1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
|
package tensor
import (
"bytes"
"errors"
"math"
"math/cmplx"
"math/rand"
"reflect"
"testing"
"testing/quick"
"time"
"unsafe"
"github.com/chewxy/math32"
"gorgonia.org/tensor/internal/storage"
)
func randomBool() bool {
i := rand.Intn(11)
return i > 5
}
// from : https://stackoverflow.com/a/31832326/3426066
const letterBytes = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"
const (
letterIdxBits = 6 // 6 bits to represent a letter index
letterIdxMask = 1<<letterIdxBits - 1 // All 1-bits, as many as letterIdxBits
letterIdxMax = 63 / letterIdxBits // # of letter indices fitting in 63 bits
)
const quickchecks = 1000
func newRand() *rand.Rand {
return rand.New(rand.NewSource(time.Now().UnixNano()))
}
func randomString() string {
n := rand.Intn(10)
b := make([]byte, n)
src := newRand()
// A src.Int63() generates 63 random bits, enough for letterIdxMax characters!
for i, cache, remain := n-1, src.Int63(), letterIdxMax; i >= 0; {
if remain == 0 {
cache, remain = src.Int63(), letterIdxMax
}
if idx := int(cache & letterIdxMask); idx < len(letterBytes) {
b[i] = letterBytes[idx]
i--
}
cache >>= letterIdxBits
remain--
}
return string(b)
}
// taken from the Go Stdlib package math
func tolerancef64(a, b, e float64) bool {
d := a - b
if d < 0 {
d = -d
}
// note: b is correct (expected) value, a is actual value.
// make error tolerance a fraction of b, not a.
if b != 0 {
e = e * b
if e < 0 {
e = -e
}
}
return d < e
}
func closeenoughf64(a, b float64) bool { return tolerancef64(a, b, 1e-8) }
func closef64(a, b float64) bool { return tolerancef64(a, b, 1e-14) }
func veryclosef64(a, b float64) bool { return tolerancef64(a, b, 4e-16) }
func soclosef64(a, b, e float64) bool { return tolerancef64(a, b, e) }
func alikef64(a, b float64) bool {
switch {
case math.IsNaN(a) && math.IsNaN(b):
return true
case a == b:
return math.Signbit(a) == math.Signbit(b)
}
return false
}
// taken from math32, which was taken from the Go std lib
func tolerancef32(a, b, e float32) bool {
d := a - b
if d < 0 {
d = -d
}
// note: b is correct (expected) value, a is actual value.
// make error tolerance a fraction of b, not a.
if b != 0 {
e = e * b
if e < 0 {
e = -e
}
}
return d < e
}
func closef32(a, b float32) bool { return tolerancef32(a, b, 1e-5) } // the number gotten from the cfloat standard. Haskell's Linear package uses 1e-6 for floats
func veryclosef32(a, b float32) bool { return tolerancef32(a, b, 1e-6) } // from wiki
func soclosef32(a, b, e float32) bool { return tolerancef32(a, b, e) }
func alikef32(a, b float32) bool {
switch {
case math32.IsNaN(a) && math32.IsNaN(b):
return true
case a == b:
return math32.Signbit(a) == math32.Signbit(b)
}
return false
}
// taken from math/cmplx test
func cTolerance(a, b complex128, e float64) bool {
d := cmplx.Abs(a - b)
if b != 0 {
e = e * cmplx.Abs(b)
if e < 0 {
e = -e
}
}
return d < e
}
func cClose(a, b complex128) bool { return cTolerance(a, b, 1e-14) }
func cSoclose(a, b complex128, e float64) bool { return cTolerance(a, b, e) }
func cVeryclose(a, b complex128) bool { return cTolerance(a, b, 4e-16) }
func cAlike(a, b complex128) bool {
switch {
case cmplx.IsNaN(a) && cmplx.IsNaN(b):
return true
case a == b:
return math.Signbit(real(a)) == math.Signbit(real(b)) && math.Signbit(imag(a)) == math.Signbit(imag(b))
}
return false
}
func allClose(a, b interface{}, approxFn ...interface{}) bool {
switch at := a.(type) {
case []float64:
closeness := closef64
var ok bool
if len(approxFn) > 0 {
if closeness, ok = approxFn[0].(func(a, b float64) bool); !ok {
closeness = closef64
}
}
bt := b.([]float64)
for i, v := range at {
if math.IsNaN(v) {
if !math.IsNaN(bt[i]) {
return false
}
continue
}
if math.IsInf(v, 0) {
if !math.IsInf(bt[i], 0) {
return false
}
continue
}
if !closeness(v, bt[i]) {
return false
}
}
return true
case []float32:
closeness := closef32
var ok bool
if len(approxFn) > 0 {
if closeness, ok = approxFn[0].(func(a, b float32) bool); !ok {
closeness = closef32
}
}
bt := b.([]float32)
for i, v := range at {
if math32.IsNaN(v) {
if !math32.IsNaN(bt[i]) {
return false
}
continue
}
if math32.IsInf(v, 0) {
if !math32.IsInf(bt[i], 0) {
return false
}
continue
}
if !closeness(v, bt[i]) {
return false
}
}
return true
case []complex64:
bt := b.([]complex64)
for i, v := range at {
if cmplx.IsNaN(complex128(v)) {
if !cmplx.IsNaN(complex128(bt[i])) {
return false
}
continue
}
if cmplx.IsInf(complex128(v)) {
if !cmplx.IsInf(complex128(bt[i])) {
return false
}
continue
}
if !cSoclose(complex128(v), complex128(bt[i]), 1e-5) {
return false
}
}
return true
case []complex128:
bt := b.([]complex128)
for i, v := range at {
if cmplx.IsNaN(v) {
if !cmplx.IsNaN(bt[i]) {
return false
}
continue
}
if cmplx.IsInf(v) {
if !cmplx.IsInf(bt[i]) {
return false
}
continue
}
if !cClose(v, bt[i]) {
return false
}
}
return true
default:
return reflect.DeepEqual(a, b)
}
}
func checkErr(t *testing.T, expected bool, err error, name string, id interface{}) (cont bool) {
switch {
case expected:
if err == nil {
t.Errorf("Expected error in test %v (%v)", name, id)
}
return true
case !expected && err != nil:
t.Errorf("Test %v (%v) errored: %+v", name, id, err)
return true
}
return false
}
func sliceApproxf64(a, b []float64, fn func(a, b float64) bool) bool {
if len(a) != len(b) {
return false
}
for i, v := range a {
if math.IsNaN(v) {
if !alikef64(v, b[i]) {
return false
}
}
if !fn(v, b[i]) {
return false
}
}
return true
}
func RandomFloat64(size int) []float64 {
r := make([]float64, size)
for i := range r {
r[i] = rand.NormFloat64()
}
return r
}
func factorize(a int) []int {
if a <= 0 {
return nil
}
// all numbers are divisible by at least 1
retVal := make([]int, 1)
retVal[0] = 1
fill := func(a int, e int) {
n := len(retVal)
for i, p := 0, a; i < e; i, p = i+1, p*a {
for j := 0; j < n; j++ {
retVal = append(retVal, retVal[j]*p)
}
}
}
// find factors of 2
// rightshift by 1 = division by 2
var e int
for ; a&1 == 0; e++ {
a >>= 1
}
fill(2, e)
// find factors of 3 and up
for next := 3; a > 1; next += 2 {
if next*next > a {
next = a
}
for e = 0; a%next == 0; e++ {
a /= next
}
if e > 0 {
fill(next, e)
}
}
return retVal
}
func shuffleInts(a []int, r *rand.Rand) {
for i := range a {
j := r.Intn(i + 1)
a[i], a[j] = a[j], a[i]
}
}
type TensorGenerator struct {
ShapeConstraint Shape
DtypeConstraint Dtype
}
func (g TensorGenerator) Generate(r *rand.Rand, size int) reflect.Value {
var retVal Tensor
// generate type of tensor
return reflect.ValueOf(retVal)
}
func (t *Dense) Generate(r *rand.Rand, size int) reflect.Value {
// generate type
ri := r.Intn(len(specializedTypes.set))
of := specializedTypes.set[ri]
datatyp := reflect.SliceOf(of.Type)
gendat, _ := quick.Value(datatyp, r)
// generate dims
var scalar bool
var s Shape
dims := r.Intn(5) // dims4 is the max we'll generate even though we can handle much more
l := gendat.Len()
// generate shape based on inputs
switch {
case dims == 0 || l == 0:
scalar = true
gendat, _ = quick.Value(of.Type, r)
case dims == 1:
s = Shape{gendat.Len()}
default:
factors := factorize(l)
s = Shape(BorrowInts(dims))
// fill with 1s so that we can get a non-zero TotalSize
for i := 0; i < len(s); i++ {
s[i] = 1
}
for i := 0; i < dims; i++ {
j := rand.Intn(len(factors))
s[i] = factors[j]
size := s.TotalSize()
if q, r := divmod(l, size); r != 0 {
factors = factorize(r)
} else if size != l {
if i < dims-2 {
factors = factorize(q)
} else if i == dims-2 {
s[i+1] = q
break
}
} else {
break
}
}
shuffleInts(s, r)
}
// generate flags
flag := MemoryFlag(r.Intn(4))
// generate order
order := DataOrder(r.Intn(4))
var v *Dense
if scalar {
v = New(FromScalar(gendat.Interface()))
} else {
v = New(Of(of), WithShape(s...), WithBacking(gendat.Interface()))
}
v.flag = flag
v.AP.o = order
// generate engine
oeint := r.Intn(2)
eint := r.Intn(4)
switch eint {
case 0:
v.e = StdEng{}
if oeint == 0 {
v.oe = StdEng{}
} else {
v.oe = nil
}
case 1:
// check is to prevent panics which Float64Engine will do if asked to allocate memory for non float64s
if of == Float64 {
v.e = Float64Engine{}
if oeint == 0 {
v.oe = Float64Engine{}
} else {
v.oe = nil
}
} else {
v.e = StdEng{}
if oeint == 0 {
v.oe = StdEng{}
} else {
v.oe = nil
}
}
case 2:
// check is to prevent panics which Float64Engine will do if asked to allocate memory for non float64s
if of == Float32 {
v.e = Float32Engine{}
if oeint == 0 {
v.oe = Float32Engine{}
} else {
v.oe = nil
}
} else {
v.e = StdEng{}
if oeint == 0 {
v.oe = StdEng{}
} else {
v.oe = nil
}
}
case 3:
v.e = dummyEngine(true)
v.oe = nil
}
return reflect.ValueOf(v)
}
// fakemem is a byteslice, while making it a Memory
type fakemem []byte
func (m fakemem) Uintptr() uintptr { return uintptr(unsafe.Pointer(&m[0])) }
func (m fakemem) MemSize() uintptr { return uintptr(len(m)) }
func (m fakemem) Pointer() unsafe.Pointer { return unsafe.Pointer(&m[0]) }
// dummyEngine implements Engine. The bool indicates whether the data is native-accessible
type dummyEngine bool
func (e dummyEngine) AllocAccessible() bool { return bool(e) }
func (e dummyEngine) Alloc(size int64) (Memory, error) {
ps := make(fakemem, int(size))
return ps, nil
}
func (e dummyEngine) Free(mem Memory, size int64) error { return nil }
func (e dummyEngine) Memset(mem Memory, val interface{}) error { return nil }
func (e dummyEngine) Memclr(mem Memory) {}
func (e dummyEngine) Memcpy(dst, src Memory) error {
if e {
var a, b storage.Header
a.Raw = storage.FromMemory(src.Uintptr(), src.MemSize())
b.Raw = storage.FromMemory(dst.Uintptr(), dst.MemSize())
copy(b.Raw, a.Raw)
return nil
}
return errors.New("Unable to copy ")
}
func (e dummyEngine) Accessible(mem Memory) (Memory, error) { return mem, nil }
func (e dummyEngine) WorksWith(order DataOrder) bool { return true }
// dummyEngine2 is used for testing additional methods that may not be provided in the stdeng
type dummyEngine2 struct {
e StdEng
}
func (e dummyEngine2) AllocAccessible() bool { return e.e.AllocAccessible() }
func (e dummyEngine2) Alloc(size int64) (Memory, error) { return e.e.Alloc(size) }
func (e dummyEngine2) Free(mem Memory, size int64) error { return e.e.Free(mem, size) }
func (e dummyEngine2) Memset(mem Memory, val interface{}) error { return e.e.Memset(mem, val) }
func (e dummyEngine2) Memclr(mem Memory) { e.e.Memclr(mem) }
func (e dummyEngine2) Memcpy(dst, src Memory) error { return e.e.Memcpy(dst, src) }
func (e dummyEngine2) Accessible(mem Memory) (Memory, error) { return e.e.Accessible(mem) }
func (e dummyEngine2) WorksWith(order DataOrder) bool { return e.e.WorksWith(order) }
func (e dummyEngine2) Argmax(t Tensor, axis int) (Tensor, error) { return e.e.Argmax(t, axis) }
func (e dummyEngine2) Argmin(t Tensor, axis int) (Tensor, error) { return e.e.Argmin(t, axis) }
func willerr(a *Dense, tc, eqtc *typeclass) (retVal, willFailEq bool) {
if err := typeclassCheck(a.Dtype(), eqtc); err == nil {
willFailEq = true
}
if err := typeclassCheck(a.Dtype(), tc); err != nil {
return true, willFailEq
}
retVal = retVal || !a.IsNativelyAccessible()
return
}
func qcErrCheck(t *testing.T, name string, a Dtyper, b interface{}, we bool, err error) (e error, retEarly bool) {
switch {
case !we && err != nil:
t.Errorf("Tests for %v (%v) was unable to proceed: %v", name, a.Dtype(), err)
return err, true
case we && err == nil:
if b == nil {
t.Errorf("Expected error when performing %v on %T of %v ", name, a, a.Dtype())
return errors.New("Error"), true
}
if bd, ok := b.(Dtyper); ok {
t.Errorf("Expected error when performing %v on %T of %v and %T of %v", name, a, a.Dtype(), b, bd.Dtype())
} else {
t.Errorf("Expected error when performing %v on %T of %v and %v of %T", name, a, a.Dtype(), b, b)
}
return errors.New("Error"), true
case we && err != nil:
return nil, true
}
return nil, false
}
func qcIsFloat(dt Dtype) bool {
if err := typeclassCheck(dt, floatcmplxTypes); err == nil {
return true
}
return false
}
func qcEqCheck(t *testing.T, dt Dtype, willFailEq bool, correct, got interface{}) bool {
isFloatTypes := qcIsFloat(dt)
if !willFailEq && (isFloatTypes && !allClose(correct, got) || (!isFloatTypes && !reflect.DeepEqual(correct, got))) {
t.Errorf("q.Dtype: %v", dt)
t.Errorf("correct\n%v", correct)
t.Errorf("got\n%v", got)
return false
}
return true
}
// DummyState is a dummy fmt.State, used to debug things
type DummyState struct {
*bytes.Buffer
}
func (d *DummyState) Width() (int, bool) { return 0, false }
func (d *DummyState) Precision() (int, bool) { return 0, false }
func (d *DummyState) Flag(c int) bool { return false }
|