File: txn.go

package info (click to toggle)
golang-github-hashicorp-go-memdb 0.0~git20170123.0.c01f56b-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 204 kB
  • ctags: 159
  • sloc: makefile: 5
file content (540 lines) | stat: -rw-r--r-- 14,335 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
package memdb

import (
	"bytes"
	"fmt"
	"strings"
	"sync/atomic"
	"unsafe"

	"github.com/hashicorp/go-immutable-radix"
)

const (
	id = "id"
)

// tableIndex is a tuple of (Table, Index) used for lookups
type tableIndex struct {
	Table string
	Index string
}

// Txn is a transaction against a MemDB.
// This can be a read or write transaction.
type Txn struct {
	db      *MemDB
	write   bool
	rootTxn *iradix.Txn
	after   []func()

	modified map[tableIndex]*iradix.Txn
}

// readableIndex returns a transaction usable for reading the given
// index in a table. If a write transaction is in progress, we may need
// to use an existing modified txn.
func (txn *Txn) readableIndex(table, index string) *iradix.Txn {
	// Look for existing transaction
	if txn.write && txn.modified != nil {
		key := tableIndex{table, index}
		exist, ok := txn.modified[key]
		if ok {
			return exist
		}
	}

	// Create a read transaction
	path := indexPath(table, index)
	raw, _ := txn.rootTxn.Get(path)
	indexTxn := raw.(*iradix.Tree).Txn()
	return indexTxn
}

// writableIndex returns a transaction usable for modifying the
// given index in a table.
func (txn *Txn) writableIndex(table, index string) *iradix.Txn {
	if txn.modified == nil {
		txn.modified = make(map[tableIndex]*iradix.Txn)
	}

	// Look for existing transaction
	key := tableIndex{table, index}
	exist, ok := txn.modified[key]
	if ok {
		return exist
	}

	// Start a new transaction
	path := indexPath(table, index)
	raw, _ := txn.rootTxn.Get(path)
	indexTxn := raw.(*iradix.Tree).Txn()

	// If we are the primary DB, enable mutation tracking. Snapshots should
	// not notify, otherwise we will trigger watches on the primary DB when
	// the writes will not be visible.
	indexTxn.TrackMutate(txn.db.primary)

	// Keep this open for the duration of the txn
	txn.modified[key] = indexTxn
	return indexTxn
}

// Abort is used to cancel this transaction.
// This is a noop for read transactions.
func (txn *Txn) Abort() {
	// Noop for a read transaction
	if !txn.write {
		return
	}

	// Check if already aborted or committed
	if txn.rootTxn == nil {
		return
	}

	// Clear the txn
	txn.rootTxn = nil
	txn.modified = nil

	// Release the writer lock since this is invalid
	txn.db.writer.Unlock()
}

// Commit is used to finalize this transaction.
// This is a noop for read transactions.
func (txn *Txn) Commit() {
	// Noop for a read transaction
	if !txn.write {
		return
	}

	// Check if already aborted or committed
	if txn.rootTxn == nil {
		return
	}

	// Commit each sub-transaction scoped to (table, index)
	for key, subTxn := range txn.modified {
		path := indexPath(key.Table, key.Index)
		final := subTxn.Commit()
		txn.rootTxn.Insert(path, final)
	}

	// Update the root of the DB
	newRoot := txn.rootTxn.Commit()
	atomic.StorePointer(&txn.db.root, unsafe.Pointer(newRoot))

	// Clear the txn
	txn.rootTxn = nil
	txn.modified = nil

	// Release the writer lock since this is invalid
	txn.db.writer.Unlock()

	// Run the deferred functions, if any
	for i := len(txn.after); i > 0; i-- {
		fn := txn.after[i-1]
		fn()
	}
}

// Insert is used to add or update an object into the given table
func (txn *Txn) Insert(table string, obj interface{}) error {
	if !txn.write {
		return fmt.Errorf("cannot insert in read-only transaction")
	}

	// Get the table schema
	tableSchema, ok := txn.db.schema.Tables[table]
	if !ok {
		return fmt.Errorf("invalid table '%s'", table)
	}

	// Get the primary ID of the object
	idSchema := tableSchema.Indexes[id]
	idIndexer := idSchema.Indexer.(SingleIndexer)
	ok, idVal, err := idIndexer.FromObject(obj)
	if err != nil {
		return fmt.Errorf("failed to build primary index: %v", err)
	}
	if !ok {
		return fmt.Errorf("object missing primary index")
	}

	// Lookup the object by ID first, to see if this is an update
	idTxn := txn.writableIndex(table, id)
	existing, update := idTxn.Get(idVal)

	// On an update, there is an existing object with the given
	// primary ID. We do the update by deleting the current object
	// and inserting the new object.
	for name, indexSchema := range tableSchema.Indexes {
		indexTxn := txn.writableIndex(table, name)

		// Determine the new index value
		var (
			ok   bool
			vals [][]byte
			err  error
		)
		switch indexer := indexSchema.Indexer.(type) {
		case SingleIndexer:
			var val []byte
			ok, val, err = indexer.FromObject(obj)
			vals = [][]byte{val}
		case MultiIndexer:
			ok, vals, err = indexer.FromObject(obj)
		}
		if err != nil {
			return fmt.Errorf("failed to build index '%s': %v", name, err)
		}

		// Handle non-unique index by computing a unique index.
		// This is done by appending the primary key which must
		// be unique anyways.
		if ok && !indexSchema.Unique {
			for i := range vals {
				vals[i] = append(vals[i], idVal...)
			}
		}

		// Handle the update by deleting from the index first
		if update {
			var (
				okExist   bool
				valsExist [][]byte
				err       error
			)
			switch indexer := indexSchema.Indexer.(type) {
			case SingleIndexer:
				var valExist []byte
				okExist, valExist, err = indexer.FromObject(existing)
				valsExist = [][]byte{valExist}
			case MultiIndexer:
				okExist, valsExist, err = indexer.FromObject(existing)
			}
			if err != nil {
				return fmt.Errorf("failed to build index '%s': %v", name, err)
			}
			if okExist {
				for i, valExist := range valsExist {
					// Handle non-unique index by computing a unique index.
					// This is done by appending the primary key which must
					// be unique anyways.
					if !indexSchema.Unique {
						valExist = append(valExist, idVal...)
					}

					// If we are writing to the same index with the same value,
					// we can avoid the delete as the insert will overwrite the
					// value anyways.
					if i >= len(vals) || !bytes.Equal(valExist, vals[i]) {
						indexTxn.Delete(valExist)
					}
				}
			}
		}

		// If there is no index value, either this is an error or an expected
		// case and we can skip updating
		if !ok {
			if indexSchema.AllowMissing {
				continue
			} else {
				return fmt.Errorf("missing value for index '%s'", name)
			}
		}

		// Update the value of the index
		for _, val := range vals {
			indexTxn.Insert(val, obj)
		}
	}
	return nil
}

// Delete is used to delete a single object from the given table
// This object must already exist in the table
func (txn *Txn) Delete(table string, obj interface{}) error {
	if !txn.write {
		return fmt.Errorf("cannot delete in read-only transaction")
	}

	// Get the table schema
	tableSchema, ok := txn.db.schema.Tables[table]
	if !ok {
		return fmt.Errorf("invalid table '%s'", table)
	}

	// Get the primary ID of the object
	idSchema := tableSchema.Indexes[id]
	idIndexer := idSchema.Indexer.(SingleIndexer)
	ok, idVal, err := idIndexer.FromObject(obj)
	if err != nil {
		return fmt.Errorf("failed to build primary index: %v", err)
	}
	if !ok {
		return fmt.Errorf("object missing primary index")
	}

	// Lookup the object by ID first, check fi we should continue
	idTxn := txn.writableIndex(table, id)
	existing, ok := idTxn.Get(idVal)
	if !ok {
		return fmt.Errorf("not found")
	}

	// Remove the object from all the indexes
	for name, indexSchema := range tableSchema.Indexes {
		indexTxn := txn.writableIndex(table, name)

		// Handle the update by deleting from the index first
		var (
			ok   bool
			vals [][]byte
			err  error
		)
		switch indexer := indexSchema.Indexer.(type) {
		case SingleIndexer:
			var val []byte
			ok, val, err = indexer.FromObject(existing)
			vals = [][]byte{val}
		case MultiIndexer:
			ok, vals, err = indexer.FromObject(existing)
		}
		if err != nil {
			return fmt.Errorf("failed to build index '%s': %v", name, err)
		}
		if ok {
			// Handle non-unique index by computing a unique index.
			// This is done by appending the primary key which must
			// be unique anyways.
			for _, val := range vals {
				if !indexSchema.Unique {
					val = append(val, idVal...)
				}
				indexTxn.Delete(val)
			}
		}
	}
	return nil
}

// DeleteAll is used to delete all the objects in a given table
// matching the constraints on the index
func (txn *Txn) DeleteAll(table, index string, args ...interface{}) (int, error) {
	if !txn.write {
		return 0, fmt.Errorf("cannot delete in read-only transaction")
	}

	// Get all the objects
	iter, err := txn.Get(table, index, args...)
	if err != nil {
		return 0, err
	}

	// Put them into a slice so there are no safety concerns while actually
	// performing the deletes
	var objs []interface{}
	for {
		obj := iter.Next()
		if obj == nil {
			break
		}

		objs = append(objs, obj)
	}

	// Do the deletes
	num := 0
	for _, obj := range objs {
		if err := txn.Delete(table, obj); err != nil {
			return num, err
		}
		num++
	}
	return num, nil
}

// FirstWatch is used to return the first matching object for
// the given constraints on the index along with the watch channel
func (txn *Txn) FirstWatch(table, index string, args ...interface{}) (<-chan struct{}, interface{}, error) {
	// Get the index value
	indexSchema, val, err := txn.getIndexValue(table, index, args...)
	if err != nil {
		return nil, nil, err
	}

	// Get the index itself
	indexTxn := txn.readableIndex(table, indexSchema.Name)

	// Do an exact lookup
	if indexSchema.Unique && val != nil && indexSchema.Name == index {
		watch, obj, ok := indexTxn.GetWatch(val)
		if !ok {
			return watch, nil, nil
		}
		return watch, obj, nil
	}

	// Handle non-unique index by using an iterator and getting the first value
	iter := indexTxn.Root().Iterator()
	watch := iter.SeekPrefixWatch(val)
	_, value, _ := iter.Next()
	return watch, value, nil
}

// First is used to return the first matching object for
// the given constraints on the index
func (txn *Txn) First(table, index string, args ...interface{}) (interface{}, error) {
	_, val, err := txn.FirstWatch(table, index, args...)
	return val, err
}

// LongestPrefix is used to fetch the longest prefix match for the given
// constraints on the index. Note that this will not work with the memdb
// StringFieldIndex because it adds null terminators which prevent the
// algorithm from correctly finding a match (it will get to right before the
// null and fail to find a leaf node). This should only be used where the prefix
// given is capable of matching indexed entries directly, which typically only
// applies to a custom indexer. See the unit test for an example.
func (txn *Txn) LongestPrefix(table, index string, args ...interface{}) (interface{}, error) {
	// Enforce that this only works on prefix indexes.
	if !strings.HasSuffix(index, "_prefix") {
		return nil, fmt.Errorf("must use '%s_prefix' on index", index)
	}

	// Get the index value.
	indexSchema, val, err := txn.getIndexValue(table, index, args...)
	if err != nil {
		return nil, err
	}

	// This algorithm only makes sense against a unique index, otherwise the
	// index keys will have the IDs appended to them.
	if !indexSchema.Unique {
		return nil, fmt.Errorf("index '%s' is not unique", index)
	}

	// Find the longest prefix match with the given index.
	indexTxn := txn.readableIndex(table, indexSchema.Name)
	if _, value, ok := indexTxn.Root().LongestPrefix(val); ok {
		return value, nil
	}
	return nil, nil
}

// getIndexValue is used to get the IndexSchema and the value
// used to scan the index given the parameters. This handles prefix based
// scans when the index has the "_prefix" suffix. The index must support
// prefix iteration.
func (txn *Txn) getIndexValue(table, index string, args ...interface{}) (*IndexSchema, []byte, error) {
	// Get the table schema
	tableSchema, ok := txn.db.schema.Tables[table]
	if !ok {
		return nil, nil, fmt.Errorf("invalid table '%s'", table)
	}

	// Check for a prefix scan
	prefixScan := false
	if strings.HasSuffix(index, "_prefix") {
		index = strings.TrimSuffix(index, "_prefix")
		prefixScan = true
	}

	// Get the index schema
	indexSchema, ok := tableSchema.Indexes[index]
	if !ok {
		return nil, nil, fmt.Errorf("invalid index '%s'", index)
	}

	// Hot-path for when there are no arguments
	if len(args) == 0 {
		return indexSchema, nil, nil
	}

	// Special case the prefix scanning
	if prefixScan {
		prefixIndexer, ok := indexSchema.Indexer.(PrefixIndexer)
		if !ok {
			return indexSchema, nil,
				fmt.Errorf("index '%s' does not support prefix scanning", index)
		}

		val, err := prefixIndexer.PrefixFromArgs(args...)
		if err != nil {
			return indexSchema, nil, fmt.Errorf("index error: %v", err)
		}
		return indexSchema, val, err
	}

	// Get the exact match index
	val, err := indexSchema.Indexer.FromArgs(args...)
	if err != nil {
		return indexSchema, nil, fmt.Errorf("index error: %v", err)
	}
	return indexSchema, val, err
}

// ResultIterator is used to iterate over a list of results
// from a Get query on a table.
type ResultIterator interface {
	WatchCh() <-chan struct{}
	Next() interface{}
}

// Get is used to construct a ResultIterator over all the
// rows that match the given constraints of an index.
func (txn *Txn) Get(table, index string, args ...interface{}) (ResultIterator, error) {
	// Get the index value to scan
	indexSchema, val, err := txn.getIndexValue(table, index, args...)
	if err != nil {
		return nil, err
	}

	// Get the index itself
	indexTxn := txn.readableIndex(table, indexSchema.Name)
	indexRoot := indexTxn.Root()

	// Get an interator over the index
	indexIter := indexRoot.Iterator()

	// Seek the iterator to the appropriate sub-set
	watchCh := indexIter.SeekPrefixWatch(val)

	// Create an iterator
	iter := &radixIterator{
		iter:    indexIter,
		watchCh: watchCh,
	}
	return iter, nil
}

// Defer is used to push a new arbitrary function onto a stack which
// gets called when a transaction is committed and finished. Deferred
// functions are called in LIFO order, and only invoked at the end of
// write transactions.
func (txn *Txn) Defer(fn func()) {
	txn.after = append(txn.after, fn)
}

// radixIterator is used to wrap an underlying iradix iterator.
// This is much more efficient than a sliceIterator as we are not
// materializing the entire view.
type radixIterator struct {
	iter    *iradix.Iterator
	watchCh <-chan struct{}
}

func (r *radixIterator) WatchCh() <-chan struct{} {
	return r.watchCh
}

func (r *radixIterator) Next() interface{} {
	_, value, ok := r.iter.Next()
	if !ok {
		return nil
	}
	return value
}