1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
|
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package syntax
import "unicode"
// A patchList is a list of instruction pointers that need to be filled in (patched).
// Because the pointers haven't been filled in yet, we can reuse their storage
// to hold the list. It's kind of sleazy, but works well in practice.
// See https://swtch.com/~rsc/regexp/regexp1.html for inspiration.
//
// These aren't really pointers: they're integers, so we can reinterpret them
// this way without using package unsafe. A value l.head denotes
// p.inst[l.head>>1].Out (l.head&1==0) or .Arg (l.head&1==1).
// head == 0 denotes the empty list, okay because we start every program
// with a fail instruction, so we'll never want to point at its output link.
type patchList struct {
head, tail uint32
}
func makePatchList(n uint32) patchList {
return patchList{n, n}
}
func (l patchList) patch(p *Prog, val uint32) {
head := l.head
for head != 0 {
i := &p.Inst[head>>1]
if head&1 == 0 {
head = i.Out
i.Out = val
} else {
head = i.Arg
i.Arg = val
}
}
}
func (l1 patchList) append(p *Prog, l2 patchList) patchList {
if l1.head == 0 {
return l2
}
if l2.head == 0 {
return l1
}
i := &p.Inst[l1.tail>>1]
if l1.tail&1 == 0 {
i.Out = l2.head
} else {
i.Arg = l2.head
}
return patchList{l1.head, l2.tail}
}
// A frag represents a compiled program fragment.
type frag struct {
i uint32 // index of first instruction
out patchList // where to record end instruction
nullable bool // whether fragment can match empty string
}
type compiler struct {
p *Prog
}
// Compile compiles the regexp into a program to be executed.
// The regexp should have been simplified already (returned from re.Simplify).
func Compile(re *Regexp) (*Prog, error) {
var c compiler
c.init()
f := c.compile(re)
f.out.patch(c.p, c.inst(InstMatch).i)
c.p.Start = int(f.i)
return c.p, nil
}
func (c *compiler) init() {
c.p = new(Prog)
c.p.NumCap = 2 // implicit ( and ) for whole match $0
c.inst(InstFail)
}
var anyRuneNotNL = []rune{0, '\n' - 1, '\n' + 1, unicode.MaxRune}
var anyRune = []rune{0, unicode.MaxRune}
func (c *compiler) compile(re *Regexp) frag {
switch re.Op {
case OpNoMatch:
return c.fail()
case OpEmptyMatch:
return c.nop()
case OpLiteral:
if len(re.Rune) == 0 {
return c.nop()
}
var f frag
for j := range re.Rune {
f1 := c.rune(re.Rune[j:j+1], re.Flags)
if j == 0 {
f = f1
} else {
f = c.cat(f, f1)
}
}
return f
case OpCharClass:
return c.rune(re.Rune, re.Flags)
case OpAnyCharNotNL:
return c.rune(anyRuneNotNL, 0)
case OpAnyChar:
return c.rune(anyRune, 0)
case OpBeginLine:
return c.empty(EmptyBeginLine)
case OpEndLine:
return c.empty(EmptyEndLine)
case OpBeginText:
return c.empty(EmptyBeginText)
case OpEndText:
return c.empty(EmptyEndText)
case OpWordBoundary:
return c.empty(EmptyWordBoundary)
case OpNoWordBoundary:
return c.empty(EmptyNoWordBoundary)
case OpCapture:
bra := c.cap(uint32(re.Cap << 1))
sub := c.compile(re.Sub[0])
ket := c.cap(uint32(re.Cap<<1 | 1))
return c.cat(c.cat(bra, sub), ket)
case OpStar:
return c.star(c.compile(re.Sub[0]), re.Flags&NonGreedy != 0)
case OpPlus:
return c.plus(c.compile(re.Sub[0]), re.Flags&NonGreedy != 0)
case OpQuest:
return c.quest(c.compile(re.Sub[0]), re.Flags&NonGreedy != 0)
case OpConcat:
if len(re.Sub) == 0 {
return c.nop()
}
var f frag
for i, sub := range re.Sub {
if i == 0 {
f = c.compile(sub)
} else {
f = c.cat(f, c.compile(sub))
}
}
return f
case OpAlternate:
var f frag
for _, sub := range re.Sub {
f = c.alt(f, c.compile(sub))
}
return f
}
panic("regexp: unhandled case in compile")
}
func (c *compiler) inst(op InstOp) frag {
// TODO: impose length limit
f := frag{i: uint32(len(c.p.Inst)), nullable: true}
c.p.Inst = append(c.p.Inst, Inst{Op: op})
return f
}
func (c *compiler) nop() frag {
f := c.inst(InstNop)
f.out = makePatchList(f.i << 1)
return f
}
func (c *compiler) fail() frag {
return frag{}
}
func (c *compiler) cap(arg uint32) frag {
f := c.inst(InstCapture)
f.out = makePatchList(f.i << 1)
c.p.Inst[f.i].Arg = arg
if c.p.NumCap < int(arg)+1 {
c.p.NumCap = int(arg) + 1
}
return f
}
func (c *compiler) cat(f1, f2 frag) frag {
// concat of failure is failure
if f1.i == 0 || f2.i == 0 {
return frag{}
}
// TODO: elide nop
f1.out.patch(c.p, f2.i)
return frag{f1.i, f2.out, f1.nullable && f2.nullable}
}
func (c *compiler) alt(f1, f2 frag) frag {
// alt of failure is other
if f1.i == 0 {
return f2
}
if f2.i == 0 {
return f1
}
f := c.inst(InstAlt)
i := &c.p.Inst[f.i]
i.Out = f1.i
i.Arg = f2.i
f.out = f1.out.append(c.p, f2.out)
f.nullable = f1.nullable || f2.nullable
return f
}
func (c *compiler) quest(f1 frag, nongreedy bool) frag {
f := c.inst(InstAlt)
i := &c.p.Inst[f.i]
if nongreedy {
i.Arg = f1.i
f.out = makePatchList(f.i << 1)
} else {
i.Out = f1.i
f.out = makePatchList(f.i<<1 | 1)
}
f.out = f.out.append(c.p, f1.out)
return f
}
// loop returns the fragment for the main loop of a plus or star.
// For plus, it can be used after changing the entry to f1.i.
// For star, it can be used directly when f1 can't match an empty string.
// (When f1 can match an empty string, f1* must be implemented as (f1+)?
// to get the priority match order correct.)
func (c *compiler) loop(f1 frag, nongreedy bool) frag {
f := c.inst(InstAlt)
i := &c.p.Inst[f.i]
if nongreedy {
i.Arg = f1.i
f.out = makePatchList(f.i << 1)
} else {
i.Out = f1.i
f.out = makePatchList(f.i<<1 | 1)
}
f1.out.patch(c.p, f.i)
return f
}
func (c *compiler) star(f1 frag, nongreedy bool) frag {
if f1.nullable {
// Use (f1+)? to get priority match order correct.
// See golang.org/issue/46123.
return c.quest(c.plus(f1, nongreedy), nongreedy)
}
return c.loop(f1, nongreedy)
}
func (c *compiler) plus(f1 frag, nongreedy bool) frag {
return frag{f1.i, c.loop(f1, nongreedy).out, f1.nullable}
}
func (c *compiler) empty(op EmptyOp) frag {
f := c.inst(InstEmptyWidth)
c.p.Inst[f.i].Arg = uint32(op)
f.out = makePatchList(f.i << 1)
return f
}
func (c *compiler) rune(r []rune, flags Flags) frag {
f := c.inst(InstRune)
f.nullable = false
i := &c.p.Inst[f.i]
i.Rune = r
flags &= FoldCase // only relevant flag is FoldCase
if len(r) != 1 || unicode.SimpleFold(r[0]) == r[0] {
// and sometimes not even that
flags &^= FoldCase
}
i.Arg = uint32(flags)
f.out = makePatchList(f.i << 1)
// Special cases for exec machine.
switch {
case flags&FoldCase == 0 && (len(r) == 1 || len(r) == 2 && r[0] == r[1]):
i.Op = InstRune1
case len(r) == 2 && r[0] == 0 && r[1] == unicode.MaxRune:
i.Op = InstRuneAny
case len(r) == 4 && r[0] == 0 && r[1] == '\n'-1 && r[2] == '\n'+1 && r[3] == unicode.MaxRune:
i.Op = InstRuneAnyNotNL
}
return f
}
|