1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
|
package iradix
import (
"bytes"
"github.com/hashicorp/golang-lru/simplelru"
)
const (
// defaultModifiedCache is the default size of the modified node
// cache used per transaction. This is used to cache the updates
// to the nodes near the root, while the leaves do not need to be
// cached. This is important for very large transactions to prevent
// the modified cache from growing to be enormous.
defaultModifiedCache = 8192
)
// Tree implements an immutable radix tree. This can be treated as a
// Dictionary abstract data type. The main advantage over a standard
// hash map is prefix-based lookups and ordered iteration. The immutability
// means that it is safe to concurrently read from a Tree without any
// coordination.
type Tree struct {
root *Node
size int
}
// New returns an empty Tree
func New() *Tree {
t := &Tree{root: &Node{}}
return t
}
// Len is used to return the number of elements in the tree
func (t *Tree) Len() int {
return t.size
}
// Txn is a transaction on the tree. This transaction is applied
// atomically and returns a new tree when committed. A transaction
// is not thread safe, and should only be used by a single goroutine.
type Txn struct {
root *Node
size int
modified *simplelru.LRU
}
// Txn starts a new transaction that can be used to mutate the tree
func (t *Tree) Txn() *Txn {
txn := &Txn{
root: t.root,
size: t.size,
}
return txn
}
// writeNode returns a node to be modified, if the current
// node as already been modified during the course of
// the transaction, it is used in-place.
func (t *Txn) writeNode(n *Node) *Node {
// Ensure the modified set exists
if t.modified == nil {
lru, err := simplelru.NewLRU(defaultModifiedCache, nil)
if err != nil {
panic(err)
}
t.modified = lru
}
// If this node has already been modified, we can
// continue to use it during this transaction.
if _, ok := t.modified.Get(n); ok {
return n
}
// Copy the existing node
nc := new(Node)
if n.prefix != nil {
nc.prefix = make([]byte, len(n.prefix))
copy(nc.prefix, n.prefix)
}
if n.leaf != nil {
nc.leaf = new(leafNode)
*nc.leaf = *n.leaf
}
if len(n.edges) != 0 {
nc.edges = make([]edge, len(n.edges))
copy(nc.edges, n.edges)
}
// Mark this node as modified
t.modified.Add(n, nil)
return nc
}
// insert does a recursive insertion
func (t *Txn) insert(n *Node, k, search []byte, v interface{}) (*Node, interface{}, bool) {
// Handle key exhaution
if len(search) == 0 {
nc := t.writeNode(n)
if n.isLeaf() {
old := nc.leaf.val
nc.leaf.val = v
return nc, old, true
} else {
nc.leaf = &leafNode{
key: k,
val: v,
}
return nc, nil, false
}
}
// Look for the edge
idx, child := n.getEdge(search[0])
// No edge, create one
if child == nil {
e := edge{
label: search[0],
node: &Node{
leaf: &leafNode{
key: k,
val: v,
},
prefix: search,
},
}
nc := t.writeNode(n)
nc.addEdge(e)
return nc, nil, false
}
// Determine longest prefix of the search key on match
commonPrefix := longestPrefix(search, child.prefix)
if commonPrefix == len(child.prefix) {
search = search[commonPrefix:]
newChild, oldVal, didUpdate := t.insert(child, k, search, v)
if newChild != nil {
nc := t.writeNode(n)
nc.edges[idx].node = newChild
return nc, oldVal, didUpdate
}
return nil, oldVal, didUpdate
}
// Split the node
nc := t.writeNode(n)
splitNode := &Node{
prefix: search[:commonPrefix],
}
nc.replaceEdge(edge{
label: search[0],
node: splitNode,
})
// Restore the existing child node
modChild := t.writeNode(child)
splitNode.addEdge(edge{
label: modChild.prefix[commonPrefix],
node: modChild,
})
modChild.prefix = modChild.prefix[commonPrefix:]
// Create a new leaf node
leaf := &leafNode{
key: k,
val: v,
}
// If the new key is a subset, add to to this node
search = search[commonPrefix:]
if len(search) == 0 {
splitNode.leaf = leaf
return nc, nil, false
}
// Create a new edge for the node
splitNode.addEdge(edge{
label: search[0],
node: &Node{
leaf: leaf,
prefix: search,
},
})
return nc, nil, false
}
// delete does a recursive deletion
func (t *Txn) delete(parent, n *Node, search []byte) (*Node, *leafNode) {
// Check for key exhaution
if len(search) == 0 {
if !n.isLeaf() {
return nil, nil
}
// Remove the leaf node
nc := t.writeNode(n)
nc.leaf = nil
// Check if this node should be merged
if n != t.root && len(nc.edges) == 1 {
nc.mergeChild()
}
return nc, n.leaf
}
// Look for an edge
label := search[0]
idx, child := n.getEdge(label)
if child == nil || !bytes.HasPrefix(search, child.prefix) {
return nil, nil
}
// Consume the search prefix
search = search[len(child.prefix):]
newChild, leaf := t.delete(n, child, search)
if newChild == nil {
return nil, nil
}
// Copy this node
nc := t.writeNode(n)
// Delete the edge if the node has no edges
if newChild.leaf == nil && len(newChild.edges) == 0 {
nc.delEdge(label)
if n != t.root && len(nc.edges) == 1 && !nc.isLeaf() {
nc.mergeChild()
}
} else {
nc.edges[idx].node = newChild
}
return nc, leaf
}
// Insert is used to add or update a given key. The return provides
// the previous value and a bool indicating if any was set.
func (t *Txn) Insert(k []byte, v interface{}) (interface{}, bool) {
newRoot, oldVal, didUpdate := t.insert(t.root, k, k, v)
if newRoot != nil {
t.root = newRoot
}
if !didUpdate {
t.size++
}
return oldVal, didUpdate
}
// Delete is used to delete a given key. Returns the old value if any,
// and a bool indicating if the key was set.
func (t *Txn) Delete(k []byte) (interface{}, bool) {
newRoot, leaf := t.delete(nil, t.root, k)
if newRoot != nil {
t.root = newRoot
}
if leaf != nil {
t.size--
return leaf.val, true
}
return nil, false
}
// Root returns the current root of the radix tree within this
// transaction. The root is not safe across insert and delete operations,
// but can be used to read the current state during a transaction.
func (t *Txn) Root() *Node {
return t.root
}
// Get is used to lookup a specific key, returning
// the value and if it was found
func (t *Txn) Get(k []byte) (interface{}, bool) {
return t.root.Get(k)
}
// Commit is used to finalize the transaction and return a new tree
func (t *Txn) Commit() *Tree {
t.modified = nil
return &Tree{t.root, t.size}
}
// Insert is used to add or update a given key. The return provides
// the new tree, previous value and a bool indicating if any was set.
func (t *Tree) Insert(k []byte, v interface{}) (*Tree, interface{}, bool) {
txn := t.Txn()
old, ok := txn.Insert(k, v)
return txn.Commit(), old, ok
}
// Delete is used to delete a given key. Returns the new tree,
// old value if any, and a bool indicating if the key was set.
func (t *Tree) Delete(k []byte) (*Tree, interface{}, bool) {
txn := t.Txn()
old, ok := txn.Delete(k)
return txn.Commit(), old, ok
}
// Root returns the root node of the tree which can be used for richer
// query operations.
func (t *Tree) Root() *Node {
return t.root
}
// Get is used to lookup a specific key, returning
// the value and if it was found
func (t *Tree) Get(k []byte) (interface{}, bool) {
return t.root.Get(k)
}
// longestPrefix finds the length of the shared prefix
// of two strings
func longestPrefix(k1, k2 []byte) int {
max := len(k1)
if l := len(k2); l < max {
max = l
}
var i int
for i = 0; i < max; i++ {
if k1[i] != k2[i] {
break
}
}
return i
}
// concat two byte slices, returning a third new copy
func concat(a, b []byte) []byte {
c := make([]byte, len(a)+len(b))
copy(c, a)
copy(c[len(a):], b)
return c
}
|