1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
|
// Copyright (c) 2012, 2013 Ugorji Nwoke. All rights reserved.
// Use of this source code is governed by a BSD-style license found in the LICENSE file.
package codec
import (
"io"
"reflect"
)
const (
// Some tagging information for error messages.
msgTagEnc = "codec.encoder"
defEncByteBufSize = 1 << 6 // 4:16, 6:64, 8:256, 10:1024
// maxTimeSecs32 = math.MaxInt32 / 60 / 24 / 366
)
// AsSymbolFlag defines what should be encoded as symbols.
type AsSymbolFlag uint8
const (
// AsSymbolDefault is default.
// Currently, this means only encode struct field names as symbols.
// The default is subject to change.
AsSymbolDefault AsSymbolFlag = iota
// AsSymbolAll means encode anything which could be a symbol as a symbol.
AsSymbolAll = 0xfe
// AsSymbolNone means do not encode anything as a symbol.
AsSymbolNone = 1 << iota
// AsSymbolMapStringKeys means encode keys in map[string]XXX as symbols.
AsSymbolMapStringKeysFlag
// AsSymbolStructFieldName means encode struct field names as symbols.
AsSymbolStructFieldNameFlag
)
// encWriter abstracting writing to a byte array or to an io.Writer.
type encWriter interface {
writeUint16(uint16)
writeUint32(uint32)
writeUint64(uint64)
writeb([]byte)
writestr(string)
writen1(byte)
writen2(byte, byte)
atEndOfEncode()
}
// encDriver abstracts the actual codec (binc vs msgpack, etc)
type encDriver interface {
isBuiltinType(rt uintptr) bool
encodeBuiltin(rt uintptr, v interface{})
encodeNil()
encodeInt(i int64)
encodeUint(i uint64)
encodeBool(b bool)
encodeFloat32(f float32)
encodeFloat64(f float64)
encodeExtPreamble(xtag byte, length int)
encodeArrayPreamble(length int)
encodeMapPreamble(length int)
encodeString(c charEncoding, v string)
encodeSymbol(v string)
encodeStringBytes(c charEncoding, v []byte)
//TODO
//encBignum(f *big.Int)
//encStringRunes(c charEncoding, v []rune)
}
type ioEncWriterWriter interface {
WriteByte(c byte) error
WriteString(s string) (n int, err error)
Write(p []byte) (n int, err error)
}
type ioEncStringWriter interface {
WriteString(s string) (n int, err error)
}
type EncodeOptions struct {
// Encode a struct as an array, and not as a map.
StructToArray bool
// AsSymbols defines what should be encoded as symbols.
//
// Encoding as symbols can reduce the encoded size significantly.
//
// However, during decoding, each string to be encoded as a symbol must
// be checked to see if it has been seen before. Consequently, encoding time
// will increase if using symbols, because string comparisons has a clear cost.
//
// Sample values:
// AsSymbolNone
// AsSymbolAll
// AsSymbolMapStringKeys
// AsSymbolMapStringKeysFlag | AsSymbolStructFieldNameFlag
AsSymbols AsSymbolFlag
}
// ---------------------------------------------
type simpleIoEncWriterWriter struct {
w io.Writer
bw io.ByteWriter
sw ioEncStringWriter
}
func (o *simpleIoEncWriterWriter) WriteByte(c byte) (err error) {
if o.bw != nil {
return o.bw.WriteByte(c)
}
_, err = o.w.Write([]byte{c})
return
}
func (o *simpleIoEncWriterWriter) WriteString(s string) (n int, err error) {
if o.sw != nil {
return o.sw.WriteString(s)
}
return o.w.Write([]byte(s))
}
func (o *simpleIoEncWriterWriter) Write(p []byte) (n int, err error) {
return o.w.Write(p)
}
// ----------------------------------------
// ioEncWriter implements encWriter and can write to an io.Writer implementation
type ioEncWriter struct {
w ioEncWriterWriter
x [8]byte // temp byte array re-used internally for efficiency
}
func (z *ioEncWriter) writeUint16(v uint16) {
bigen.PutUint16(z.x[:2], v)
z.writeb(z.x[:2])
}
func (z *ioEncWriter) writeUint32(v uint32) {
bigen.PutUint32(z.x[:4], v)
z.writeb(z.x[:4])
}
func (z *ioEncWriter) writeUint64(v uint64) {
bigen.PutUint64(z.x[:8], v)
z.writeb(z.x[:8])
}
func (z *ioEncWriter) writeb(bs []byte) {
if len(bs) == 0 {
return
}
n, err := z.w.Write(bs)
if err != nil {
panic(err)
}
if n != len(bs) {
encErr("write: Incorrect num bytes written. Expecting: %v, Wrote: %v", len(bs), n)
}
}
func (z *ioEncWriter) writestr(s string) {
n, err := z.w.WriteString(s)
if err != nil {
panic(err)
}
if n != len(s) {
encErr("write: Incorrect num bytes written. Expecting: %v, Wrote: %v", len(s), n)
}
}
func (z *ioEncWriter) writen1(b byte) {
if err := z.w.WriteByte(b); err != nil {
panic(err)
}
}
func (z *ioEncWriter) writen2(b1 byte, b2 byte) {
z.writen1(b1)
z.writen1(b2)
}
func (z *ioEncWriter) atEndOfEncode() {}
// ----------------------------------------
// bytesEncWriter implements encWriter and can write to an byte slice.
// It is used by Marshal function.
type bytesEncWriter struct {
b []byte
c int // cursor
out *[]byte // write out on atEndOfEncode
}
func (z *bytesEncWriter) writeUint16(v uint16) {
c := z.grow(2)
z.b[c] = byte(v >> 8)
z.b[c+1] = byte(v)
}
func (z *bytesEncWriter) writeUint32(v uint32) {
c := z.grow(4)
z.b[c] = byte(v >> 24)
z.b[c+1] = byte(v >> 16)
z.b[c+2] = byte(v >> 8)
z.b[c+3] = byte(v)
}
func (z *bytesEncWriter) writeUint64(v uint64) {
c := z.grow(8)
z.b[c] = byte(v >> 56)
z.b[c+1] = byte(v >> 48)
z.b[c+2] = byte(v >> 40)
z.b[c+3] = byte(v >> 32)
z.b[c+4] = byte(v >> 24)
z.b[c+5] = byte(v >> 16)
z.b[c+6] = byte(v >> 8)
z.b[c+7] = byte(v)
}
func (z *bytesEncWriter) writeb(s []byte) {
if len(s) == 0 {
return
}
c := z.grow(len(s))
copy(z.b[c:], s)
}
func (z *bytesEncWriter) writestr(s string) {
c := z.grow(len(s))
copy(z.b[c:], s)
}
func (z *bytesEncWriter) writen1(b1 byte) {
c := z.grow(1)
z.b[c] = b1
}
func (z *bytesEncWriter) writen2(b1 byte, b2 byte) {
c := z.grow(2)
z.b[c] = b1
z.b[c+1] = b2
}
func (z *bytesEncWriter) atEndOfEncode() {
*(z.out) = z.b[:z.c]
}
func (z *bytesEncWriter) grow(n int) (oldcursor int) {
oldcursor = z.c
z.c = oldcursor + n
if z.c > cap(z.b) {
// Tried using appendslice logic: (if cap < 1024, *2, else *1.25).
// However, it was too expensive, causing too many iterations of copy.
// Using bytes.Buffer model was much better (2*cap + n)
bs := make([]byte, 2*cap(z.b)+n)
copy(bs, z.b[:oldcursor])
z.b = bs
} else if z.c > len(z.b) {
z.b = z.b[:cap(z.b)]
}
return
}
// ---------------------------------------------
type encFnInfo struct {
ti *typeInfo
e *Encoder
ee encDriver
xfFn func(reflect.Value) ([]byte, error)
xfTag byte
}
func (f *encFnInfo) builtin(rv reflect.Value) {
f.ee.encodeBuiltin(f.ti.rtid, rv.Interface())
}
func (f *encFnInfo) rawExt(rv reflect.Value) {
f.e.encRawExt(rv.Interface().(RawExt))
}
func (f *encFnInfo) ext(rv reflect.Value) {
bs, fnerr := f.xfFn(rv)
if fnerr != nil {
panic(fnerr)
}
if bs == nil {
f.ee.encodeNil()
return
}
if f.e.hh.writeExt() {
f.ee.encodeExtPreamble(f.xfTag, len(bs))
f.e.w.writeb(bs)
} else {
f.ee.encodeStringBytes(c_RAW, bs)
}
}
func (f *encFnInfo) binaryMarshal(rv reflect.Value) {
var bm binaryMarshaler
if f.ti.mIndir == 0 {
bm = rv.Interface().(binaryMarshaler)
} else if f.ti.mIndir == -1 {
bm = rv.Addr().Interface().(binaryMarshaler)
} else {
for j, k := int8(0), f.ti.mIndir; j < k; j++ {
if rv.IsNil() {
f.ee.encodeNil()
return
}
rv = rv.Elem()
}
bm = rv.Interface().(binaryMarshaler)
}
// debugf(">>>> binaryMarshaler: %T", rv.Interface())
bs, fnerr := bm.MarshalBinary()
if fnerr != nil {
panic(fnerr)
}
if bs == nil {
f.ee.encodeNil()
} else {
f.ee.encodeStringBytes(c_RAW, bs)
}
}
func (f *encFnInfo) kBool(rv reflect.Value) {
f.ee.encodeBool(rv.Bool())
}
func (f *encFnInfo) kString(rv reflect.Value) {
f.ee.encodeString(c_UTF8, rv.String())
}
func (f *encFnInfo) kFloat64(rv reflect.Value) {
f.ee.encodeFloat64(rv.Float())
}
func (f *encFnInfo) kFloat32(rv reflect.Value) {
f.ee.encodeFloat32(float32(rv.Float()))
}
func (f *encFnInfo) kInt(rv reflect.Value) {
f.ee.encodeInt(rv.Int())
}
func (f *encFnInfo) kUint(rv reflect.Value) {
f.ee.encodeUint(rv.Uint())
}
func (f *encFnInfo) kInvalid(rv reflect.Value) {
f.ee.encodeNil()
}
func (f *encFnInfo) kErr(rv reflect.Value) {
encErr("Unsupported kind: %s, for: %#v", rv.Kind(), rv)
}
func (f *encFnInfo) kSlice(rv reflect.Value) {
if rv.IsNil() {
f.ee.encodeNil()
return
}
if shortCircuitReflectToFastPath {
switch f.ti.rtid {
case intfSliceTypId:
f.e.encSliceIntf(rv.Interface().([]interface{}))
return
case strSliceTypId:
f.e.encSliceStr(rv.Interface().([]string))
return
case uint64SliceTypId:
f.e.encSliceUint64(rv.Interface().([]uint64))
return
case int64SliceTypId:
f.e.encSliceInt64(rv.Interface().([]int64))
return
}
}
// If in this method, then there was no extension function defined.
// So it's okay to treat as []byte.
if f.ti.rtid == uint8SliceTypId || f.ti.rt.Elem().Kind() == reflect.Uint8 {
f.ee.encodeStringBytes(c_RAW, rv.Bytes())
return
}
l := rv.Len()
if f.ti.mbs {
if l%2 == 1 {
encErr("mapBySlice: invalid length (must be divisible by 2): %v", l)
}
f.ee.encodeMapPreamble(l / 2)
} else {
f.ee.encodeArrayPreamble(l)
}
if l == 0 {
return
}
for j := 0; j < l; j++ {
// TODO: Consider perf implication of encoding odd index values as symbols if type is string
f.e.encodeValue(rv.Index(j))
}
}
func (f *encFnInfo) kArray(rv reflect.Value) {
// We cannot share kSlice method, because the array may be non-addressable.
// E.g. type struct S{B [2]byte}; Encode(S{}) will bomb on "panic: slice of unaddressable array".
// So we have to duplicate the functionality here.
// f.e.encodeValue(rv.Slice(0, rv.Len()))
// f.kSlice(rv.Slice(0, rv.Len()))
l := rv.Len()
// Handle an array of bytes specially (in line with what is done for slices)
if f.ti.rt.Elem().Kind() == reflect.Uint8 {
if l == 0 {
f.ee.encodeStringBytes(c_RAW, nil)
return
}
var bs []byte
if rv.CanAddr() {
bs = rv.Slice(0, l).Bytes()
} else {
bs = make([]byte, l)
for i := 0; i < l; i++ {
bs[i] = byte(rv.Index(i).Uint())
}
}
f.ee.encodeStringBytes(c_RAW, bs)
return
}
if f.ti.mbs {
if l%2 == 1 {
encErr("mapBySlice: invalid length (must be divisible by 2): %v", l)
}
f.ee.encodeMapPreamble(l / 2)
} else {
f.ee.encodeArrayPreamble(l)
}
if l == 0 {
return
}
for j := 0; j < l; j++ {
// TODO: Consider perf implication of encoding odd index values as symbols if type is string
f.e.encodeValue(rv.Index(j))
}
}
func (f *encFnInfo) kStruct(rv reflect.Value) {
fti := f.ti
newlen := len(fti.sfi)
rvals := make([]reflect.Value, newlen)
var encnames []string
e := f.e
tisfi := fti.sfip
toMap := !(fti.toArray || e.h.StructToArray)
// if toMap, use the sorted array. If toArray, use unsorted array (to match sequence in struct)
if toMap {
tisfi = fti.sfi
encnames = make([]string, newlen)
}
newlen = 0
for _, si := range tisfi {
if si.i != -1 {
rvals[newlen] = rv.Field(int(si.i))
} else {
rvals[newlen] = rv.FieldByIndex(si.is)
}
if toMap {
if si.omitEmpty && isEmptyValue(rvals[newlen]) {
continue
}
encnames[newlen] = si.encName
} else {
if si.omitEmpty && isEmptyValue(rvals[newlen]) {
rvals[newlen] = reflect.Value{} //encode as nil
}
}
newlen++
}
// debugf(">>>> kStruct: newlen: %v", newlen)
if toMap {
ee := f.ee //don't dereference everytime
ee.encodeMapPreamble(newlen)
// asSymbols := e.h.AsSymbols&AsSymbolStructFieldNameFlag != 0
asSymbols := e.h.AsSymbols == AsSymbolDefault || e.h.AsSymbols&AsSymbolStructFieldNameFlag != 0
for j := 0; j < newlen; j++ {
if asSymbols {
ee.encodeSymbol(encnames[j])
} else {
ee.encodeString(c_UTF8, encnames[j])
}
e.encodeValue(rvals[j])
}
} else {
f.ee.encodeArrayPreamble(newlen)
for j := 0; j < newlen; j++ {
e.encodeValue(rvals[j])
}
}
}
// func (f *encFnInfo) kPtr(rv reflect.Value) {
// debugf(">>>>>>> ??? encode kPtr called - shouldn't get called")
// if rv.IsNil() {
// f.ee.encodeNil()
// return
// }
// f.e.encodeValue(rv.Elem())
// }
func (f *encFnInfo) kInterface(rv reflect.Value) {
if rv.IsNil() {
f.ee.encodeNil()
return
}
f.e.encodeValue(rv.Elem())
}
func (f *encFnInfo) kMap(rv reflect.Value) {
if rv.IsNil() {
f.ee.encodeNil()
return
}
if shortCircuitReflectToFastPath {
switch f.ti.rtid {
case mapIntfIntfTypId:
f.e.encMapIntfIntf(rv.Interface().(map[interface{}]interface{}))
return
case mapStrIntfTypId:
f.e.encMapStrIntf(rv.Interface().(map[string]interface{}))
return
case mapStrStrTypId:
f.e.encMapStrStr(rv.Interface().(map[string]string))
return
case mapInt64IntfTypId:
f.e.encMapInt64Intf(rv.Interface().(map[int64]interface{}))
return
case mapUint64IntfTypId:
f.e.encMapUint64Intf(rv.Interface().(map[uint64]interface{}))
return
}
}
l := rv.Len()
f.ee.encodeMapPreamble(l)
if l == 0 {
return
}
// keyTypeIsString := f.ti.rt.Key().Kind() == reflect.String
keyTypeIsString := f.ti.rt.Key() == stringTyp
var asSymbols bool
if keyTypeIsString {
asSymbols = f.e.h.AsSymbols&AsSymbolMapStringKeysFlag != 0
}
mks := rv.MapKeys()
// for j, lmks := 0, len(mks); j < lmks; j++ {
for j := range mks {
if keyTypeIsString {
if asSymbols {
f.ee.encodeSymbol(mks[j].String())
} else {
f.ee.encodeString(c_UTF8, mks[j].String())
}
} else {
f.e.encodeValue(mks[j])
}
f.e.encodeValue(rv.MapIndex(mks[j]))
}
}
// --------------------------------------------------
// encFn encapsulates the captured variables and the encode function.
// This way, we only do some calculations one times, and pass to the
// code block that should be called (encapsulated in a function)
// instead of executing the checks every time.
type encFn struct {
i *encFnInfo
f func(*encFnInfo, reflect.Value)
}
// --------------------------------------------------
// An Encoder writes an object to an output stream in the codec format.
type Encoder struct {
w encWriter
e encDriver
h *BasicHandle
hh Handle
f map[uintptr]encFn
x []uintptr
s []encFn
}
// NewEncoder returns an Encoder for encoding into an io.Writer.
//
// For efficiency, Users are encouraged to pass in a memory buffered writer
// (eg bufio.Writer, bytes.Buffer).
func NewEncoder(w io.Writer, h Handle) *Encoder {
ww, ok := w.(ioEncWriterWriter)
if !ok {
sww := simpleIoEncWriterWriter{w: w}
sww.bw, _ = w.(io.ByteWriter)
sww.sw, _ = w.(ioEncStringWriter)
ww = &sww
//ww = bufio.NewWriterSize(w, defEncByteBufSize)
}
z := ioEncWriter{
w: ww,
}
return &Encoder{w: &z, hh: h, h: h.getBasicHandle(), e: h.newEncDriver(&z)}
}
// NewEncoderBytes returns an encoder for encoding directly and efficiently
// into a byte slice, using zero-copying to temporary slices.
//
// It will potentially replace the output byte slice pointed to.
// After encoding, the out parameter contains the encoded contents.
func NewEncoderBytes(out *[]byte, h Handle) *Encoder {
in := *out
if in == nil {
in = make([]byte, defEncByteBufSize)
}
z := bytesEncWriter{
b: in,
out: out,
}
return &Encoder{w: &z, hh: h, h: h.getBasicHandle(), e: h.newEncDriver(&z)}
}
// Encode writes an object into a stream in the codec format.
//
// Encoding can be configured via the "codec" struct tag for the fields.
//
// The "codec" key in struct field's tag value is the key name,
// followed by an optional comma and options.
//
// To set an option on all fields (e.g. omitempty on all fields), you
// can create a field called _struct, and set flags on it.
//
// Struct values "usually" encode as maps. Each exported struct field is encoded unless:
// - the field's codec tag is "-", OR
// - the field is empty and its codec tag specifies the "omitempty" option.
//
// When encoding as a map, the first string in the tag (before the comma)
// is the map key string to use when encoding.
//
// However, struct values may encode as arrays. This happens when:
// - StructToArray Encode option is set, OR
// - the codec tag on the _struct field sets the "toarray" option
//
// Values with types that implement MapBySlice are encoded as stream maps.
//
// The empty values (for omitempty option) are false, 0, any nil pointer
// or interface value, and any array, slice, map, or string of length zero.
//
// Anonymous fields are encoded inline if no struct tag is present.
// Else they are encoded as regular fields.
//
// Examples:
//
// type MyStruct struct {
// _struct bool `codec:",omitempty"` //set omitempty for every field
// Field1 string `codec:"-"` //skip this field
// Field2 int `codec:"myName"` //Use key "myName" in encode stream
// Field3 int32 `codec:",omitempty"` //use key "Field3". Omit if empty.
// Field4 bool `codec:"f4,omitempty"` //use key "f4". Omit if empty.
// ...
// }
//
// type MyStruct struct {
// _struct bool `codec:",omitempty,toarray"` //set omitempty for every field
// //and encode struct as an array
// }
//
// The mode of encoding is based on the type of the value. When a value is seen:
// - If an extension is registered for it, call that extension function
// - If it implements BinaryMarshaler, call its MarshalBinary() (data []byte, err error)
// - Else encode it based on its reflect.Kind
//
// Note that struct field names and keys in map[string]XXX will be treated as symbols.
// Some formats support symbols (e.g. binc) and will properly encode the string
// only once in the stream, and use a tag to refer to it thereafter.
func (e *Encoder) Encode(v interface{}) (err error) {
defer panicToErr(&err)
e.encode(v)
e.w.atEndOfEncode()
return
}
func (e *Encoder) encode(iv interface{}) {
switch v := iv.(type) {
case nil:
e.e.encodeNil()
case reflect.Value:
e.encodeValue(v)
case string:
e.e.encodeString(c_UTF8, v)
case bool:
e.e.encodeBool(v)
case int:
e.e.encodeInt(int64(v))
case int8:
e.e.encodeInt(int64(v))
case int16:
e.e.encodeInt(int64(v))
case int32:
e.e.encodeInt(int64(v))
case int64:
e.e.encodeInt(v)
case uint:
e.e.encodeUint(uint64(v))
case uint8:
e.e.encodeUint(uint64(v))
case uint16:
e.e.encodeUint(uint64(v))
case uint32:
e.e.encodeUint(uint64(v))
case uint64:
e.e.encodeUint(v)
case float32:
e.e.encodeFloat32(v)
case float64:
e.e.encodeFloat64(v)
case []interface{}:
e.encSliceIntf(v)
case []string:
e.encSliceStr(v)
case []int64:
e.encSliceInt64(v)
case []uint64:
e.encSliceUint64(v)
case []uint8:
e.e.encodeStringBytes(c_RAW, v)
case map[interface{}]interface{}:
e.encMapIntfIntf(v)
case map[string]interface{}:
e.encMapStrIntf(v)
case map[string]string:
e.encMapStrStr(v)
case map[int64]interface{}:
e.encMapInt64Intf(v)
case map[uint64]interface{}:
e.encMapUint64Intf(v)
case *string:
e.e.encodeString(c_UTF8, *v)
case *bool:
e.e.encodeBool(*v)
case *int:
e.e.encodeInt(int64(*v))
case *int8:
e.e.encodeInt(int64(*v))
case *int16:
e.e.encodeInt(int64(*v))
case *int32:
e.e.encodeInt(int64(*v))
case *int64:
e.e.encodeInt(*v)
case *uint:
e.e.encodeUint(uint64(*v))
case *uint8:
e.e.encodeUint(uint64(*v))
case *uint16:
e.e.encodeUint(uint64(*v))
case *uint32:
e.e.encodeUint(uint64(*v))
case *uint64:
e.e.encodeUint(*v)
case *float32:
e.e.encodeFloat32(*v)
case *float64:
e.e.encodeFloat64(*v)
case *[]interface{}:
e.encSliceIntf(*v)
case *[]string:
e.encSliceStr(*v)
case *[]int64:
e.encSliceInt64(*v)
case *[]uint64:
e.encSliceUint64(*v)
case *[]uint8:
e.e.encodeStringBytes(c_RAW, *v)
case *map[interface{}]interface{}:
e.encMapIntfIntf(*v)
case *map[string]interface{}:
e.encMapStrIntf(*v)
case *map[string]string:
e.encMapStrStr(*v)
case *map[int64]interface{}:
e.encMapInt64Intf(*v)
case *map[uint64]interface{}:
e.encMapUint64Intf(*v)
default:
e.encodeValue(reflect.ValueOf(iv))
}
}
func (e *Encoder) encodeValue(rv reflect.Value) {
for rv.Kind() == reflect.Ptr {
if rv.IsNil() {
e.e.encodeNil()
return
}
rv = rv.Elem()
}
rt := rv.Type()
rtid := reflect.ValueOf(rt).Pointer()
// if e.f == nil && e.s == nil { debugf("---->Creating new enc f map for type: %v\n", rt) }
var fn encFn
var ok bool
if useMapForCodecCache {
fn, ok = e.f[rtid]
} else {
for i, v := range e.x {
if v == rtid {
fn, ok = e.s[i], true
break
}
}
}
if !ok {
// debugf("\tCreating new enc fn for type: %v\n", rt)
fi := encFnInfo{ti: getTypeInfo(rtid, rt), e: e, ee: e.e}
fn.i = &fi
if rtid == rawExtTypId {
fn.f = (*encFnInfo).rawExt
} else if e.e.isBuiltinType(rtid) {
fn.f = (*encFnInfo).builtin
} else if xfTag, xfFn := e.h.getEncodeExt(rtid); xfFn != nil {
fi.xfTag, fi.xfFn = xfTag, xfFn
fn.f = (*encFnInfo).ext
} else if supportBinaryMarshal && fi.ti.m {
fn.f = (*encFnInfo).binaryMarshal
} else {
switch rk := rt.Kind(); rk {
case reflect.Bool:
fn.f = (*encFnInfo).kBool
case reflect.String:
fn.f = (*encFnInfo).kString
case reflect.Float64:
fn.f = (*encFnInfo).kFloat64
case reflect.Float32:
fn.f = (*encFnInfo).kFloat32
case reflect.Int, reflect.Int8, reflect.Int64, reflect.Int32, reflect.Int16:
fn.f = (*encFnInfo).kInt
case reflect.Uint8, reflect.Uint64, reflect.Uint, reflect.Uint32, reflect.Uint16:
fn.f = (*encFnInfo).kUint
case reflect.Invalid:
fn.f = (*encFnInfo).kInvalid
case reflect.Slice:
fn.f = (*encFnInfo).kSlice
case reflect.Array:
fn.f = (*encFnInfo).kArray
case reflect.Struct:
fn.f = (*encFnInfo).kStruct
// case reflect.Ptr:
// fn.f = (*encFnInfo).kPtr
case reflect.Interface:
fn.f = (*encFnInfo).kInterface
case reflect.Map:
fn.f = (*encFnInfo).kMap
default:
fn.f = (*encFnInfo).kErr
}
}
if useMapForCodecCache {
if e.f == nil {
e.f = make(map[uintptr]encFn, 16)
}
e.f[rtid] = fn
} else {
e.s = append(e.s, fn)
e.x = append(e.x, rtid)
}
}
fn.f(fn.i, rv)
}
func (e *Encoder) encRawExt(re RawExt) {
if re.Data == nil {
e.e.encodeNil()
return
}
if e.hh.writeExt() {
e.e.encodeExtPreamble(re.Tag, len(re.Data))
e.w.writeb(re.Data)
} else {
e.e.encodeStringBytes(c_RAW, re.Data)
}
}
// ---------------------------------------------
// short circuit functions for common maps and slices
func (e *Encoder) encSliceIntf(v []interface{}) {
e.e.encodeArrayPreamble(len(v))
for _, v2 := range v {
e.encode(v2)
}
}
func (e *Encoder) encSliceStr(v []string) {
e.e.encodeArrayPreamble(len(v))
for _, v2 := range v {
e.e.encodeString(c_UTF8, v2)
}
}
func (e *Encoder) encSliceInt64(v []int64) {
e.e.encodeArrayPreamble(len(v))
for _, v2 := range v {
e.e.encodeInt(v2)
}
}
func (e *Encoder) encSliceUint64(v []uint64) {
e.e.encodeArrayPreamble(len(v))
for _, v2 := range v {
e.e.encodeUint(v2)
}
}
func (e *Encoder) encMapStrStr(v map[string]string) {
e.e.encodeMapPreamble(len(v))
asSymbols := e.h.AsSymbols&AsSymbolMapStringKeysFlag != 0
for k2, v2 := range v {
if asSymbols {
e.e.encodeSymbol(k2)
} else {
e.e.encodeString(c_UTF8, k2)
}
e.e.encodeString(c_UTF8, v2)
}
}
func (e *Encoder) encMapStrIntf(v map[string]interface{}) {
e.e.encodeMapPreamble(len(v))
asSymbols := e.h.AsSymbols&AsSymbolMapStringKeysFlag != 0
for k2, v2 := range v {
if asSymbols {
e.e.encodeSymbol(k2)
} else {
e.e.encodeString(c_UTF8, k2)
}
e.encode(v2)
}
}
func (e *Encoder) encMapInt64Intf(v map[int64]interface{}) {
e.e.encodeMapPreamble(len(v))
for k2, v2 := range v {
e.e.encodeInt(k2)
e.encode(v2)
}
}
func (e *Encoder) encMapUint64Intf(v map[uint64]interface{}) {
e.e.encodeMapPreamble(len(v))
for k2, v2 := range v {
e.e.encodeUint(uint64(k2))
e.encode(v2)
}
}
func (e *Encoder) encMapIntfIntf(v map[interface{}]interface{}) {
e.e.encodeMapPreamble(len(v))
for k2, v2 := range v {
e.encode(k2)
e.encode(v2)
}
}
// ----------------------------------------
func encErr(format string, params ...interface{}) {
doPanic(msgTagEnc, format, params...)
}
|