File: types.go

package info (click to toggle)
golang-github-gorgonia-tensor 0.9.24-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 3,696 kB
  • sloc: sh: 18; asm: 18; makefile: 8
file content (463 lines) | stat: -rw-r--r-- 11,756 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
package tensor

import (
	"fmt"
	"math"
	"reflect"
	"unsafe"

	"github.com/chewxy/hm"
	"github.com/pkg/errors"
)

// Dtype represents a data type of a Tensor. Concretely it's implemented as an embedded reflect.Type
// which allows for easy reflection operations. It also implements hm.Type, for type inference in Gorgonia
type Dtype struct {
	reflect.Type
}

// note: the Name() and String() methods are already defined in reflect.Type. Might as well use the composed methods

func (dt Dtype) Apply(hm.Subs) hm.Substitutable                { return dt }
func (dt Dtype) FreeTypeVar() hm.TypeVarSet                    { return nil }
func (dt Dtype) Normalize(k, v hm.TypeVarSet) (hm.Type, error) { return dt, nil }
func (dt Dtype) Types() hm.Types                               { return nil }
func (dt Dtype) Format(s fmt.State, c rune)                    { fmt.Fprintf(s, "%s", dt.Name()) }
func (dt Dtype) Eq(other hm.Type) bool                         { return other == dt }

var numpyDtypes map[Dtype]string
var reverseNumpyDtypes map[string]Dtype

func init() {
	numpyDtypes = map[Dtype]string{
		Bool:       "b1",
		Int:        fmt.Sprintf("i%d", Int.Size()),
		Int8:       "i1",
		Int16:      "i2",
		Int32:      "i4",
		Int64:      "i8",
		Uint:       fmt.Sprintf("u%d", Uint.Size()),
		Uint8:      "u1",
		Uint16:     "u2",
		Uint32:     "u4",
		Uint64:     "u8",
		Float32:    "f4",
		Float64:    "f8",
		Complex64:  "c8",
		Complex128: "c16",
	}

	reverseNumpyDtypes = map[string]Dtype{
		"b1":  Bool,
		"i1":  Int8,
		"i2":  Int16,
		"i4":  Int32,
		"i8":  Int64,
		"u1":  Uint8,
		"u2":  Uint16,
		"u4":  Uint32,
		"u8":  Uint64,
		"f4":  Float32,
		"f8":  Float64,
		"c8":  Complex64,
		"c16": Complex128,
	}
}

// NumpyDtype returns the Numpy's Dtype equivalent. This is predominantly used in converting a Tensor to a Numpy ndarray,
// however, not all Dtypes are supported
func (dt Dtype) numpyDtype() (string, error) {
	retVal, ok := numpyDtypes[dt]
	if !ok {
		return "v", errors.Errorf("Unsupported Dtype conversion to Numpy Dtype: %v", dt)
	}
	return retVal, nil
}

func fromNumpyDtype(t string) (Dtype, error) {
	retVal, ok := reverseNumpyDtypes[t]
	if !ok {
		return Dtype{}, errors.Errorf("Unsupported Dtype conversion from %q to Dtype", t)
	}
	if t == "i4" && Int.Size() == 4 {
		return Int, nil
	}
	if t == "i8" && Int.Size() == 8 {
		return Int, nil
	}
	if t == "u4" && Uint.Size() == 4 {
		return Uint, nil
	}
	if t == "u8" && Uint.Size() == 8 {
		return Uint, nil
	}
	return retVal, nil
}

type typeclass struct {
	name string
	set  []Dtype
}

var parameterizedKinds = [...]reflect.Kind{
	reflect.Array,
	reflect.Chan,
	reflect.Func,
	reflect.Interface,
	reflect.Map,
	reflect.Ptr,
	reflect.Slice,
	reflect.Struct,
}

func isParameterizedKind(k reflect.Kind) bool {
	for _, v := range parameterizedKinds {
		if v == k {
			return true
		}
	}
	return false
}

// oh how nice it'd be if I could make them immutable
var (
	Bool       = Dtype{reflect.TypeOf(true)}
	Int        = Dtype{reflect.TypeOf(int(1))}
	Int8       = Dtype{reflect.TypeOf(int8(1))}
	Int16      = Dtype{reflect.TypeOf(int16(1))}
	Int32      = Dtype{reflect.TypeOf(int32(1))}
	Int64      = Dtype{reflect.TypeOf(int64(1))}
	Uint       = Dtype{reflect.TypeOf(uint(1))}
	Uint8      = Dtype{reflect.TypeOf(uint8(1))}
	Uint16     = Dtype{reflect.TypeOf(uint16(1))}
	Uint32     = Dtype{reflect.TypeOf(uint32(1))}
	Uint64     = Dtype{reflect.TypeOf(uint64(1))}
	Float32    = Dtype{reflect.TypeOf(float32(1))}
	Float64    = Dtype{reflect.TypeOf(float64(1))}
	Complex64  = Dtype{reflect.TypeOf(complex64(1))}
	Complex128 = Dtype{reflect.TypeOf(complex128(1))}
	String     = Dtype{reflect.TypeOf("")}

	// aliases
	Byte = Uint8

	// extras
	Uintptr       = Dtype{reflect.TypeOf(uintptr(0))}
	UnsafePointer = Dtype{reflect.TypeOf(unsafe.Pointer(&Uintptr))}
)

// allTypes for indexing
var allTypes = &typeclass{
	name: "τ",
	set: []Dtype{
		Bool, Int, Int8, Int16, Int32, Int64, Uint, Uint8, Uint16, Uint32, Uint64, Float32, Float64, Complex64, Complex128, String, Uintptr, UnsafePointer,
	},
}

// specialized types indicate that there are specialized code generated for these types
var specializedTypes = &typeclass{
	name: "Specialized",
	set: []Dtype{
		Bool, Int, Int8, Int16, Int32, Int64, Uint, Uint8, Uint16, Uint32, Uint64, Float32, Float64, Complex64, Complex128, String,
	},
}

var addableTypes = &typeclass{
	name: "Addable",
	set: []Dtype{
		Int, Int8, Int16, Int32, Int64, Uint, Uint8, Uint16, Uint32, Uint64, Float32, Float64, Complex64, Complex128, String,
	},
}

var numberTypes = &typeclass{
	name: "Number",
	set: []Dtype{
		Int, Int8, Int16, Int32, Int64, Uint, Uint8, Uint16, Uint32, Uint64, Float32, Float64, Complex64, Complex128,
	},
}

var ordTypes = &typeclass{
	name: "Ord",
	set: []Dtype{
		Int, Int8, Int16, Int32, Int64, Uint, Uint8, Uint16, Uint32, Uint64, Float32, Float64, String,
	},
}

var eqTypes = &typeclass{
	name: "Eq",
	set: []Dtype{
		Bool, Int, Int8, Int16, Int32, Int64, Uint, Uint8, Uint16, Uint32, Uint64, Float32, Float64, Complex64, Complex128, String, Uintptr, UnsafePointer,
	},
}

var unsignedTypes = &typeclass{
	name: "Unsigned",
	set:  []Dtype{Uint, Uint8, Uint16, Uint32, Uint64},
}

var signedTypes = &typeclass{
	name: "Signed",
	set: []Dtype{
		Int, Int8, Int16, Int32, Int64, Float32, Float64, Complex64, Complex128,
	},
}

// this typeclass is ever only used by Sub tests
var signedNonComplexTypes = &typeclass{
	name: "Signed NonComplex",
	set: []Dtype{
		Int, Int8, Int16, Int32, Int64, Float32, Float64,
	},
}

var floatTypes = &typeclass{
	name: "Float",
	set: []Dtype{
		Float32, Float64,
	},
}

var complexTypes = &typeclass{
	name: "Complex Numbers",
	set:  []Dtype{Complex64, Complex128},
}

var floatcmplxTypes = &typeclass{
	name: "Real",
	set: []Dtype{
		Float32, Float64, Complex64, Complex128,
	},
}

var nonComplexNumberTypes = &typeclass{
	name: "Non complex numbers",
	set: []Dtype{
		Int, Int8, Int16, Int32, Int64, Uint, Uint8, Uint16, Uint32, Uint64, Float32, Float64,
	},
}

// this typeclass is ever only used by Pow tests
var generatableTypes = &typeclass{
	name: "Generatable types",
	set: []Dtype{
		Bool, Int, Int8, Int16, Int32, Int64, Uint, Uint8, Uint16, Uint32, Uint64, Float32, Float64, String,
	},
}

func isFloat(dt Dtype) bool {
	return dt == Float64 || dt == Float32
}

func typeclassCheck(a Dtype, tc *typeclass) error {
	if tc == nil {
		return nil
	}
	for _, s := range tc.set {
		if s == a {
			return nil
		}
	}
	return errors.Errorf("Type %v is not a member of %v", a, tc.name)
}

// RegisterNumber is a function required to register a new numerical Dtype.
// This package provides the following Dtype:
//		Int
//		Int8
//		Int16
//		Int32
//		Int64
//		Uint
//		Uint8
//		Uint16
//		Uint32
//		Uint64
//		Float32
//		Float64
//		Complex64
//		Complex128
//
// If a Dtype that is registered already exists on the list, it will not be added to the list.
func RegisterNumber(a Dtype) {
	for _, dt := range numberTypes.set {
		if dt == a {
			return
		}
	}
	numberTypes.set = append(numberTypes.set, a)
	RegisterEq(a)
}

func RegisterFloat(a Dtype) {
	for _, dt := range floatTypes.set {
		if dt == a {
			return
		}
	}
	floatTypes.set = append(floatTypes.set, a)
	RegisterNumber(a)
	RegisterOrd(a)
}

// RegisterOrd registers a dtype as a type that can be typed
func RegisterOrd(a Dtype) {
	for _, dt := range ordTypes.set {
		if dt == a {
			return
		}
	}
	ordTypes.set = append(ordTypes.set, a)
	RegisterEq(a)
}

// RegisterEq registers a dtype as a type that can be compared for equality
func RegisterEq(a Dtype) {
	for _, dt := range eqTypes.set {
		if dt == a {
			return
		}
	}
	eqTypes.set = append(eqTypes.set, a)
	Register(a)
}

// Register registers a new Dtype
func Register(a Dtype) {
	for _, dt := range allTypes.set {
		if a == dt {
			return
		}
	}
	allTypes.set = append(allTypes.set, a)
}

func dtypeID(a Dtype) int {
	for i, v := range allTypes.set {
		if a == v {
			return i
		}
	}
	return -1
}

// NormOrder represents the order of the norm. Ideally, we'd only represent norms with a uint/byte.
// But there are norm types that are outside numerical types, such as nuclear norm and fobenius norm.
// So it is internally represented by a float. If Go could use NaN and Inf as consts, it would have been best,
// Instead, we use constructors. Both Nuclear and Frobenius norm types are represented as NaNs
//
// The using of NaN and Inf as "special" Norm types lead to the need for IsInf() and IsFrobenius() and IsNuclear() method
type NormOrder float64

func Norm(ord int) NormOrder   { return NormOrder(float64(ord)) }
func InfNorm() NormOrder       { return NormOrder(math.Inf(1)) }
func NegInfNorm() NormOrder    { return NormOrder(math.Inf(-1)) }
func UnorderedNorm() NormOrder { return NormOrder(math.Float64frombits(0x7ff8000000000001)) }
func FrobeniusNorm() NormOrder { return NormOrder(math.Float64frombits(0x7ff8000000000002)) }
func NuclearNorm() NormOrder   { return NormOrder(math.Float64frombits(0x7ff8000000000003)) }

// Valid() is a helper method that deterines if the norm order is valid. A valid norm order is
// one where the fraction component is 0
func (n NormOrder) Valid() bool {
	switch {
	case math.IsNaN(float64(n)):
		nb := math.Float64bits(float64(n))
		if math.Float64bits(float64(UnorderedNorm())) == nb || math.Float64bits(float64(FrobeniusNorm())) == nb || math.Float64bits(float64(NuclearNorm())) == nb {
			return true
		}
	case math.IsInf(float64(n), 0):
		return true
	default:
		if _, frac := math.Modf(float64(n)); frac == 0.0 {
			return true
		}
	}
	return false
}

// IsUnordered returns true if the NormOrder is not an ordered norm
func (n NormOrder) IsUnordered() bool {
	return math.Float64bits(float64(n)) == math.Float64bits(float64(UnorderedNorm()))
}

// IsFrobenius returns true if the NormOrder is a Frobenius norm
func (n NormOrder) IsFrobenius() bool {
	return math.Float64bits(float64(n)) == math.Float64bits(float64(FrobeniusNorm()))
}

// IsNuclear returns true if the NormOrder is a nuclear norm
func (n NormOrder) IsNuclear() bool {
	return math.Float64bits(float64(n)) == math.Float64bits(float64(NuclearNorm()))
}

func (n NormOrder) IsInf(sign int) bool {
	return math.IsInf(float64(n), sign)
}

func (n NormOrder) String() string {
	switch {
	case n.IsUnordered():
		return "Unordered"
	case n.IsFrobenius():
		return "Frobenius"
	case n.IsNuclear():
		return "Nuclear"
	case n.IsInf(1):
		return "+Inf"
	case n.IsInf(-1):
		return "-Inf"
	default:
		return fmt.Sprintf("Norm %v", float64(n))
	}
	panic("unreachable")
}

// FuncOpt are optionals for calling Tensor function.
type FuncOpt func(*OpOpt)

// WithIncr passes in a Tensor to be incremented.
func WithIncr(incr Tensor) FuncOpt {
	f := func(opt *OpOpt) {
		opt.incr = incr
	}
	return f
}

// WithReuse passes in a Tensor to be reused.
func WithReuse(reuse Tensor) FuncOpt {
	f := func(opt *OpOpt) {
		opt.reuse = reuse
	}
	return f
}

// UseSafe ensures that the operation is a safe operation (copies data, does not clobber). This is the default option for most methods and functions
func UseSafe() FuncOpt {
	f := func(opt *OpOpt) {
		opt.unsafe = false
	}
	return f
}

// UseUnsafe ensures that the operation is an unsafe operation - data will be clobbered, and operations performed inplace
func UseUnsafe() FuncOpt {
	f := func(opt *OpOpt) {
		opt.unsafe = true
	}
	return f
}

// AsSameType makes sure that the return Tensor is the same type as input Tensors.
func AsSameType() FuncOpt {
	f := func(opt *OpOpt) {
		opt.same = true
	}
	return f
}

// As makes sure that the the return Tensor is of the type specified. Currently only works for FromMat64
func As(t Dtype) FuncOpt {
	f := func(opt *OpOpt) {
		opt.t = t
	}
	return f
}