1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
|
// Copyright 2020-2021 the Blobloom authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package blobloom implements blocked Bloom filters.
//
// Blocked Bloom filters are an approximate set data structure: if a key has
// been added to a filter, a lookup of that key returns true, but if the key
// has not been added, there is a non-zero probability that the lookup still
// returns true (a false positive). False negatives are impossible: if the
// lookup for a key returns false, that key has not been added.
//
// In this package, keys are represented exclusively as hashes. Client code
// is responsible for supplying a 64-bit hash value.
//
// Compared to standard Bloom filters, blocked Bloom filters use the CPU
// cache more efficiently. A blocked Bloom filter is an array of ordinary
// Bloom filters of fixed size BlockBits (the blocks). The lower half of the
// hash selects the block to use.
//
// To achieve the same false positive rate (FPR) as a standard Bloom filter,
// a blocked Bloom filter requires more memory. For an FPR of at most 2e-6
// (two in a million), it uses ~20% more memory. At 1e-10, the space required
// is double that of standard Bloom filter.
//
// For more details, see the 2010 paper by Putze, Sanders and Singler,
// https://algo2.iti.kit.edu/documents/cacheefficientbloomfilters-jea.pdf.
package blobloom
import "math"
// BlockBits is the number of bits per block and the minimum number of bits
// in a Filter.
//
// The value of this constant is chosen to match the L1 cache line size
// of popular architectures (386, amd64, arm64).
const BlockBits = 512
// MaxBits is the maximum number of bits supported by a Filter.
const MaxBits = BlockBits << 32 // 256GiB.
// A Filter is a blocked Bloom filter.
type Filter struct {
b []block // Shards.
k int // Number of hash functions required.
}
// New constructs a Bloom filter with given numbers of bits and hash functions.
//
// The number of bits should be at least BlockBits; smaller values are silently
// increased.
//
// The number of hashes reflects the number of hashes synthesized from the
// single hash passed in by the client. It is silently increased to two if
// a lower value is given.
func New(nbits uint64, nhashes int) *Filter {
if nbits < 1 {
nbits = BlockBits
}
if nhashes < 2 {
nhashes = 2
}
if nbits > MaxBits {
panic("nbits exceeds MaxBits")
}
// Round nbits up to a multiple of BlockBits.
if nbits%BlockBits != 0 {
nbits += BlockBits - nbits%BlockBits
}
return &Filter{
b: make([]block, nbits/BlockBits),
k: nhashes,
}
}
// Add insert a key with hash value h into f.
func (f *Filter) Add(h uint64) {
h1, h2 := uint32(h>>32), uint32(h)
b := f.getblock(h2)
for i := 1; i < f.k; i++ {
h1, h2 = doublehash(h1, h2, i)
b.setbit(h1)
}
}
// log(1 - 1/BlockBits) computed with 128 bits precision.
// Note that this is extremely close to -1/BlockBits,
// which is what Wikipedia would have us use:
// https://en.wikipedia.org/wiki/Bloom_filter#Approximating_the_number_of_items_in_a_Bloom_filter.
const log1minus1divBlockbits = -0.0019550348358033505576274922418668121377
// Cardinality estimates the number of distinct keys added to f.
//
// The estimate is most reliable when f is filled to roughly its capacity.
// It gets worse as f gets more densely filled. When one of the blocks is
// entirely filled, the estimate becomes +Inf.
//
// The return value is the maximum likelihood estimate of Papapetrou, Siberski
// and Nejdl, summed over the blocks
// (https://www.win.tue.nl/~opapapetrou/papers/Bloomfilters-DAPD.pdf).
func (f *Filter) Cardinality() float64 {
return f.cardinality(onescount)
}
func (f *Filter) cardinality(onescount func(*block) int) float64 {
k := float64(f.k) - 1
// The probability of some bit not being set in a single insertion is
// p0 = (1-1/BlockBits)^k.
//
// logProb0Inv = 1 / log(p0) = 1 / (k*log(1-1/BlockBits)).
logProb0Inv := 1 / (k * log1minus1divBlockbits)
var n float64
for i := range f.b {
ones := onescount(&f.b[i])
if ones == 0 {
continue
}
n += math.Log1p(-float64(ones) / BlockBits)
}
return n * logProb0Inv
}
// Clear resets f to its empty state.
func (f *Filter) Clear() {
for i := 0; i < len(f.b); i++ {
f.b[i] = block{}
}
}
// Empty reports whether f contains no keys.
func (f *Filter) Empty() bool {
for i := 0; i < len(f.b); i++ {
if f.b[i] != (block{}) {
return false
}
}
return true
}
// Fill set f to a completely full filter.
// After Fill, Has returns true for any key.
func (f *Filter) Fill() {
for i := 0; i < len(f.b); i++ {
for j := 0; j < blockWords; j++ {
f.b[i][j] = ^uint32(0)
}
}
}
// Has reports whether a key with hash value h has been added.
// It may return a false positive.
func (f *Filter) Has(h uint64) bool {
h1, h2 := uint32(h>>32), uint32(h)
b := f.getblock(h2)
for i := 1; i < f.k; i++ {
h1, h2 = doublehash(h1, h2, i)
if !b.getbit(h1) {
return false
}
}
return true
}
// doublehash generates the hash values to use in iteration i of
// enhanced double hashing from the values h1, h2 of the previous iteration.
// See https://www.ccs.neu.edu/home/pete/pub/bloom-filters-verification.pdf.
func doublehash(h1, h2 uint32, i int) (uint32, uint32) {
h1 = h1 + h2
h2 = h2 + uint32(i)
return h1, h2
}
// NumBits returns the number of bits of f.
func (f *Filter) NumBits() uint64 {
return BlockBits * uint64(len(f.b))
}
func checkBinop(f, g *Filter) {
if len(f.b) != len(g.b) {
panic("Bloom filters do not have the same number of bits")
}
if f.k != g.k {
panic("Bloom filters do not have the same number of hash functions")
}
}
// Intersect sets f to the intersection of f and g.
//
// Intersect panics when f and g do not have the same number of bits and
// hash functions. Both Filters must be using the same hash function(s),
// but Intersect cannot check this.
//
// Since Bloom filters may return false positives, Has may return true for
// a key that was not in both f and g.
//
// After Intersect, the estimates from f.Cardinality and f.FPRate should be
// considered unreliable.
func (f *Filter) Intersect(g *Filter) {
checkBinop(f, g)
f.intersect(g)
}
// Union sets f to the union of f and g.
//
// Union panics when f and g do not have the same number of bits and
// hash functions. Both Filters must be using the same hash function(s),
// but Union cannot check this.
func (f *Filter) Union(g *Filter) {
checkBinop(f, g)
f.union(g)
}
const (
wordSize = 32
blockWords = BlockBits / wordSize
)
// A block is a fixed-size Bloom filter, used as a shard of a Filter.
type block [blockWords]uint32
func (f *Filter) getblock(h2 uint32) *block {
i := reducerange(h2, uint32(len(f.b)))
return &f.b[i]
}
// reducerange maps i to an integer in the range [0,n).
// https://lemire.me/blog/2016/06/27/a-fast-alternative-to-the-modulo-reduction/
func reducerange(i, n uint32) uint32 {
return uint32((uint64(i) * uint64(n)) >> 32)
}
// getbit reports whether bit (i modulo BlockBits) is set.
func (b *block) getbit(i uint32) bool {
bit := uint32(1) << (i % wordSize)
x := (*b)[(i/wordSize)%blockWords] & bit
return x != 0
}
// setbit sets bit (i modulo BlockBits) of b.
func (b *block) setbit(i uint32) {
bit := uint32(1) << (i % wordSize)
(*b)[(i/wordSize)%blockWords] |= bit
}
|