1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
|
package memberlist
import (
"bytes"
"compress/lzw"
"encoding/binary"
"fmt"
"io"
"math"
"math/rand"
"net"
"strings"
"time"
"github.com/hashicorp/go-msgpack/codec"
)
// pushPullScale is the minimum number of nodes
// before we start scaling the push/pull timing. The scale
// effect is the log2(Nodes) - log2(pushPullScale). This means
// that the 33rd node will cause us to double the interval,
// while the 65th will triple it.
const pushPullScaleThreshold = 32
/*
* Contains an entry for each private block:
* 10.0.0.0/8
* 100.64.0.0/10
* 127.0.0.0/8
* 169.254.0.0/16
* 172.16.0.0/12
* 192.168.0.0/16
*/
var privateBlocks []*net.IPNet
var loopbackBlock *net.IPNet
const (
// Constant litWidth 2-8
lzwLitWidth = 8
)
func init() {
// Seed the random number generator
rand.Seed(time.Now().UnixNano())
// Add each private block
privateBlocks = make([]*net.IPNet, 6)
_, block, err := net.ParseCIDR("10.0.0.0/8")
if err != nil {
panic(fmt.Sprintf("Bad cidr. Got %v", err))
}
privateBlocks[0] = block
_, block, err = net.ParseCIDR("100.64.0.0/10")
if err != nil {
panic(fmt.Sprintf("Bad cidr. Got %v", err))
}
privateBlocks[1] = block
_, block, err = net.ParseCIDR("127.0.0.0/8")
if err != nil {
panic(fmt.Sprintf("Bad cidr. Got %v", err))
}
privateBlocks[2] = block
_, block, err = net.ParseCIDR("169.254.0.0/16")
if err != nil {
panic(fmt.Sprintf("Bad cidr. Got %v", err))
}
privateBlocks[3] = block
_, block, err = net.ParseCIDR("172.16.0.0/12")
if err != nil {
panic(fmt.Sprintf("Bad cidr. Got %v", err))
}
privateBlocks[4] = block
_, block, err = net.ParseCIDR("192.168.0.0/16")
if err != nil {
panic(fmt.Sprintf("Bad cidr. Got %v", err))
}
privateBlocks[5] = block
_, block, err = net.ParseCIDR("127.0.0.0/8")
if err != nil {
panic(fmt.Sprintf("Bad cidr. Got %v", err))
}
loopbackBlock = block
}
// Decode reverses the encode operation on a byte slice input
func decode(buf []byte, out interface{}) error {
r := bytes.NewReader(buf)
hd := codec.MsgpackHandle{}
dec := codec.NewDecoder(r, &hd)
return dec.Decode(out)
}
// Encode writes an encoded object to a new bytes buffer
func encode(msgType messageType, in interface{}) (*bytes.Buffer, error) {
buf := bytes.NewBuffer(nil)
buf.WriteByte(uint8(msgType))
hd := codec.MsgpackHandle{}
enc := codec.NewEncoder(buf, &hd)
err := enc.Encode(in)
return buf, err
}
// GetPrivateIP returns the first private IP address found in a list of
// addresses.
func GetPrivateIP(addresses []net.Addr) (net.IP, error) {
var candidates []net.IP
// Find private IPv4 address
for _, rawAddr := range addresses {
var ip net.IP
switch addr := rawAddr.(type) {
case *net.IPAddr:
ip = addr.IP
case *net.IPNet:
ip = addr.IP
default:
continue
}
if ip.To4() == nil {
continue
}
if !IsPrivateIP(ip.String()) {
continue
}
candidates = append(candidates, ip)
}
numIps := len(candidates)
switch numIps {
case 0:
return nil, fmt.Errorf("No private IP address found")
case 1:
return candidates[0], nil
default:
return nil, fmt.Errorf("Multiple private IPs found. Please configure one.")
}
}
// Returns a random offset between 0 and n
func randomOffset(n int) int {
if n == 0 {
return 0
}
return int(rand.Uint32() % uint32(n))
}
// suspicionTimeout computes the timeout that should be used when
// a node is suspected
func suspicionTimeout(suspicionMult, n int, interval time.Duration) time.Duration {
nodeScale := math.Ceil(math.Log10(float64(n + 1)))
timeout := time.Duration(suspicionMult) * time.Duration(nodeScale) * interval
return timeout
}
// retransmitLimit computes the limit of retransmissions
func retransmitLimit(retransmitMult, n int) int {
nodeScale := math.Ceil(math.Log10(float64(n + 1)))
limit := retransmitMult * int(nodeScale)
return limit
}
// shuffleNodes randomly shuffles the input nodes using the Fisher-Yates shuffle
func shuffleNodes(nodes []*nodeState) {
n := len(nodes)
for i := n - 1; i > 0; i-- {
j := rand.Intn(i + 1)
nodes[i], nodes[j] = nodes[j], nodes[i]
}
}
// pushPushScale is used to scale the time interval at which push/pull
// syncs take place. It is used to prevent network saturation as the
// cluster size grows
func pushPullScale(interval time.Duration, n int) time.Duration {
// Don't scale until we cross the threshold
if n <= pushPullScaleThreshold {
return interval
}
multiplier := math.Ceil(math.Log2(float64(n))-math.Log2(pushPullScaleThreshold)) + 1.0
return time.Duration(multiplier) * interval
}
// moveDeadNodes moves all the nodes in the dead state
// to the end of the slice and returns the index of the first dead node.
func moveDeadNodes(nodes []*nodeState) int {
numDead := 0
n := len(nodes)
for i := 0; i < n-numDead; i++ {
if nodes[i].State != stateDead {
continue
}
// Move this node to the end
nodes[i], nodes[n-numDead-1] = nodes[n-numDead-1], nodes[i]
numDead++
i--
}
return n - numDead
}
// kRandomNodes is used to select up to k random nodes, excluding a given
// node and any non-alive nodes. It is possible that less than k nodes are returned.
func kRandomNodes(k int, excludes []string, nodes []*nodeState) []*nodeState {
n := len(nodes)
kNodes := make([]*nodeState, 0, k)
OUTER:
// Probe up to 3*n times, with large n this is not necessary
// since k << n, but with small n we want search to be
// exhaustive
for i := 0; i < 3*n && len(kNodes) < k; i++ {
// Get random node
idx := randomOffset(n)
node := nodes[idx]
// Exclude node if match
for _, exclude := range excludes {
if node.Name == exclude {
continue OUTER
}
}
// Exclude if not alive
if node.State != stateAlive {
continue
}
// Check if we have this node already
for j := 0; j < len(kNodes); j++ {
if node == kNodes[j] {
continue OUTER
}
}
// Append the node
kNodes = append(kNodes, node)
}
return kNodes
}
// makeCompoundMessage takes a list of messages and generates
// a single compound message containing all of them
func makeCompoundMessage(msgs [][]byte) *bytes.Buffer {
// Create a local buffer
buf := bytes.NewBuffer(nil)
// Write out the type
buf.WriteByte(uint8(compoundMsg))
// Write out the number of message
buf.WriteByte(uint8(len(msgs)))
// Add the message lengths
for _, m := range msgs {
binary.Write(buf, binary.BigEndian, uint16(len(m)))
}
// Append the messages
for _, m := range msgs {
buf.Write(m)
}
return buf
}
// decodeCompoundMessage splits a compound message and returns
// the slices of individual messages. Also returns the number
// of truncated messages and any potential error
func decodeCompoundMessage(buf []byte) (trunc int, parts [][]byte, err error) {
if len(buf) < 1 {
err = fmt.Errorf("missing compound length byte")
return
}
numParts := uint8(buf[0])
buf = buf[1:]
// Check we have enough bytes
if len(buf) < int(numParts*2) {
err = fmt.Errorf("truncated len slice")
return
}
// Decode the lengths
lengths := make([]uint16, numParts)
for i := 0; i < int(numParts); i++ {
lengths[i] = binary.BigEndian.Uint16(buf[i*2 : i*2+2])
}
buf = buf[numParts*2:]
// Split each message
for idx, msgLen := range lengths {
if len(buf) < int(msgLen) {
trunc = int(numParts) - idx
return
}
// Extract the slice, seek past on the buffer
slice := buf[:msgLen]
buf = buf[msgLen:]
parts = append(parts, slice)
}
return
}
// Returns if the given IP is in a private block
func IsPrivateIP(ip_str string) bool {
ip := net.ParseIP(ip_str)
for _, priv := range privateBlocks {
if priv.Contains(ip) {
return true
}
}
return false
}
// Returns if the given IP is in a loopback block
func isLoopbackIP(ip_str string) bool {
ip := net.ParseIP(ip_str)
return loopbackBlock.Contains(ip)
}
// Given a string of the form "host", "host:port", or "[ipv6::address]:port",
// return true if the string includes a port.
func hasPort(s string) bool {
return strings.LastIndex(s, ":") > strings.LastIndex(s, "]")
}
// compressPayload takes an opaque input buffer, compresses it
// and wraps it in a compress{} message that is encoded.
func compressPayload(inp []byte) (*bytes.Buffer, error) {
var buf bytes.Buffer
compressor := lzw.NewWriter(&buf, lzw.LSB, lzwLitWidth)
_, err := compressor.Write(inp)
if err != nil {
return nil, err
}
// Ensure we flush everything out
if err := compressor.Close(); err != nil {
return nil, err
}
// Create a compressed message
c := compress{
Algo: lzwAlgo,
Buf: buf.Bytes(),
}
return encode(compressMsg, &c)
}
// decompressPayload is used to unpack an encoded compress{}
// message and return its payload uncompressed
func decompressPayload(msg []byte) ([]byte, error) {
// Decode the message
var c compress
if err := decode(msg, &c); err != nil {
return nil, err
}
return decompressBuffer(&c)
}
// decompressBuffer is used to decompress the buffer of
// a single compress message, handling multiple algorithms
func decompressBuffer(c *compress) ([]byte, error) {
// Verify the algorithm
if c.Algo != lzwAlgo {
return nil, fmt.Errorf("Cannot decompress unknown algorithm %d", c.Algo)
}
// Create a uncompressor
uncomp := lzw.NewReader(bytes.NewReader(c.Buf), lzw.LSB, lzwLitWidth)
defer uncomp.Close()
// Read all the data
var b bytes.Buffer
_, err := io.Copy(&b, uncomp)
if err != nil {
return nil, err
}
// Return the uncompressed bytes
return b.Bytes(), nil
}
|