File: sparse.go

package info (click to toggle)
golang-github-gorgonia-tensor 0.9.24-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 3,696 kB
  • sloc: sh: 18; asm: 18; makefile: 8
file content (382 lines) | stat: -rw-r--r-- 8,932 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
package tensor

import (
	"reflect"

	"sort"

	"github.com/pkg/errors"
)

var (
	_ Sparse = &CS{}
)

// Sparse is a sparse tensor.
type Sparse interface {
	Tensor
	Densor
	NonZeroes() int // NonZeroes returns the number of nonzero values
}

// coo is an internal representation of the Coordinate type sparse matrix.
// It's not exported because you probably shouldn't be using it.
// Instead, constructors for the *CS type supports using a coordinate as an input.
type coo struct {
	o      DataOrder
	xs, ys []int
	data   array
}

func (c *coo) Len() int { return c.data.Len() }
func (c *coo) Less(i, j int) bool {
	if c.o.IsColMajor() {
		return c.colMajorLess(i, j)
	}
	return c.rowMajorLess(i, j)
}
func (c *coo) Swap(i, j int) {
	c.xs[i], c.xs[j] = c.xs[j], c.xs[i]
	c.ys[i], c.ys[j] = c.ys[j], c.ys[i]
	c.data.swap(i, j)
}

func (c *coo) colMajorLess(i, j int) bool {
	if c.ys[i] < c.ys[j] {
		return true
	}
	if c.ys[i] == c.ys[j] {
		// check xs
		if c.xs[i] <= c.xs[j] {
			return true
		}
	}
	return false
}

func (c *coo) rowMajorLess(i, j int) bool {
	if c.xs[i] < c.xs[j] {
		return true
	}

	if c.xs[i] == c.xs[j] {
		// check ys
		if c.ys[i] <= c.ys[j] {
			return true
		}
	}
	return false
}

// CS is a compressed sparse data structure. It can be used to represent both CSC and CSR sparse matrices.
// Refer to the individual creation functions for more information.
type CS struct {
	s Shape
	o DataOrder
	e Engine
	f MemoryFlag
	z interface{} // z is the "zero" value. Typically it's not used.

	indices []int
	indptr  []int

	array
}

// NewCSR creates a new Compressed Sparse Row matrix. The data has to be a slice or it panics.
func NewCSR(indices, indptr []int, data interface{}, opts ...ConsOpt) *CS {
	t := new(CS)
	t.indices = indices
	t.indptr = indptr
	t.array = arrayFromSlice(data)
	t.o = NonContiguous
	t.e = StdEng{}

	for _, opt := range opts {
		opt(t)
	}
	return t
}

// NewCSC creates a new Compressed Sparse Column matrix. The data has to be a slice, or it panics.
func NewCSC(indices, indptr []int, data interface{}, opts ...ConsOpt) *CS {
	t := new(CS)
	t.indices = indices
	t.indptr = indptr
	t.array = arrayFromSlice(data)
	t.o = MakeDataOrder(ColMajor, NonContiguous)
	t.e = StdEng{}

	for _, opt := range opts {
		opt(t)
	}
	return t
}

// CSRFromCoord creates a new Compressed Sparse Row matrix given the coordinates. The data has to be a slice or it panics.
func CSRFromCoord(shape Shape, xs, ys []int, data interface{}) *CS {
	t := new(CS)
	t.s = shape
	t.o = NonContiguous
	t.array = arrayFromSlice(data)
	t.e = StdEng{}

	// coord matrix
	cm := &coo{t.o, xs, ys, t.array}
	sort.Sort(cm)

	r := shape[0]
	c := shape[1]
	if r <= cm.xs[len(cm.xs)-1] || c <= MaxInts(cm.ys...) {
		panic("Cannot create sparse matrix where provided shape is smaller than the implied shape of the data")
	}

	indptr := make([]int, r+1)

	var i, j, tmp int
	for i = 1; i < r+1; i++ {
		for j = tmp; j < len(xs) && xs[j] < i; j++ {

		}
		tmp = j
		indptr[i] = j
	}
	t.indices = ys
	t.indptr = indptr
	return t
}

// CSRFromCoord creates a new Compressed Sparse Column matrix given the coordinates. The data has to be a slice or it panics.
func CSCFromCoord(shape Shape, xs, ys []int, data interface{}) *CS {
	t := new(CS)
	t.s = shape
	t.o = MakeDataOrder(NonContiguous, ColMajor)
	t.array = arrayFromSlice(data)
	t.e = StdEng{}

	// coord matrix
	cm := &coo{t.o, xs, ys, t.array}
	sort.Sort(cm)

	r := shape[0]
	c := shape[1]

	// check shape
	if r <= MaxInts(cm.xs...) || c <= cm.ys[len(cm.ys)-1] {
		panic("Cannot create sparse matrix where provided shape is smaller than the implied shape of the data")
	}

	indptr := make([]int, c+1)

	var i, j, tmp int
	for i = 1; i < c+1; i++ {
		for j = tmp; j < len(ys) && ys[j] < i; j++ {

		}
		tmp = j
		indptr[i] = j
	}
	t.indices = xs
	t.indptr = indptr
	return t
}

func (t *CS) Shape() Shape         { return t.s }
func (t *CS) Strides() []int       { return nil }
func (t *CS) Dtype() Dtype         { return t.t }
func (t *CS) Dims() int            { return 2 }
func (t *CS) Size() int            { return t.s.TotalSize() }
func (t *CS) DataSize() int        { return t.Len() }
func (t *CS) Engine() Engine       { return t.e }
func (t *CS) DataOrder() DataOrder { return t.o }

func (t *CS) Slice(...Slice) (View, error) {
	return nil, errors.Errorf("Slice for sparse tensors not implemented yet")
}

func (t *CS) At(coord ...int) (interface{}, error) {
	if len(coord) != t.Dims() {
		return nil, errors.Errorf("Expected coordinates to be of %d-dimensions. Got %v instead", t.Dims(), coord)
	}
	if i, ok := t.at(coord...); ok {
		return t.Get(i), nil
	}
	if t.z == nil {
		return reflect.Zero(t.t.Type).Interface(), nil
	}
	return t.z, nil
}

func (t *CS) SetAt(v interface{}, coord ...int) error {
	if i, ok := t.at(coord...); ok {
		t.Set(i, v)
		return nil
	}
	return errors.Errorf("Cannot set value in a compressed sparse matrix: Coordinate %v not found", coord)
}

func (t *CS) Reshape(...int) error { return errors.New("compressed sparse matrix cannot be reshaped") }

// T transposes the matrix. Concretely, it just changes a bit - the state goes from CSC to CSR, and vice versa.
func (t *CS) T(axes ...int) error {
	dims := t.Dims()
	if len(axes) != dims && len(axes) != 0 {
		return errors.Errorf("Cannot transpose along axes %v", axes)
	}
	if len(axes) == 0 || axes == nil {

		axes = make([]int, dims)
		for i := 0; i < dims; i++ {
			axes[i] = dims - 1 - i
		}
	}
	UnsafePermute(axes, []int(t.s))
	t.o = t.o.toggleColMajor()
	t.o = MakeDataOrder(t.o, Transposed)
	return errors.Errorf(methodNYI, "T", t)
}

// UT untransposes the CS
func (t *CS) UT() { t.T(); t.o = t.o.clearTransposed() }

// Transpose is a no-op. The data does not move
func (t *CS) Transpose() error { return nil }

func (t *CS) Apply(fn interface{}, opts ...FuncOpt) (Tensor, error) {
	return nil, errors.Errorf(methodNYI, "Apply", t)
}

func (t *CS) Eq(other interface{}) bool {
	if ot, ok := other.(*CS); ok {
		if t == ot {
			return true
		}

		if len(ot.indices) != len(t.indices) {
			return false
		}
		if len(ot.indptr) != len(t.indptr) {
			return false
		}
		if !t.s.Eq(ot.s) {
			return false
		}
		if ot.o != t.o {
			return false
		}
		for i, ind := range t.indices {
			if ot.indices[i] != ind {
				return false
			}
		}
		for i, ind := range t.indptr {
			if ot.indptr[i] != ind {
				return false
			}
		}
		return t.array.Eq(&ot.array)
	}
	return false
}

func (t *CS) Clone() interface{} {
	retVal := new(CS)
	retVal.s = t.s.Clone()
	retVal.o = t.o
	retVal.e = t.e
	retVal.indices = make([]int, len(t.indices))
	retVal.indptr = make([]int, len(t.indptr))
	copy(retVal.indices, t.indices)
	copy(retVal.indptr, t.indptr)
	retVal.array = makeArray(t.t, t.array.Len())
	copyArray(&retVal.array, &t.array)
	retVal.e = t.e
	return retVal
}

func (t *CS) IsScalar() bool           { return false }
func (t *CS) ScalarValue() interface{} { panic("Sparse Matrices cannot represent Scalar Values") }

func (t *CS) MemSize() uintptr { return uintptr(calcMemSize(t.t, t.array.Len())) }
func (t *CS) Uintptr() uintptr { return t.array.Uintptr() }

// NonZeroes returns the nonzeroes. In academic literature this is often written as NNZ.
func (t *CS) NonZeroes() int         { return t.Len() }
func (t *CS) RequiresIterator() bool { return true }
func (t *CS) Iterator() Iterator     { return NewFlatSparseIterator(t) }

func (t *CS) at(coord ...int) (int, bool) {
	var r, c int
	if t.o.IsColMajor() {
		r = coord[1]
		c = coord[0]
	} else {
		r = coord[0]
		c = coord[1]
	}

	for i := t.indptr[r]; i < t.indptr[r+1]; i++ {
		if t.indices[i] == c {
			return i, true
		}
	}
	return -1, false
}

// Dense creates a Dense tensor from the compressed one.
func (t *CS) Dense() *Dense {
	if t.e != nil && t.e != (StdEng{}) {
		// use
	}

	d := recycledDense(t.t, t.Shape().Clone(), WithEngine(t.e))
	if t.o.IsColMajor() {
		for i := 0; i < len(t.indptr)-1; i++ {
			for j := t.indptr[i]; j < t.indptr[i+1]; j++ {
				d.SetAt(t.Get(j), t.indices[j], i)
			}
		}
	} else {
		for i := 0; i < len(t.indptr)-1; i++ {
			for j := t.indptr[i]; j < t.indptr[i+1]; j++ {
				d.SetAt(t.Get(j), i, t.indices[j])
			}
		}
	}
	return d
}

// Other Accessors

func (t *CS) Indptr() []int {
	retVal := BorrowInts(len(t.indptr))
	copy(retVal, t.indptr)
	return retVal
}

func (t *CS) Indices() []int {
	retVal := BorrowInts(len(t.indices))
	copy(retVal, t.indices)
	return retVal
}

func (t *CS) AsCSR() {
	if t.o.IsRowMajor() {
		return
	}
	t.o.toggleColMajor()
}

func (t *CS) AsCSC() {
	if t.o.IsColMajor() {
		return
	}
	t.o.toggleColMajor()
}

func (t *CS) IsNativelyAccessible() bool { return t.f.nativelyAccessible() }
func (t *CS) IsManuallyManaged() bool    { return t.f.manuallyManaged() }

func (t *CS) arr() array                     { return t.array }
func (t *CS) arrPtr() *array                 { return &t.array }
func (t *CS) standardEngine() standardEngine { return nil }