if it.done {
return -1, noopError{}
}
switch {
case it.isScalar:
it.done = true
return 0, nil
case it.isVector:
if it.reverse {
return it.singlePrevious()
}
return it.singleNext()
default:
if it.reverse {
return it.ndPrevious()
}
if it.outerFirst {
return it.colMajorNDNext()
}
return it.ndNext()
}
}
// NextValidity returns the index of the current coordinate, and whether or not it's valid. Identical to Next()
func (it *FlatIterator) NextValidity() (int, bool, error) {
i, err := it.Next()
return i, true, err
}
// NextValid returns the index of the current coordinate. Identical to Next for FlatIterator
// Also returns the number of increments to get to next element ( 1, or -1 in reverse case). This is to maintain
// consistency with the masked iterator, for which the step between valid elements can be more than 1
func (it *FlatIterator) NextValid() (int, int, error) {
if it.done {
return -1, 1, noopError{}
}
switch {
case it.isScalar:
it.done = true
return 0, 0, nil
case it.isVector:
if it.reverse {
a, err := it.singlePrevious()
return a, -1, err
}
a, err := it.singleNext()
return a, 1, err
default:
if it.reverse {
a, err := it.ndPrevious()
return a, -1, err
}
if it.outerFirst {
a, err := it.colMajorNDNext()
return a, 1, err
}
a, err := it.ndNext()
return a, 1, err
}
}
// NextInvalid returns the index of the current coordinate. Identical to Next for FlatIterator
// also returns the number of increments to get to next invalid element (1 or -1 in reverse case).
// Like NextValid, this method's purpose is to maintain consistency with the masked iterator,
// for which the step between invalid elements can be anywhere from 0 to the tensor's length
func (it *FlatIterator) NextInvalid() (int, int, error) {
if it.reverse {
return -1, -it.lastIndex, noopError{}
}
return -1, it.Size() - it.lastIndex, noopError{}
}
func (it *FlatIterator) singleNext() (int, error) {
it.lastIndex = it.nextIndex
it.nextIndex++
var tracked int
it.track[it.veclikeDim]++
tracked = it.track[it.veclikeDim]
if tracked >= it.size {
it.done = true
}
return it.lastIndex, nil
}
func (it *FlatIterator) singlePrevious() (int, error) {
it.lastIndex = it.nextIndex
it.nextIndex--
var tracked int
it.track[it.veclikeDim]--
tracked = it.track[it.veclikeDim]
if tracked < 0 {
it.done = true
}
return it.lastIndex, nil
}
func (it *FlatIterator) ndNext() (int, error) {
// the reason for this weird looking bits of code is because the SSA compiler doesn't
// know how to optimize for this bit of code, not keeping things in registers correctly
// @stuartcarnie optimized this iout to great effect
v := len(it.shape) - 1
nextIndex := it.nextIndex
it.lastIndex = nextIndex
// the following 3 lines causes the compiler to perform bounds check here,
// instead of being done in the loop
coord := it.shape[:v+1]
track := it.track[:v+1]
strides := it.strides[:v+1]
for i := v; i >= 0; i-- {
track[i]++
shapeI := coord[i]
strideI := strides[i]
if track[i] == shapeI {
if i == 0 {
it.done = true
}
track[i] = 0
nextIndex -= (shapeI - 1) * strideI
continue
}
nextIndex += strideI
break
}
it.nextIndex = nextIndex
return it.lastIndex, nil
}
func (it *FlatIterator) colMajorNDNext() (int, error) {
// the reason for this weird looking bits of code is because the SSA compiler doesn't
// know how to optimize for this bit of code, not keeping things in registers correctly
// @stuartcarnie optimized this iout to great effect
v := len(it.shape) - 1
nextIndex := it.nextIndex
it.lastIndex = nextIndex
// the following 3 lines causes the compiler to perform bounds check here,
// instead of being done in the loop
coord := it.shape[:v+1]
track := it.track[:v+1]
strides := it.strides[:v+1]
for i := 0; i <= v; i++ {
track[i]++
shapeI := coord[i]
strideI := strides[i]
if track[i] == shapeI {
if i == v {
it.done = true
}
track[i] = 0
nextIndex -= (shapeI - 1) * strideI
continue
}
nextIndex += strideI
break
}
it.nextIndex = nextIndex
return it.lastIndex, nil
}
func (it *FlatIterator) ndPrevious() (int, error) {
it.lastIndex = it.nextIndex
for i := len(it.shape) - 1; i >= 0; i-- {
it.track[i]--
if it.track[i] < 0 {
if i == 0 {
it.done = true
}
it.track[i] = it.shape[i] - 1
it.nextIndex += (it.shape[i] - 1) * it.strides[i]
continue
}
it.nextIndex -= it.strides[i]
break
}
return it.lastIndex, nil
}
// TODO v0.9.0
func (it *FlatIterator) colMajorNDPrevious() (int, error) {
return 0, nil
}
// Coord returns the next coordinate.
// When Next() is called, the coordinates are updated AFTER the Next() returned.
// See example for more details.
//
// The returned coordinates is mutable. Changing any values in the return value will
// change the state of the iterator
func (it *FlatIterator) Coord() []int { return it.track }
// Slice is a convenience function that augments
func (it *FlatIterator) Slice(sli Slice) (retVal []int, err error) {
var next int
var nexts []int
for next, err = it.Next(); err == nil; next, err = it.Next() {
nexts = append(nexts, next)
}
if _, ok := err.(NoOpError); err != nil && !ok {
return
}
if sli == nil {
retVal = nexts
return
}
start := sli.Start()
end := sli.End()
step := sli.Step()
// sanity checks
if err = CheckSlice(sli, len(nexts)); err != nil {
return
}
if step < 0 {
// reverse the nexts
for i := len(nexts)/2 - 1; i >= 0; i-- {
j := len(nexts) - 1 - i
nexts[i], nexts[j] = nexts[j], nexts[i]
}
step = -step
}
// cleanup before loop
if end > len(nexts) {
end = len(nexts)
}
// nexts = nexts[:end]
for i := start; i < end; i += step {
retVal = append(retVal, nexts[i])
}
err = nil
return
}
// Reset resets the iterator state.
func (it *FlatIterator) Reset() {
it.done = false
if it.reverse {
for i := range it.track {
it.track[i] = it.shape[i] - 1
}
switch {
case it.IsScalar():
it.nextIndex = 0
case it.isVector:
it.nextIndex = (it.shape[0] - 1) * it.strides[0]
// case it.IsRowVec():
// it.nextIndex = (it.shape[1] - 1) * it.strides[1]
// case it.IsColVec():
// it.nextIndex = (it.shape[0] - 1) * it.strides[0]
default:
it.nextIndex = 0
for i := range it.track {
it.nextIndex += (it.shape[i] - 1) * it.strides[i]
}
}
} else {
it.nextIndex = 0
for i := range it.track {
it.track[i] = 0
}
}
}
// Chan returns a channel of ints. This is useful for iterating multiple Tensors at the same time.
func (it *FlatIterator) Chan() (retVal chan int) {
retVal = make(chan int)
go func() {
for next, err := it.Next(); err == nil; next, err = it.Next() {
retVal <- next
}
close(retVal)
}()
return
}
/* FLAT MASKED ITERATOR */
// FlatMaskedIterator is an iterator that iterates over simple masked Tensors.
// It is used when the mask stride is identical to data stride with the exception of trailing zeros,
// in which case the data index is always a perfect integer multiple of the mask index
type FlatMaskedIterator struct {
*FlatIterator
mask []bool
}
// FlatMaskedIteratorFromDense creates a new FlatMaskedIterator from dense tensor
func FlatMaskedIteratorFromDense(tt MaskedTensor) *FlatMaskedIterator {
it := new(FlatMaskedIterator)
runtime.SetFinalizer(it, destroyIterator)
it.FlatIterator = FlatIteratorFromDense(tt)
it.mask = tt.Mask()
return it
}
func (it *FlatMaskedIterator) NextValidity() (int, bool, error) {
if len(it.mask) == 0 {
return it.FlatIterator.NextValidity()
}
var i int
var err error
if i, err = it.Next(); err == nil {
return i, !it.mask[i], err
}
return -1, false, err
}
// NextValid returns the index of the next valid element,
// as well as the number of increments to get to next element
func (it *FlatMaskedIterator) NextValid() (int, int, error) {
if len(it.mask) == 0 {
return it.FlatIterator.NextValid()
}
var count int
var mult = 1
if it.reverse {
mult = -1
}
for i, err := it.Next(); err == nil; i, err = it.Next() {
count++
if !(it.mask[i]) {
return i, mult * count, err
}
}
return -1, mult * count, noopError{}
}
// NextInvalid returns the index of the next invalid element
// as well as the number of increments to get to next invalid element
func (it *FlatMaskedIterator) NextInvalid() (int, int, error) {
if it.mask == nil {
return it.FlatIterator.NextInvalid()
}
var count int
var mult = 1
if it.reverse {
mult = -1
}
for i, err := it.Next(); err == nil; i, err = it.Next() {
count++
if it.mask[i] {
return i, mult * count, err
}
}
return -1, mult * count, noopError{}
}
// FlatSparseIterator is an iterator that works very much in the same way as flatiterator, except for sparse tensors
type FlatSparseIterator struct {
*CS
//state
nextIndex int
lastIndex int
track []int
done bool
reverse bool
}
func NewFlatSparseIterator(t *CS) *FlatSparseIterator {
it := new(FlatSparseIterator)
it.CS = t
it.track = BorrowInts(len(t.s))
return it
}
func (it *FlatSparseIterator) Start() (int, error) {
it.Reset()
return it.Next()
}
func (it *FlatSparseIterator) Next() (int, error) {
if it.done {
return -1, noopError{}
}
// var ok bool
it.lastIndex, _ = it.at(it.track...)
// increment the coordinates
for i := len(it.s) - 1; i >= 0; i-- {
it.track[i]++
if it.track[i] == it.s[i] {
if i == 0 {
it.done = true
}
it.track[i] = 0
continue
}
break
}
return it.lastIndex, nil
}
func (it *FlatSparseIterator) NextValidity() (int, bool, error) {
i, err := it.Next()
if i == -1 {
return i, false, err
}
return i, true, err
}
func (it *FlatSparseIterator) NextValid() (int, int, error) {
var i int
var err error
for i, err = it.Next(); err == nil && i == -1; i, err = it.Next() {
}
return i, -1, err
}
func (it *FlatSparseIterator) NextInvalid() (int, int, error) {
var i int
var err error
for i, err = it.Next(); err == nil && i != -1; i, err = it.Next() {
}
return i, -1, err
}
func (it *FlatSparseIterator) Reset() {
if it.reverse {
for i := range it.track {
it.track[i] = it.s[i] - 1
}
} else {
it.nextIndex = 0
for i := range it.track {
it.track[i] = 0
}
}
it.done = false
}
func (it *FlatSparseIterator) SetReverse() {
it.reverse = true
it.Reset()
}
func (it *FlatSparseIterator) SetForward() {
it.reverse = false
it.Reset()
}
func (it *FlatSparseIterator) Coord() []int {
return it.track
}
func (it *FlatSparseIterator) Done() bool {
return it.done
}
/* TEMPORARILY REMOVED
// SortedMultiStridePerm takes multiple input strides, and creates a sorted stride permutation.
// It's based very closely on Numpy's PyArray_CreateMultiSortedStridePerm, where a stable insertion sort is used
// to create the permutations.
func SortedMultiStridePerm(dims int, aps []*AP) (retVal []int) {
retVal = BorrowInts(dims)
for i := 0; i < dims; i++ {
retVal[i] = i
}
for i := 1; i < dims; i++ {
ipos := i
axisi := retVal[i]
for j := i - 1; j >= 0; j-- {
var ambig, swap bool
ambig = true
axisj := retVal[j]
for _, ap := range aps {
if ap.shape[axisi] != 1 && ap.shape[axisj] != 1 {
if ap.strides[axisi] <= ap.strides[axisj] {
swap = true
} else if ambig {
swap = true
}
ambig = false
}
}
if !ambig && swap {
ipos = j
} else {
break
}
}
if ipos != i {
for j := i; j > ipos; j-- {
retVal[j] = retVal[j-1]
}
retVal[ipos] = axisi
}
}
return
}
*/
|