1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
|
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package syntax
// Note to implementers:
// In this package, re is always a *Regexp and r is always a rune.
import (
"slices"
"strconv"
"strings"
"unicode"
)
// A Regexp is a node in a regular expression syntax tree.
type Regexp struct {
Op Op // operator
Flags Flags
Sub []*Regexp // subexpressions, if any
Sub0 [1]*Regexp // storage for short Sub
Rune []rune // matched runes, for OpLiteral, OpCharClass
Rune0 [2]rune // storage for short Rune
Min, Max int // min, max for OpRepeat
Cap int // capturing index, for OpCapture
Name string // capturing name, for OpCapture
}
//go:generate stringer -type Op -trimprefix Op
// An Op is a single regular expression operator.
type Op uint8
// Operators are listed in precedence order, tightest binding to weakest.
// Character class operators are listed simplest to most complex
// (OpLiteral, OpCharClass, OpAnyCharNotNL, OpAnyChar).
const (
OpNoMatch Op = 1 + iota // matches no strings
OpEmptyMatch // matches empty string
OpLiteral // matches Runes sequence
OpCharClass // matches Runes interpreted as range pair list
OpAnyCharNotNL // matches any character except newline
OpAnyChar // matches any character
OpBeginLine // matches empty string at beginning of line
OpEndLine // matches empty string at end of line
OpBeginText // matches empty string at beginning of text
OpEndText // matches empty string at end of text
OpWordBoundary // matches word boundary `\b`
OpNoWordBoundary // matches word non-boundary `\B`
OpCapture // capturing subexpression with index Cap, optional name Name
OpStar // matches Sub[0] zero or more times
OpPlus // matches Sub[0] one or more times
OpQuest // matches Sub[0] zero or one times
OpRepeat // matches Sub[0] at least Min times, at most Max (Max == -1 is no limit)
OpConcat // matches concatenation of Subs
OpAlternate // matches alternation of Subs
)
const opPseudo Op = 128 // where pseudo-ops start
// Equal reports whether x and y have identical structure.
func (x *Regexp) Equal(y *Regexp) bool {
if x == nil || y == nil {
return x == y
}
if x.Op != y.Op {
return false
}
switch x.Op {
case OpEndText:
// The parse flags remember whether this is \z or \Z.
if x.Flags&WasDollar != y.Flags&WasDollar {
return false
}
case OpLiteral, OpCharClass:
return slices.Equal(x.Rune, y.Rune)
case OpAlternate, OpConcat:
return slices.EqualFunc(x.Sub, y.Sub, func(a, b *Regexp) bool { return a.Equal(b) })
case OpStar, OpPlus, OpQuest:
if x.Flags&NonGreedy != y.Flags&NonGreedy || !x.Sub[0].Equal(y.Sub[0]) {
return false
}
case OpRepeat:
if x.Flags&NonGreedy != y.Flags&NonGreedy || x.Min != y.Min || x.Max != y.Max || !x.Sub[0].Equal(y.Sub[0]) {
return false
}
case OpCapture:
if x.Cap != y.Cap || x.Name != y.Name || !x.Sub[0].Equal(y.Sub[0]) {
return false
}
}
return true
}
// printFlags is a bit set indicating which flags (including non-capturing parens) to print around a regexp.
type printFlags uint8
const (
flagI printFlags = 1 << iota // (?i:
flagM // (?m:
flagS // (?s:
flagOff // )
flagPrec // (?: )
negShift = 5 // flagI<<negShift is (?-i:
)
// addSpan enables the flags f around start..last,
// by setting flags[start] = f and flags[last] = flagOff.
func addSpan(start, last *Regexp, f printFlags, flags *map[*Regexp]printFlags) {
if *flags == nil {
*flags = make(map[*Regexp]printFlags)
}
(*flags)[start] = f
(*flags)[last] |= flagOff // maybe start==last
}
// calcFlags calculates the flags to print around each subexpression in re,
// storing that information in (*flags)[sub] for each affected subexpression.
// The first time an entry needs to be written to *flags, calcFlags allocates the map.
// calcFlags also calculates the flags that must be active or can't be active
// around re and returns those flags.
func calcFlags(re *Regexp, flags *map[*Regexp]printFlags) (must, cant printFlags) {
switch re.Op {
default:
return 0, 0
case OpLiteral:
// If literal is fold-sensitive, return (flagI, 0) or (0, flagI)
// according to whether (?i) is active.
// If literal is not fold-sensitive, return 0, 0.
for _, r := range re.Rune {
if minFold <= r && r <= maxFold && unicode.SimpleFold(r) != r {
if re.Flags&FoldCase != 0 {
return flagI, 0
} else {
return 0, flagI
}
}
}
return 0, 0
case OpCharClass:
// If literal is fold-sensitive, return 0, flagI - (?i) has been compiled out.
// If literal is not fold-sensitive, return 0, 0.
for i := 0; i < len(re.Rune); i += 2 {
lo := max(minFold, re.Rune[i])
hi := min(maxFold, re.Rune[i+1])
for r := lo; r <= hi; r++ {
for f := unicode.SimpleFold(r); f != r; f = unicode.SimpleFold(f) {
if !(lo <= f && f <= hi) && !inCharClass(f, re.Rune) {
return 0, flagI
}
}
}
}
return 0, 0
case OpAnyCharNotNL: // (?-s).
return 0, flagS
case OpAnyChar: // (?s).
return flagS, 0
case OpBeginLine, OpEndLine: // (?m)^ (?m)$
return flagM, 0
case OpEndText:
if re.Flags&WasDollar != 0 { // (?-m)$
return 0, flagM
}
return 0, 0
case OpCapture, OpStar, OpPlus, OpQuest, OpRepeat:
return calcFlags(re.Sub[0], flags)
case OpConcat, OpAlternate:
// Gather the must and cant for each subexpression.
// When we find a conflicting subexpression, insert the necessary
// flags around the previously identified span and start over.
var must, cant, allCant printFlags
start := 0
last := 0
did := false
for i, sub := range re.Sub {
subMust, subCant := calcFlags(sub, flags)
if must&subCant != 0 || subMust&cant != 0 {
if must != 0 {
addSpan(re.Sub[start], re.Sub[last], must, flags)
}
must = 0
cant = 0
start = i
did = true
}
must |= subMust
cant |= subCant
allCant |= subCant
if subMust != 0 {
last = i
}
if must == 0 && start == i {
start++
}
}
if !did {
// No conflicts: pass the accumulated must and cant upward.
return must, cant
}
if must != 0 {
// Conflicts found; need to finish final span.
addSpan(re.Sub[start], re.Sub[last], must, flags)
}
return 0, allCant
}
}
// writeRegexp writes the Perl syntax for the regular expression re to b.
func writeRegexp(b *strings.Builder, re *Regexp, f printFlags, flags map[*Regexp]printFlags) {
f |= flags[re]
if f&flagPrec != 0 && f&^(flagOff|flagPrec) != 0 && f&flagOff != 0 {
// flagPrec is redundant with other flags being added and terminated
f &^= flagPrec
}
if f&^(flagOff|flagPrec) != 0 {
b.WriteString(`(?`)
if f&flagI != 0 {
b.WriteString(`i`)
}
if f&flagM != 0 {
b.WriteString(`m`)
}
if f&flagS != 0 {
b.WriteString(`s`)
}
if f&((flagM|flagS)<<negShift) != 0 {
b.WriteString(`-`)
if f&(flagM<<negShift) != 0 {
b.WriteString(`m`)
}
if f&(flagS<<negShift) != 0 {
b.WriteString(`s`)
}
}
b.WriteString(`:`)
}
if f&flagOff != 0 {
defer b.WriteString(`)`)
}
if f&flagPrec != 0 {
b.WriteString(`(?:`)
defer b.WriteString(`)`)
}
switch re.Op {
default:
b.WriteString("<invalid op" + strconv.Itoa(int(re.Op)) + ">")
case OpNoMatch:
b.WriteString(`[^\x00-\x{10FFFF}]`)
case OpEmptyMatch:
b.WriteString(`(?:)`)
case OpLiteral:
for _, r := range re.Rune {
escape(b, r, false)
}
case OpCharClass:
if len(re.Rune)%2 != 0 {
b.WriteString(`[invalid char class]`)
break
}
b.WriteRune('[')
if len(re.Rune) == 0 {
b.WriteString(`^\x00-\x{10FFFF}`)
} else if re.Rune[0] == 0 && re.Rune[len(re.Rune)-1] == unicode.MaxRune && len(re.Rune) > 2 {
// Contains 0 and MaxRune. Probably a negated class.
// Print the gaps.
b.WriteRune('^')
for i := 1; i < len(re.Rune)-1; i += 2 {
lo, hi := re.Rune[i]+1, re.Rune[i+1]-1
escape(b, lo, lo == '-')
if lo != hi {
if hi != lo+1 {
b.WriteRune('-')
}
escape(b, hi, hi == '-')
}
}
} else {
for i := 0; i < len(re.Rune); i += 2 {
lo, hi := re.Rune[i], re.Rune[i+1]
escape(b, lo, lo == '-')
if lo != hi {
if hi != lo+1 {
b.WriteRune('-')
}
escape(b, hi, hi == '-')
}
}
}
b.WriteRune(']')
case OpAnyCharNotNL, OpAnyChar:
b.WriteString(`.`)
case OpBeginLine:
b.WriteString(`^`)
case OpEndLine:
b.WriteString(`$`)
case OpBeginText:
b.WriteString(`\A`)
case OpEndText:
if re.Flags&WasDollar != 0 {
b.WriteString(`$`)
} else {
b.WriteString(`\z`)
}
case OpWordBoundary:
b.WriteString(`\b`)
case OpNoWordBoundary:
b.WriteString(`\B`)
case OpCapture:
if re.Name != "" {
b.WriteString(`(?P<`)
b.WriteString(re.Name)
b.WriteRune('>')
} else {
b.WriteRune('(')
}
if re.Sub[0].Op != OpEmptyMatch {
writeRegexp(b, re.Sub[0], flags[re.Sub[0]], flags)
}
b.WriteRune(')')
case OpStar, OpPlus, OpQuest, OpRepeat:
p := printFlags(0)
sub := re.Sub[0]
if sub.Op > OpCapture || sub.Op == OpLiteral && len(sub.Rune) > 1 {
p = flagPrec
}
writeRegexp(b, sub, p, flags)
switch re.Op {
case OpStar:
b.WriteRune('*')
case OpPlus:
b.WriteRune('+')
case OpQuest:
b.WriteRune('?')
case OpRepeat:
b.WriteRune('{')
b.WriteString(strconv.Itoa(re.Min))
if re.Max != re.Min {
b.WriteRune(',')
if re.Max >= 0 {
b.WriteString(strconv.Itoa(re.Max))
}
}
b.WriteRune('}')
}
if re.Flags&NonGreedy != 0 {
b.WriteRune('?')
}
case OpConcat:
for _, sub := range re.Sub {
p := printFlags(0)
if sub.Op == OpAlternate {
p = flagPrec
}
writeRegexp(b, sub, p, flags)
}
case OpAlternate:
for i, sub := range re.Sub {
if i > 0 {
b.WriteRune('|')
}
writeRegexp(b, sub, 0, flags)
}
}
}
func (re *Regexp) String() string {
var b strings.Builder
var flags map[*Regexp]printFlags
must, cant := calcFlags(re, &flags)
must |= (cant &^ flagI) << negShift
if must != 0 {
must |= flagOff
}
writeRegexp(&b, re, must, flags)
return b.String()
}
const meta = `\.+*?()|[]{}^$`
func escape(b *strings.Builder, r rune, force bool) {
if unicode.IsPrint(r) {
if strings.ContainsRune(meta, r) || force {
b.WriteRune('\\')
}
b.WriteRune(r)
return
}
switch r {
case '\a':
b.WriteString(`\a`)
case '\f':
b.WriteString(`\f`)
case '\n':
b.WriteString(`\n`)
case '\r':
b.WriteString(`\r`)
case '\t':
b.WriteString(`\t`)
case '\v':
b.WriteString(`\v`)
default:
if r < 0x100 {
b.WriteString(`\x`)
s := strconv.FormatInt(int64(r), 16)
if len(s) == 1 {
b.WriteRune('0')
}
b.WriteString(s)
break
}
b.WriteString(`\x{`)
b.WriteString(strconv.FormatInt(int64(r), 16))
b.WriteString(`}`)
}
}
// MaxCap walks the regexp to find the maximum capture index.
func (re *Regexp) MaxCap() int {
m := 0
if re.Op == OpCapture {
m = re.Cap
}
for _, sub := range re.Sub {
if n := sub.MaxCap(); m < n {
m = n
}
}
return m
}
// CapNames walks the regexp to find the names of capturing groups.
func (re *Regexp) CapNames() []string {
names := make([]string, re.MaxCap()+1)
re.capNames(names)
return names
}
func (re *Regexp) capNames(names []string) {
if re.Op == OpCapture {
names[re.Cap] = re.Name
}
for _, sub := range re.Sub {
sub.capNames(names)
}
}
|