File: backoff.go

package info (click to toggle)
golang-github-grpc-ecosystem-go-grpc-middleware 2.3.2-1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 1,564 kB
  • sloc: makefile: 100; sh: 9
file content (88 lines) | stat: -rw-r--r-- 3,160 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
// Copyright (c) The go-grpc-middleware Authors.
// Licensed under the Apache License 2.0.

package retry

import (
	"context"
	"math"
	"math/rand"
	"time"
)

// BackoffLinear is very simple: it waits for a fixed period of time between calls.
func BackoffLinear(waitBetween time.Duration) BackoffFunc {
	return func(ctx context.Context, attempt uint) time.Duration {
		return waitBetween
	}
}

// jitterUp adds random jitter to the duration.
// This adds or subtracts time from the duration within a given jitter fraction.
// For example for 10s and jitter 0.1, it will return a time within [9s, 11s])
func jitterUp(duration time.Duration, jitter float64) time.Duration {
	multiplier := jitter * (rand.Float64()*2 - 1)
	return time.Duration(float64(duration) * (1 + multiplier))
}

// exponentBase2 computes 2^(a-1) where a >= 1. If a is 0, the result is 1.
// if a is greater than 62, the result is 2^62 to avoid overflowing int64
func exponentBase2(a uint) uint64 {
	if a == 0 {
		return 1
	}
	if a > 62 {
		return 1 << 62
	}
	return (1 << a) >> 1
}

// BackoffLinearWithJitter waits a set period of time, allowing for jitter (fractional adjustment).
// For example waitBetween=1s and jitter=0.10 can generate waits between 900ms and 1100ms.
func BackoffLinearWithJitter(waitBetween time.Duration, jitterFraction float64) BackoffFunc {
	return func(ctx context.Context, attempt uint) time.Duration {
		return jitterUp(waitBetween, jitterFraction)
	}
}

// BackoffExponential produces increasing intervals for each attempt.
// The scalar is multiplied times 2 raised to the current attempt. So the first
// retry with a scalar of 100ms is 100ms, while the 5th attempt would be 1.6s.
func BackoffExponential(scalar time.Duration) BackoffFunc {
	return func(ctx context.Context, attempt uint) time.Duration {
		return scalar * time.Duration(exponentBase2(attempt))
	}
}

// BackoffExponentialWithJitter creates an exponential backoff like
// BackoffExponential does, but adds jitter.
func BackoffExponentialWithJitter(scalar time.Duration, jitterFraction float64) BackoffFunc {
	return func(ctx context.Context, attempt uint) time.Duration {
		exp := exponentBase2(attempt)
		dur := scalar * time.Duration(exp)
		// Check for overflow in duration multiplication
		if exp != 0 && dur/scalar != time.Duration(exp) {
			return time.Duration(math.MaxInt64)
		}
		return jitterUp(scalar*time.Duration(exponentBase2(attempt)), jitterFraction)
	}
}

func BackoffExponentialWithJitterBounded(scalar time.Duration, jitterFrac float64, maxBound time.Duration) BackoffFunc {
	return func(ctx context.Context, attempt uint) time.Duration {
		exp := exponentBase2(attempt)
		dur := scalar * time.Duration(exp)
		// Check for overflow in duration multiplication
		if exp != 0 && dur/scalar != time.Duration(exp) {
			return maxBound
		}
		// Apply random jitter between -jitterFrac and +jitterFrac
		jitter := 1 + jitterFrac*(rand.Float64()*2-1)
		jitteredDuration := time.Duration(float64(dur) * jitter)
		// Check for overflow in jitter multiplication
		if float64(dur)*jitter > float64(math.MaxInt64) {
			return maxBound
		}
		return min(jitteredDuration, maxBound)
	}
}