1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
|
package bexpr
import (
"fmt"
"reflect"
"strings"
)
// Function type for usage with a SelectorConfiguration
type FieldValueCoercionFn func(value string) (interface{}, error)
// Strongly typed name of a field
type FieldName string
// Used to represent an arbitrary field name
const FieldNameAny FieldName = ""
type FieldPath []FieldName
func (path FieldPath) String() string {
var parts []string
for _, part := range path {
if part == FieldNameAny {
parts = append(parts, "<any>")
} else {
parts = append(parts, string(part))
}
}
return strings.Join(parts, ".")
}
// The FieldConfiguration struct represents how boolean expression
// validation and preparation should work for the given field. A field
// in this case is a single element of a selector.
//
// Example: foo.bar.baz has 3 fields separate by '.' characters.
type FieldConfiguration struct {
// Name to use when looking up fields within a struct. This is useful when
// the name(s) you want to expose to users writing the expressions does not
// exactly match the Field name of the structure. If this is empty then the
// user provided name will be used
StructFieldName string
// Nested field configurations
SubFields FieldConfigurations
// Function to run on the raw string value present in the expression
// syntax to coerce into whatever form the MatchExpressionEvaluator wants
// The coercion happens only once and will then be passed as the `value`
// parameter to all EvaluateMatch invocations on the MatchExpressionEvaluator.
CoerceFn FieldValueCoercionFn
// List of MatchOperators supported for this field. This configuration
// is used to pre-validate an expressions fields before execution.
SupportedOperations []MatchOperator
}
// Represents all the valid fields and their corresponding configuration
type FieldConfigurations map[FieldName]*FieldConfiguration
func generateFieldConfigurationInterface(rtype reflect.Type) (FieldConfigurations, bool) {
// Handle those types that implement our interface
if rtype.Implements(reflect.TypeOf((*MatchExpressionEvaluator)(nil)).Elem()) {
// TODO (mkeeler) Do we need to new a value just to call the function? Potentially we can
// lookup the func and invoke it with a nil pointer?
value := reflect.New(rtype)
// have to take the Elem() of the new value because New gives us a ptr to the type that
// we checked if it implements the interface
configs := value.Elem().Interface().(MatchExpressionEvaluator).FieldConfigurations()
return configs, true
}
return nil, false
}
func generateFieldConfigurationInternal(rtype reflect.Type) (*FieldConfiguration, error) {
if fields, ok := generateFieldConfigurationInterface(rtype); ok {
return &FieldConfiguration{
SubFields: fields,
}, nil
}
// must be done after checking for interface implementing
rtype = derefType(rtype)
// Handle primitive types
if coerceFn, ok := primitiveCoercionFns[rtype.Kind()]; ok {
ops := []MatchOperator{MatchEqual, MatchNotEqual}
if rtype.Kind() == reflect.String {
ops = append(ops, MatchIn, MatchNotIn, MatchMatches, MatchNotMatches)
}
return &FieldConfiguration{
CoerceFn: coerceFn,
SupportedOperations: ops,
}, nil
}
// Handle compound types
switch rtype.Kind() {
case reflect.Map:
return generateMapFieldConfiguration(derefType(rtype.Key()), rtype.Elem())
case reflect.Array, reflect.Slice:
return generateSliceFieldConfiguration(rtype.Elem())
case reflect.Struct:
subfields, err := generateStructFieldConfigurations(rtype)
if err != nil {
return nil, err
}
return &FieldConfiguration{
SubFields: subfields,
}, nil
default: // unsupported types are just not filterable
return nil, nil
}
}
func generateSliceFieldConfiguration(elemType reflect.Type) (*FieldConfiguration, error) {
if coerceFn, ok := primitiveCoercionFns[elemType.Kind()]; ok {
// slices of primitives have somewhat different supported operations
return &FieldConfiguration{
CoerceFn: coerceFn,
SupportedOperations: []MatchOperator{MatchIn, MatchNotIn, MatchIsEmpty, MatchIsNotEmpty},
}, nil
}
subfield, err := generateFieldConfigurationInternal(elemType)
if err != nil {
return nil, err
}
cfg := &FieldConfiguration{
SupportedOperations: []MatchOperator{MatchIsEmpty, MatchIsNotEmpty},
}
if subfield != nil && len(subfield.SubFields) > 0 {
cfg.SubFields = subfield.SubFields
}
return cfg, nil
}
func generateMapFieldConfiguration(keyType, valueType reflect.Type) (*FieldConfiguration, error) {
switch keyType.Kind() {
case reflect.String:
subfield, err := generateFieldConfigurationInternal(valueType)
if err != nil {
return nil, err
}
cfg := &FieldConfiguration{
CoerceFn: CoerceString,
SupportedOperations: []MatchOperator{MatchIsEmpty, MatchIsNotEmpty, MatchIn, MatchNotIn},
}
if subfield != nil {
cfg.SubFields = FieldConfigurations{
FieldNameAny: subfield,
}
}
return cfg, nil
default:
// For maps with non-string keys we can really only do emptiness checks
// and cannot index into them at all
return &FieldConfiguration{
SupportedOperations: []MatchOperator{MatchIsEmpty, MatchIsNotEmpty},
}, nil
}
}
func generateStructFieldConfigurations(rtype reflect.Type) (FieldConfigurations, error) {
fieldConfigs := make(FieldConfigurations)
for i := 0; i < rtype.NumField(); i++ {
field := rtype.Field(i)
fieldTag := field.Tag.Get("bexpr")
var fieldNames []string
if field.PkgPath != "" {
// we cant handle unexported fields using reflection
continue
}
if fieldTag != "" {
parts := strings.Split(fieldTag, ",")
if len(parts) > 0 {
if parts[0] == "-" {
continue
}
fieldNames = parts
} else {
fieldNames = append(fieldNames, field.Name)
}
} else {
fieldNames = append(fieldNames, field.Name)
}
cfg, err := generateFieldConfigurationInternal(field.Type)
if err != nil {
return nil, err
}
cfg.StructFieldName = field.Name
// link the config to all the correct names
for _, name := range fieldNames {
fieldConfigs[FieldName(name)] = cfg
}
}
return fieldConfigs, nil
}
// `generateFieldConfigurations` can be used to generate the `FieldConfigurations` map
// It supports generating configurations for either a `map[string]*` or a `struct` as the `topLevelType`
//
// Internally within the top level type the following is supported:
//
// Primitive Types:
// strings
// integers (all width types and signedness)
// floats (32 and 64 bit)
// bool
//
// Compound Types
// `map[*]*`
// - Supports emptiness checking. Does not support further selector nesting.
// `map[string]*`
// - Supports in/contains operations on the keys.
// `map[string]<supported type>`
// - Will have a single subfield with name `FieldNameAny` (wildcard) and the rest of
// the field configuration will come from the `<supported type>`
// `[]*`
// - Supports emptiness checking only. Does not support further selector nesting.
// `[]<supported primitive type>`
// - Supports in/contains operations against the primitive values.
// `[]<supported compund type>`
// - Will have subfields with the configuration of whatever the supported
// compound type is.
// - Does not support indexing of individual values like a map does currently
// and with the current evaluation logic slices of slices will mostly be
// handled as if they were flattened. One thing that cannot be done is
// to be able to perform emptiness/contains checking against the internal
// slice.
// structs
// - No operations are supported on the struct itself
// - Will have subfield configurations generated for the fields of the struct.
// - A struct tag like `bexpr:"<name>"` allows changing the name that allows indexing
// into the subfield.
// - By default unexported fields of a struct are not selectable. If The struct tag is
// present then this behavior is overridden.
// - Exported fields can be made unselectable by adding a tag to the field like `bexpr:"-"`
func GenerateFieldConfigurations(topLevelType interface{}) (FieldConfigurations, error) {
return generateFieldConfigurations(reflect.TypeOf(topLevelType))
}
func generateFieldConfigurations(rtype reflect.Type) (FieldConfigurations, error) {
if fields, ok := generateFieldConfigurationInterface(rtype); ok {
return fields, nil
}
// Do this after we check for interface implementation
rtype = derefType(rtype)
switch rtype.Kind() {
case reflect.Struct:
fields, err := generateStructFieldConfigurations(rtype)
return fields, err
case reflect.Map:
if rtype.Key().Kind() != reflect.String {
return nil, fmt.Errorf("Cannot generate FieldConfigurations for maps with keys that are not strings")
}
elemType := rtype.Elem()
field, err := generateFieldConfigurationInternal(elemType)
if err != nil {
return nil, err
}
if field == nil {
return nil, nil
}
return FieldConfigurations{
FieldNameAny: field,
}, nil
}
return nil, fmt.Errorf("Invalid top level type - can only use structs, map[string]* or an MatchExpressionEvaluator")
}
func (config *FieldConfiguration) stringInternal(builder *strings.Builder, level int, path string) {
fmt.Fprintf(builder, "%sPath: %s, StructFieldName: %s, CoerceFn: %p, SupportedOperations: %v\n", strings.Repeat(" ", level), path, config.StructFieldName, config.CoerceFn, config.SupportedOperations)
if len(config.SubFields) > 0 {
config.SubFields.stringInternal(builder, level+1, path)
}
}
func (config *FieldConfiguration) String() string {
var builder strings.Builder
config.stringInternal(&builder, 0, "")
return builder.String()
}
func (configs FieldConfigurations) stringInternal(builder *strings.Builder, level int, path string) {
for fieldName, cfg := range configs {
newPath := string(fieldName)
if level > 0 {
newPath = fmt.Sprintf("%s.%s", path, fieldName)
}
cfg.stringInternal(builder, level, newPath)
}
}
func (configs FieldConfigurations) String() string {
var builder strings.Builder
configs.stringInternal(&builder, 0, "")
return builder.String()
}
type FieldConfigurationWalkFn func(path FieldPath, config *FieldConfiguration) bool
func (configs FieldConfigurations) walk(path FieldPath, walkFn FieldConfigurationWalkFn) bool {
for fieldName, fieldConfig := range configs {
newPath := append(path, fieldName)
if !walkFn(newPath, fieldConfig) {
return false
}
if !fieldConfig.SubFields.walk(newPath, walkFn) {
return false
}
}
return true
}
func (configs FieldConfigurations) Walk(walkFn FieldConfigurationWalkFn) bool {
return configs.walk(nil, walkFn)
}
|