File: raft.go

package info (click to toggle)
golang-github-hashicorp-raft 1.0.0%2Bgit20180823.82694fb-3
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 704 kB
  • sloc: makefile: 17; sh: 9
file content (1470 lines) | stat: -rw-r--r-- 44,431 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
package raft

import (
	"bytes"
	"container/list"
	"fmt"
	"io"
	"io/ioutil"
	"time"

	"github.com/armon/go-metrics"
)

const (
	minCheckInterval = 10 * time.Millisecond
)

var (
	keyCurrentTerm  = []byte("CurrentTerm")
	keyLastVoteTerm = []byte("LastVoteTerm")
	keyLastVoteCand = []byte("LastVoteCand")
)

// getRPCHeader returns an initialized RPCHeader struct for the given
// Raft instance. This structure is sent along with RPC requests and
// responses.
func (r *Raft) getRPCHeader() RPCHeader {
	return RPCHeader{
		ProtocolVersion: r.conf.ProtocolVersion,
	}
}

// checkRPCHeader houses logic about whether this instance of Raft can process
// the given RPC message.
func (r *Raft) checkRPCHeader(rpc RPC) error {
	// Get the header off the RPC message.
	wh, ok := rpc.Command.(WithRPCHeader)
	if !ok {
		return fmt.Errorf("RPC does not have a header")
	}
	header := wh.GetRPCHeader()

	// First check is to just make sure the code can understand the
	// protocol at all.
	if header.ProtocolVersion < ProtocolVersionMin ||
		header.ProtocolVersion > ProtocolVersionMax {
		return ErrUnsupportedProtocol
	}

	// Second check is whether we should support this message, given the
	// current protocol we are configured to run. This will drop support
	// for protocol version 0 starting at protocol version 2, which is
	// currently what we want, and in general support one version back. We
	// may need to revisit this policy depending on how future protocol
	// changes evolve.
	if header.ProtocolVersion < r.conf.ProtocolVersion-1 {
		return ErrUnsupportedProtocol
	}

	return nil
}

// getSnapshotVersion returns the snapshot version that should be used when
// creating snapshots, given the protocol version in use.
func getSnapshotVersion(protocolVersion ProtocolVersion) SnapshotVersion {
	// Right now we only have two versions and they are backwards compatible
	// so we don't need to look at the protocol version.
	return 1
}

// commitTuple is used to send an index that was committed,
// with an optional associated future that should be invoked.
type commitTuple struct {
	log    *Log
	future *logFuture
}

// leaderState is state that is used while we are a leader.
type leaderState struct {
	commitCh   chan struct{}
	commitment *commitment
	inflight   *list.List // list of logFuture in log index order
	replState  map[ServerID]*followerReplication
	notify     map[*verifyFuture]struct{}
	stepDown   chan struct{}
}

// setLeader is used to modify the current leader of the cluster
func (r *Raft) setLeader(leader ServerAddress) {
	r.leaderLock.Lock()
	oldLeader := r.leader
	r.leader = leader
	r.leaderLock.Unlock()
	if oldLeader != leader {
		r.observe(LeaderObservation{leader: leader})
	}
}

// requestConfigChange is a helper for the above functions that make
// configuration change requests. 'req' describes the change. For timeout,
// see AddVoter.
func (r *Raft) requestConfigChange(req configurationChangeRequest, timeout time.Duration) IndexFuture {
	var timer <-chan time.Time
	if timeout > 0 {
		timer = time.After(timeout)
	}
	future := &configurationChangeFuture{
		req: req,
	}
	future.init()
	select {
	case <-timer:
		return errorFuture{ErrEnqueueTimeout}
	case r.configurationChangeCh <- future:
		return future
	case <-r.shutdownCh:
		return errorFuture{ErrRaftShutdown}
	}
}

// run is a long running goroutine that runs the Raft FSM.
func (r *Raft) run() {
	for {
		// Check if we are doing a shutdown
		select {
		case <-r.shutdownCh:
			// Clear the leader to prevent forwarding
			r.setLeader("")
			return
		default:
		}

		// Enter into a sub-FSM
		switch r.getState() {
		case Follower:
			r.runFollower()
		case Candidate:
			r.runCandidate()
		case Leader:
			r.runLeader()
		}
	}
}

// runFollower runs the FSM for a follower.
func (r *Raft) runFollower() {
	didWarn := false
	r.logger.Printf("[INFO] raft: %v entering Follower state (Leader: %q)", r, r.Leader())
	metrics.IncrCounter([]string{"raft", "state", "follower"}, 1)
	heartbeatTimer := randomTimeout(r.conf.HeartbeatTimeout)
	for {
		select {
		case rpc := <-r.rpcCh:
			r.processRPC(rpc)

		case c := <-r.configurationChangeCh:
			// Reject any operations since we are not the leader
			c.respond(ErrNotLeader)

		case a := <-r.applyCh:
			// Reject any operations since we are not the leader
			a.respond(ErrNotLeader)

		case v := <-r.verifyCh:
			// Reject any operations since we are not the leader
			v.respond(ErrNotLeader)

		case r := <-r.userRestoreCh:
			// Reject any restores since we are not the leader
			r.respond(ErrNotLeader)

		case c := <-r.configurationsCh:
			c.configurations = r.configurations.Clone()
			c.respond(nil)

		case b := <-r.bootstrapCh:
			b.respond(r.liveBootstrap(b.configuration))

		case <-heartbeatTimer:
			// Restart the heartbeat timer
			heartbeatTimer = randomTimeout(r.conf.HeartbeatTimeout)

			// Check if we have had a successful contact
			lastContact := r.LastContact()
			if time.Now().Sub(lastContact) < r.conf.HeartbeatTimeout {
				continue
			}

			// Heartbeat failed! Transition to the candidate state
			lastLeader := r.Leader()
			r.setLeader("")

			if r.configurations.latestIndex == 0 {
				if !didWarn {
					r.logger.Printf("[WARN] raft: no known peers, aborting election")
					didWarn = true
				}
			} else if r.configurations.latestIndex == r.configurations.committedIndex &&
				!hasVote(r.configurations.latest, r.localID) {
				if !didWarn {
					r.logger.Printf("[WARN] raft: not part of stable configuration, aborting election")
					didWarn = true
				}
			} else {
				r.logger.Printf(`[WARN] raft: Heartbeat timeout from %q reached, starting election`, lastLeader)
				metrics.IncrCounter([]string{"raft", "transition", "heartbeat_timeout"}, 1)
				r.setState(Candidate)
				return
			}

		case <-r.shutdownCh:
			return
		}
	}
}

// liveBootstrap attempts to seed an initial configuration for the cluster. See
// the Raft object's member BootstrapCluster for more details. This must only be
// called on the main thread, and only makes sense in the follower state.
func (r *Raft) liveBootstrap(configuration Configuration) error {
	// Use the pre-init API to make the static updates.
	err := BootstrapCluster(&r.conf, r.logs, r.stable, r.snapshots,
		r.trans, configuration)
	if err != nil {
		return err
	}

	// Make the configuration live.
	var entry Log
	if err := r.logs.GetLog(1, &entry); err != nil {
		panic(err)
	}
	r.setCurrentTerm(1)
	r.setLastLog(entry.Index, entry.Term)
	r.processConfigurationLogEntry(&entry)
	return nil
}

// runCandidate runs the FSM for a candidate.
func (r *Raft) runCandidate() {
	r.logger.Printf("[INFO] raft: %v entering Candidate state in term %v",
		r, r.getCurrentTerm()+1)
	metrics.IncrCounter([]string{"raft", "state", "candidate"}, 1)

	// Start vote for us, and set a timeout
	voteCh := r.electSelf()
	electionTimer := randomTimeout(r.conf.ElectionTimeout)

	// Tally the votes, need a simple majority
	grantedVotes := 0
	votesNeeded := r.quorumSize()
	r.logger.Printf("[DEBUG] raft: Votes needed: %d", votesNeeded)

	for r.getState() == Candidate {
		select {
		case rpc := <-r.rpcCh:
			r.processRPC(rpc)

		case vote := <-voteCh:
			// Check if the term is greater than ours, bail
			if vote.Term > r.getCurrentTerm() {
				r.logger.Printf("[DEBUG] raft: Newer term discovered, fallback to follower")
				r.setState(Follower)
				r.setCurrentTerm(vote.Term)
				return
			}

			// Check if the vote is granted
			if vote.Granted {
				grantedVotes++
				r.logger.Printf("[DEBUG] raft: Vote granted from %s in term %v. Tally: %d",
					vote.voterID, vote.Term, grantedVotes)
			}

			// Check if we've become the leader
			if grantedVotes >= votesNeeded {
				r.logger.Printf("[INFO] raft: Election won. Tally: %d", grantedVotes)
				r.setState(Leader)
				r.setLeader(r.localAddr)
				return
			}

		case c := <-r.configurationChangeCh:
			// Reject any operations since we are not the leader
			c.respond(ErrNotLeader)

		case a := <-r.applyCh:
			// Reject any operations since we are not the leader
			a.respond(ErrNotLeader)

		case v := <-r.verifyCh:
			// Reject any operations since we are not the leader
			v.respond(ErrNotLeader)

		case r := <-r.userRestoreCh:
			// Reject any restores since we are not the leader
			r.respond(ErrNotLeader)

		case c := <-r.configurationsCh:
			c.configurations = r.configurations.Clone()
			c.respond(nil)

		case b := <-r.bootstrapCh:
			b.respond(ErrCantBootstrap)

		case <-electionTimer:
			// Election failed! Restart the election. We simply return,
			// which will kick us back into runCandidate
			r.logger.Printf("[WARN] raft: Election timeout reached, restarting election")
			return

		case <-r.shutdownCh:
			return
		}
	}
}

// runLeader runs the FSM for a leader. Do the setup here and drop into
// the leaderLoop for the hot loop.
func (r *Raft) runLeader() {
	r.logger.Printf("[INFO] raft: %v entering Leader state", r)
	metrics.IncrCounter([]string{"raft", "state", "leader"}, 1)

	// Notify that we are the leader
	asyncNotifyBool(r.leaderCh, true)

	// Push to the notify channel if given
	if notify := r.conf.NotifyCh; notify != nil {
		select {
		case notify <- true:
		case <-r.shutdownCh:
		}
	}

	// Setup leader state
	r.leaderState.commitCh = make(chan struct{}, 1)
	r.leaderState.commitment = newCommitment(r.leaderState.commitCh,
		r.configurations.latest,
		r.getLastIndex()+1 /* first index that may be committed in this term */)
	r.leaderState.inflight = list.New()
	r.leaderState.replState = make(map[ServerID]*followerReplication)
	r.leaderState.notify = make(map[*verifyFuture]struct{})
	r.leaderState.stepDown = make(chan struct{}, 1)

	// Cleanup state on step down
	defer func() {
		// Since we were the leader previously, we update our
		// last contact time when we step down, so that we are not
		// reporting a last contact time from before we were the
		// leader. Otherwise, to a client it would seem our data
		// is extremely stale.
		r.setLastContact()

		// Stop replication
		for _, p := range r.leaderState.replState {
			close(p.stopCh)
		}

		// Respond to all inflight operations
		for e := r.leaderState.inflight.Front(); e != nil; e = e.Next() {
			e.Value.(*logFuture).respond(ErrLeadershipLost)
		}

		// Respond to any pending verify requests
		for future := range r.leaderState.notify {
			future.respond(ErrLeadershipLost)
		}

		// Clear all the state
		r.leaderState.commitCh = nil
		r.leaderState.commitment = nil
		r.leaderState.inflight = nil
		r.leaderState.replState = nil
		r.leaderState.notify = nil
		r.leaderState.stepDown = nil

		// If we are stepping down for some reason, no known leader.
		// We may have stepped down due to an RPC call, which would
		// provide the leader, so we cannot always blank this out.
		r.leaderLock.Lock()
		if r.leader == r.localAddr {
			r.leader = ""
		}
		r.leaderLock.Unlock()

		// Notify that we are not the leader
		asyncNotifyBool(r.leaderCh, false)

		// Push to the notify channel if given
		if notify := r.conf.NotifyCh; notify != nil {
			select {
			case notify <- false:
			case <-r.shutdownCh:
				// On shutdown, make a best effort but do not block
				select {
				case notify <- false:
				default:
				}
			}
		}
	}()

	// Start a replication routine for each peer
	r.startStopReplication()

	// Dispatch a no-op log entry first. This gets this leader up to the latest
	// possible commit index, even in the absence of client commands. This used
	// to append a configuration entry instead of a noop. However, that permits
	// an unbounded number of uncommitted configurations in the log. We now
	// maintain that there exists at most one uncommitted configuration entry in
	// any log, so we have to do proper no-ops here.
	noop := &logFuture{
		log: Log{
			Type: LogNoop,
		},
	}
	r.dispatchLogs([]*logFuture{noop})

	// Sit in the leader loop until we step down
	r.leaderLoop()
}

// startStopReplication will set up state and start asynchronous replication to
// new peers, and stop replication to removed peers. Before removing a peer,
// it'll instruct the replication routines to try to replicate to the current
// index. This must only be called from the main thread.
func (r *Raft) startStopReplication() {
	inConfig := make(map[ServerID]bool, len(r.configurations.latest.Servers))
	lastIdx := r.getLastIndex()

	// Start replication goroutines that need starting
	for _, server := range r.configurations.latest.Servers {
		if server.ID == r.localID {
			continue
		}
		inConfig[server.ID] = true
		if _, ok := r.leaderState.replState[server.ID]; !ok {
			r.logger.Printf("[INFO] raft: Added peer %v, starting replication", server.ID)
			s := &followerReplication{
				peer:        server,
				commitment:  r.leaderState.commitment,
				stopCh:      make(chan uint64, 1),
				triggerCh:   make(chan struct{}, 1),
				currentTerm: r.getCurrentTerm(),
				nextIndex:   lastIdx + 1,
				lastContact: time.Now(),
				notify:      make(map[*verifyFuture]struct{}),
				notifyCh:    make(chan struct{}, 1),
				stepDown:    r.leaderState.stepDown,
			}
			r.leaderState.replState[server.ID] = s
			r.goFunc(func() { r.replicate(s) })
			asyncNotifyCh(s.triggerCh)
		}
	}

	// Stop replication goroutines that need stopping
	for serverID, repl := range r.leaderState.replState {
		if inConfig[serverID] {
			continue
		}
		// Replicate up to lastIdx and stop
		r.logger.Printf("[INFO] raft: Removed peer %v, stopping replication after %v", serverID, lastIdx)
		repl.stopCh <- lastIdx
		close(repl.stopCh)
		delete(r.leaderState.replState, serverID)
	}
}

// configurationChangeChIfStable returns r.configurationChangeCh if it's safe
// to process requests from it, or nil otherwise. This must only be called
// from the main thread.
//
// Note that if the conditions here were to change outside of leaderLoop to take
// this from nil to non-nil, we would need leaderLoop to be kicked.
func (r *Raft) configurationChangeChIfStable() chan *configurationChangeFuture {
	// Have to wait until:
	// 1. The latest configuration is committed, and
	// 2. This leader has committed some entry (the noop) in this term
	//    https://groups.google.com/forum/#!msg/raft-dev/t4xj6dJTP6E/d2D9LrWRza8J
	if r.configurations.latestIndex == r.configurations.committedIndex &&
		r.getCommitIndex() >= r.leaderState.commitment.startIndex {
		return r.configurationChangeCh
	}
	return nil
}

// leaderLoop is the hot loop for a leader. It is invoked
// after all the various leader setup is done.
func (r *Raft) leaderLoop() {
	// stepDown is used to track if there is an inflight log that
	// would cause us to lose leadership (specifically a RemovePeer of
	// ourselves). If this is the case, we must not allow any logs to
	// be processed in parallel, otherwise we are basing commit on
	// only a single peer (ourself) and replicating to an undefined set
	// of peers.
	stepDown := false

	lease := time.After(r.conf.LeaderLeaseTimeout)
	for r.getState() == Leader {
		select {
		case rpc := <-r.rpcCh:
			r.processRPC(rpc)

		case <-r.leaderState.stepDown:
			r.setState(Follower)

		case <-r.leaderState.commitCh:
			// Process the newly committed entries
			oldCommitIndex := r.getCommitIndex()
			commitIndex := r.leaderState.commitment.getCommitIndex()
			r.setCommitIndex(commitIndex)

			if r.configurations.latestIndex > oldCommitIndex &&
				r.configurations.latestIndex <= commitIndex {
				r.configurations.committed = r.configurations.latest
				r.configurations.committedIndex = r.configurations.latestIndex
				if !hasVote(r.configurations.committed, r.localID) {
					stepDown = true
				}
			}

			for {
				e := r.leaderState.inflight.Front()
				if e == nil {
					break
				}
				commitLog := e.Value.(*logFuture)
				idx := commitLog.log.Index
				if idx > commitIndex {
					break
				}
				// Measure the commit time
				metrics.MeasureSince([]string{"raft", "commitTime"}, commitLog.dispatch)
				r.processLogs(idx, commitLog)
				r.leaderState.inflight.Remove(e)
			}

			if stepDown {
				if r.conf.ShutdownOnRemove {
					r.logger.Printf("[INFO] raft: Removed ourself, shutting down")
					r.Shutdown()
				} else {
					r.logger.Printf("[INFO] raft: Removed ourself, transitioning to follower")
					r.setState(Follower)
				}
			}

		case v := <-r.verifyCh:
			if v.quorumSize == 0 {
				// Just dispatched, start the verification
				r.verifyLeader(v)

			} else if v.votes < v.quorumSize {
				// Early return, means there must be a new leader
				r.logger.Printf("[WARN] raft: New leader elected, stepping down")
				r.setState(Follower)
				delete(r.leaderState.notify, v)
				for _, repl := range r.leaderState.replState {
					repl.cleanNotify(v)
				}
				v.respond(ErrNotLeader)

			} else {
				// Quorum of members agree, we are still leader
				delete(r.leaderState.notify, v)
				for _, repl := range r.leaderState.replState {
					repl.cleanNotify(v)
				}
				v.respond(nil)
			}

		case future := <-r.userRestoreCh:
			err := r.restoreUserSnapshot(future.meta, future.reader)
			future.respond(err)

		case c := <-r.configurationsCh:
			c.configurations = r.configurations.Clone()
			c.respond(nil)

		case future := <-r.configurationChangeChIfStable():
			r.appendConfigurationEntry(future)

		case b := <-r.bootstrapCh:
			b.respond(ErrCantBootstrap)

		case newLog := <-r.applyCh:
			// Group commit, gather all the ready commits
			ready := []*logFuture{newLog}
			for i := 0; i < r.conf.MaxAppendEntries; i++ {
				select {
				case newLog := <-r.applyCh:
					ready = append(ready, newLog)
				default:
					break
				}
			}

			// Dispatch the logs
			if stepDown {
				// we're in the process of stepping down as leader, don't process anything new
				for i := range ready {
					ready[i].respond(ErrNotLeader)
				}
			} else {
				r.dispatchLogs(ready)
			}

		case <-lease:
			// Check if we've exceeded the lease, potentially stepping down
			maxDiff := r.checkLeaderLease()

			// Next check interval should adjust for the last node we've
			// contacted, without going negative
			checkInterval := r.conf.LeaderLeaseTimeout - maxDiff
			if checkInterval < minCheckInterval {
				checkInterval = minCheckInterval
			}

			// Renew the lease timer
			lease = time.After(checkInterval)

		case <-r.shutdownCh:
			return
		}
	}
}

// verifyLeader must be called from the main thread for safety.
// Causes the followers to attempt an immediate heartbeat.
func (r *Raft) verifyLeader(v *verifyFuture) {
	// Current leader always votes for self
	v.votes = 1

	// Set the quorum size, hot-path for single node
	v.quorumSize = r.quorumSize()
	if v.quorumSize == 1 {
		v.respond(nil)
		return
	}

	// Track this request
	v.notifyCh = r.verifyCh
	r.leaderState.notify[v] = struct{}{}

	// Trigger immediate heartbeats
	for _, repl := range r.leaderState.replState {
		repl.notifyLock.Lock()
		repl.notify[v] = struct{}{}
		repl.notifyLock.Unlock()
		asyncNotifyCh(repl.notifyCh)
	}
}

// checkLeaderLease is used to check if we can contact a quorum of nodes
// within the last leader lease interval. If not, we need to step down,
// as we may have lost connectivity. Returns the maximum duration without
// contact. This must only be called from the main thread.
func (r *Raft) checkLeaderLease() time.Duration {
	// Track contacted nodes, we can always contact ourself
	contacted := 1

	// Check each follower
	var maxDiff time.Duration
	now := time.Now()
	for peer, f := range r.leaderState.replState {
		diff := now.Sub(f.LastContact())
		if diff <= r.conf.LeaderLeaseTimeout {
			contacted++
			if diff > maxDiff {
				maxDiff = diff
			}
		} else {
			// Log at least once at high value, then debug. Otherwise it gets very verbose.
			if diff <= 3*r.conf.LeaderLeaseTimeout {
				r.logger.Printf("[WARN] raft: Failed to contact %v in %v", peer, diff)
			} else {
				r.logger.Printf("[DEBUG] raft: Failed to contact %v in %v", peer, diff)
			}
		}
		metrics.AddSample([]string{"raft", "leader", "lastContact"}, float32(diff/time.Millisecond))
	}

	// Verify we can contact a quorum
	quorum := r.quorumSize()
	if contacted < quorum {
		r.logger.Printf("[WARN] raft: Failed to contact quorum of nodes, stepping down")
		r.setState(Follower)
		metrics.IncrCounter([]string{"raft", "transition", "leader_lease_timeout"}, 1)
	}
	return maxDiff
}

// quorumSize is used to return the quorum size. This must only be called on
// the main thread.
// TODO: revisit usage
func (r *Raft) quorumSize() int {
	voters := 0
	for _, server := range r.configurations.latest.Servers {
		if server.Suffrage == Voter {
			voters++
		}
	}
	return voters/2 + 1
}

// restoreUserSnapshot is used to manually consume an external snapshot, such
// as if restoring from a backup. We will use the current Raft configuration,
// not the one from the snapshot, so that we can restore into a new cluster. We
// will also use the higher of the index of the snapshot, or the current index,
// and then add 1 to that, so we force a new state with a hole in the Raft log,
// so that the snapshot will be sent to followers and used for any new joiners.
// This can only be run on the leader, and returns a future that can be used to
// block until complete.
func (r *Raft) restoreUserSnapshot(meta *SnapshotMeta, reader io.Reader) error {
	defer metrics.MeasureSince([]string{"raft", "restoreUserSnapshot"}, time.Now())

	// Sanity check the version.
	version := meta.Version
	if version < SnapshotVersionMin || version > SnapshotVersionMax {
		return fmt.Errorf("unsupported snapshot version %d", version)
	}

	// We don't support snapshots while there's a config change
	// outstanding since the snapshot doesn't have a means to
	// represent this state.
	committedIndex := r.configurations.committedIndex
	latestIndex := r.configurations.latestIndex
	if committedIndex != latestIndex {
		return fmt.Errorf("cannot restore snapshot now, wait until the configuration entry at %v has been applied (have applied %v)",
			latestIndex, committedIndex)
	}

	// Cancel any inflight requests.
	for {
		e := r.leaderState.inflight.Front()
		if e == nil {
			break
		}
		e.Value.(*logFuture).respond(ErrAbortedByRestore)
		r.leaderState.inflight.Remove(e)
	}

	// We will overwrite the snapshot metadata with the current term,
	// an index that's greater than the current index, or the last
	// index in the snapshot. It's important that we leave a hole in
	// the index so we know there's nothing in the Raft log there and
	// replication will fault and send the snapshot.
	term := r.getCurrentTerm()
	lastIndex := r.getLastIndex()
	if meta.Index > lastIndex {
		lastIndex = meta.Index
	}
	lastIndex++

	// Dump the snapshot. Note that we use the latest configuration,
	// not the one that came with the snapshot.
	sink, err := r.snapshots.Create(version, lastIndex, term,
		r.configurations.latest, r.configurations.latestIndex, r.trans)
	if err != nil {
		return fmt.Errorf("failed to create snapshot: %v", err)
	}
	n, err := io.Copy(sink, reader)
	if err != nil {
		sink.Cancel()
		return fmt.Errorf("failed to write snapshot: %v", err)
	}
	if n != meta.Size {
		sink.Cancel()
		return fmt.Errorf("failed to write snapshot, size didn't match (%d != %d)", n, meta.Size)
	}
	if err := sink.Close(); err != nil {
		return fmt.Errorf("failed to close snapshot: %v", err)
	}
	r.logger.Printf("[INFO] raft: Copied %d bytes to local snapshot", n)

	// Restore the snapshot into the FSM. If this fails we are in a
	// bad state so we panic to take ourselves out.
	fsm := &restoreFuture{ID: sink.ID()}
	fsm.init()
	select {
	case r.fsmMutateCh <- fsm:
	case <-r.shutdownCh:
		return ErrRaftShutdown
	}
	if err := fsm.Error(); err != nil {
		panic(fmt.Errorf("failed to restore snapshot: %v", err))
	}

	// We set the last log so it looks like we've stored the empty
	// index we burned. The last applied is set because we made the
	// FSM take the snapshot state, and we store the last snapshot
	// in the stable store since we created a snapshot as part of
	// this process.
	r.setLastLog(lastIndex, term)
	r.setLastApplied(lastIndex)
	r.setLastSnapshot(lastIndex, term)

	r.logger.Printf("[INFO] raft: Restored user snapshot (index %d)", lastIndex)
	return nil
}

// appendConfigurationEntry changes the configuration and adds a new
// configuration entry to the log. This must only be called from the
// main thread.
func (r *Raft) appendConfigurationEntry(future *configurationChangeFuture) {
	configuration, err := nextConfiguration(r.configurations.latest, r.configurations.latestIndex, future.req)
	if err != nil {
		future.respond(err)
		return
	}

	r.logger.Printf("[INFO] raft: Updating configuration with %s (%v, %v) to %+v",
		future.req.command, future.req.serverID, future.req.serverAddress, configuration.Servers)

	// In pre-ID compatibility mode we translate all configuration changes
	// in to an old remove peer message, which can handle all supported
	// cases for peer changes in the pre-ID world (adding and removing
	// voters). Both add peer and remove peer log entries are handled
	// similarly on old Raft servers, but remove peer does extra checks to
	// see if a leader needs to step down. Since they both assert the full
	// configuration, then we can safely call remove peer for everything.
	if r.protocolVersion < 2 {
		future.log = Log{
			Type: LogRemovePeerDeprecated,
			Data: encodePeers(configuration, r.trans),
		}
	} else {
		future.log = Log{
			Type: LogConfiguration,
			Data: encodeConfiguration(configuration),
		}
	}

	r.dispatchLogs([]*logFuture{&future.logFuture})
	index := future.Index()
	r.configurations.latest = configuration
	r.configurations.latestIndex = index
	r.leaderState.commitment.setConfiguration(configuration)
	r.startStopReplication()
}

// dispatchLog is called on the leader to push a log to disk, mark it
// as inflight and begin replication of it.
func (r *Raft) dispatchLogs(applyLogs []*logFuture) {
	now := time.Now()
	defer metrics.MeasureSince([]string{"raft", "leader", "dispatchLog"}, now)

	term := r.getCurrentTerm()
	lastIndex := r.getLastIndex()
	logs := make([]*Log, len(applyLogs))

	for idx, applyLog := range applyLogs {
		applyLog.dispatch = now
		lastIndex++
		applyLog.log.Index = lastIndex
		applyLog.log.Term = term
		logs[idx] = &applyLog.log
		r.leaderState.inflight.PushBack(applyLog)
	}

	// Write the log entry locally
	if err := r.logs.StoreLogs(logs); err != nil {
		r.logger.Printf("[ERR] raft: Failed to commit logs: %v", err)
		for _, applyLog := range applyLogs {
			applyLog.respond(err)
		}
		r.setState(Follower)
		return
	}
	r.leaderState.commitment.match(r.localID, lastIndex)

	// Update the last log since it's on disk now
	r.setLastLog(lastIndex, term)

	// Notify the replicators of the new log
	for _, f := range r.leaderState.replState {
		asyncNotifyCh(f.triggerCh)
	}
}

// processLogs is used to apply all the committed entires that haven't been
// applied up to the given index limit.
// This can be called from both leaders and followers.
// Followers call this from AppendEntires, for n entires at a time, and always
// pass future=nil.
// Leaders call this once per inflight when entries are committed. They pass
// the future from inflights.
func (r *Raft) processLogs(index uint64, future *logFuture) {
	// Reject logs we've applied already
	lastApplied := r.getLastApplied()
	if index <= lastApplied {
		r.logger.Printf("[WARN] raft: Skipping application of old log: %d", index)
		return
	}

	// Apply all the preceding logs
	for idx := r.getLastApplied() + 1; idx <= index; idx++ {
		// Get the log, either from the future or from our log store
		if future != nil && future.log.Index == idx {
			r.processLog(&future.log, future)

		} else {
			l := new(Log)
			if err := r.logs.GetLog(idx, l); err != nil {
				r.logger.Printf("[ERR] raft: Failed to get log at %d: %v", idx, err)
				panic(err)
			}
			r.processLog(l, nil)
		}

		// Update the lastApplied index and term
		r.setLastApplied(idx)
	}
}

// processLog is invoked to process the application of a single committed log entry.
func (r *Raft) processLog(l *Log, future *logFuture) {
	switch l.Type {
	case LogBarrier:
		// Barrier is handled by the FSM
		fallthrough

	case LogCommand:
		// Forward to the fsm handler
		select {
		case r.fsmMutateCh <- &commitTuple{l, future}:
		case <-r.shutdownCh:
			if future != nil {
				future.respond(ErrRaftShutdown)
			}
		}

		// Return so that the future is only responded to
		// by the FSM handler when the application is done
		return

	case LogConfiguration:
	case LogAddPeerDeprecated:
	case LogRemovePeerDeprecated:
	case LogNoop:
		// Ignore the no-op

	default:
		panic(fmt.Errorf("unrecognized log type: %#v", l))
	}

	// Invoke the future if given
	if future != nil {
		future.respond(nil)
	}
}

// processRPC is called to handle an incoming RPC request. This must only be
// called from the main thread.
func (r *Raft) processRPC(rpc RPC) {
	if err := r.checkRPCHeader(rpc); err != nil {
		rpc.Respond(nil, err)
		return
	}

	switch cmd := rpc.Command.(type) {
	case *AppendEntriesRequest:
		r.appendEntries(rpc, cmd)
	case *RequestVoteRequest:
		r.requestVote(rpc, cmd)
	case *InstallSnapshotRequest:
		r.installSnapshot(rpc, cmd)
	default:
		r.logger.Printf("[ERR] raft: Got unexpected command: %#v", rpc.Command)
		rpc.Respond(nil, fmt.Errorf("unexpected command"))
	}
}

// processHeartbeat is a special handler used just for heartbeat requests
// so that they can be fast-pathed if a transport supports it. This must only
// be called from the main thread.
func (r *Raft) processHeartbeat(rpc RPC) {
	defer metrics.MeasureSince([]string{"raft", "rpc", "processHeartbeat"}, time.Now())

	// Check if we are shutdown, just ignore the RPC
	select {
	case <-r.shutdownCh:
		return
	default:
	}

	// Ensure we are only handling a heartbeat
	switch cmd := rpc.Command.(type) {
	case *AppendEntriesRequest:
		r.appendEntries(rpc, cmd)
	default:
		r.logger.Printf("[ERR] raft: Expected heartbeat, got command: %#v", rpc.Command)
		rpc.Respond(nil, fmt.Errorf("unexpected command"))
	}
}

// appendEntries is invoked when we get an append entries RPC call. This must
// only be called from the main thread.
func (r *Raft) appendEntries(rpc RPC, a *AppendEntriesRequest) {
	defer metrics.MeasureSince([]string{"raft", "rpc", "appendEntries"}, time.Now())
	// Setup a response
	resp := &AppendEntriesResponse{
		RPCHeader:      r.getRPCHeader(),
		Term:           r.getCurrentTerm(),
		LastLog:        r.getLastIndex(),
		Success:        false,
		NoRetryBackoff: false,
	}
	var rpcErr error
	defer func() {
		rpc.Respond(resp, rpcErr)
	}()

	// Ignore an older term
	if a.Term < r.getCurrentTerm() {
		return
	}

	// Increase the term if we see a newer one, also transition to follower
	// if we ever get an appendEntries call
	if a.Term > r.getCurrentTerm() || r.getState() != Follower {
		// Ensure transition to follower
		r.setState(Follower)
		r.setCurrentTerm(a.Term)
		resp.Term = a.Term
	}

	// Save the current leader
	r.setLeader(ServerAddress(r.trans.DecodePeer(a.Leader)))

	// Verify the last log entry
	if a.PrevLogEntry > 0 {
		lastIdx, lastTerm := r.getLastEntry()

		var prevLogTerm uint64
		if a.PrevLogEntry == lastIdx {
			prevLogTerm = lastTerm

		} else {
			var prevLog Log
			if err := r.logs.GetLog(a.PrevLogEntry, &prevLog); err != nil {
				r.logger.Printf("[WARN] raft: Failed to get previous log: %d %v (last: %d)",
					a.PrevLogEntry, err, lastIdx)
				resp.NoRetryBackoff = true
				return
			}
			prevLogTerm = prevLog.Term
		}

		if a.PrevLogTerm != prevLogTerm {
			r.logger.Printf("[WARN] raft: Previous log term mis-match: ours: %d remote: %d",
				prevLogTerm, a.PrevLogTerm)
			resp.NoRetryBackoff = true
			return
		}
	}

	// Process any new entries
	if len(a.Entries) > 0 {
		start := time.Now()

		// Delete any conflicting entries, skip any duplicates
		lastLogIdx, _ := r.getLastLog()
		var newEntries []*Log
		for i, entry := range a.Entries {
			if entry.Index > lastLogIdx {
				newEntries = a.Entries[i:]
				break
			}
			var storeEntry Log
			if err := r.logs.GetLog(entry.Index, &storeEntry); err != nil {
				r.logger.Printf("[WARN] raft: Failed to get log entry %d: %v",
					entry.Index, err)
				return
			}
			if entry.Term != storeEntry.Term {
				r.logger.Printf("[WARN] raft: Clearing log suffix from %d to %d", entry.Index, lastLogIdx)
				if err := r.logs.DeleteRange(entry.Index, lastLogIdx); err != nil {
					r.logger.Printf("[ERR] raft: Failed to clear log suffix: %v", err)
					return
				}
				if entry.Index <= r.configurations.latestIndex {
					r.configurations.latest = r.configurations.committed
					r.configurations.latestIndex = r.configurations.committedIndex
				}
				newEntries = a.Entries[i:]
				break
			}
		}

		if n := len(newEntries); n > 0 {
			// Append the new entries
			if err := r.logs.StoreLogs(newEntries); err != nil {
				r.logger.Printf("[ERR] raft: Failed to append to logs: %v", err)
				// TODO: leaving r.getLastLog() in the wrong
				// state if there was a truncation above
				return
			}

			// Handle any new configuration changes
			for _, newEntry := range newEntries {
				r.processConfigurationLogEntry(newEntry)
			}

			// Update the lastLog
			last := newEntries[n-1]
			r.setLastLog(last.Index, last.Term)
		}

		metrics.MeasureSince([]string{"raft", "rpc", "appendEntries", "storeLogs"}, start)
	}

	// Update the commit index
	if a.LeaderCommitIndex > 0 && a.LeaderCommitIndex > r.getCommitIndex() {
		start := time.Now()
		idx := min(a.LeaderCommitIndex, r.getLastIndex())
		r.setCommitIndex(idx)
		if r.configurations.latestIndex <= idx {
			r.configurations.committed = r.configurations.latest
			r.configurations.committedIndex = r.configurations.latestIndex
		}
		r.processLogs(idx, nil)
		metrics.MeasureSince([]string{"raft", "rpc", "appendEntries", "processLogs"}, start)
	}

	// Everything went well, set success
	resp.Success = true
	r.setLastContact()
	return
}

// processConfigurationLogEntry takes a log entry and updates the latest
// configuration if the entry results in a new configuration. This must only be
// called from the main thread, or from NewRaft() before any threads have begun.
func (r *Raft) processConfigurationLogEntry(entry *Log) {
	if entry.Type == LogConfiguration {
		r.configurations.committed = r.configurations.latest
		r.configurations.committedIndex = r.configurations.latestIndex
		r.configurations.latest = decodeConfiguration(entry.Data)
		r.configurations.latestIndex = entry.Index
	} else if entry.Type == LogAddPeerDeprecated || entry.Type == LogRemovePeerDeprecated {
		r.configurations.committed = r.configurations.latest
		r.configurations.committedIndex = r.configurations.latestIndex
		r.configurations.latest = decodePeers(entry.Data, r.trans)
		r.configurations.latestIndex = entry.Index
	}
}

// requestVote is invoked when we get an request vote RPC call.
func (r *Raft) requestVote(rpc RPC, req *RequestVoteRequest) {
	defer metrics.MeasureSince([]string{"raft", "rpc", "requestVote"}, time.Now())
	r.observe(*req)

	// Setup a response
	resp := &RequestVoteResponse{
		RPCHeader: r.getRPCHeader(),
		Term:      r.getCurrentTerm(),
		Granted:   false,
	}
	var rpcErr error
	defer func() {
		rpc.Respond(resp, rpcErr)
	}()

	// Version 0 servers will panic unless the peers is present. It's only
	// used on them to produce a warning message.
	if r.protocolVersion < 2 {
		resp.Peers = encodePeers(r.configurations.latest, r.trans)
	}

	// Check if we have an existing leader [who's not the candidate]
	candidate := r.trans.DecodePeer(req.Candidate)
	if leader := r.Leader(); leader != "" && leader != candidate {
		r.logger.Printf("[WARN] raft: Rejecting vote request from %v since we have a leader: %v",
			candidate, leader)
		return
	}

	// Ignore an older term
	if req.Term < r.getCurrentTerm() {
		return
	}

	// Increase the term if we see a newer one
	if req.Term > r.getCurrentTerm() {
		// Ensure transition to follower
		r.setState(Follower)
		r.setCurrentTerm(req.Term)
		resp.Term = req.Term
	}

	// Check if we have voted yet
	lastVoteTerm, err := r.stable.GetUint64(keyLastVoteTerm)
	if err != nil && err.Error() != "not found" {
		r.logger.Printf("[ERR] raft: Failed to get last vote term: %v", err)
		return
	}
	lastVoteCandBytes, err := r.stable.Get(keyLastVoteCand)
	if err != nil && err.Error() != "not found" {
		r.logger.Printf("[ERR] raft: Failed to get last vote candidate: %v", err)
		return
	}

	// Check if we've voted in this election before
	if lastVoteTerm == req.Term && lastVoteCandBytes != nil {
		r.logger.Printf("[INFO] raft: Duplicate RequestVote for same term: %d", req.Term)
		if bytes.Compare(lastVoteCandBytes, req.Candidate) == 0 {
			r.logger.Printf("[WARN] raft: Duplicate RequestVote from candidate: %s", req.Candidate)
			resp.Granted = true
		}
		return
	}

	// Reject if their term is older
	lastIdx, lastTerm := r.getLastEntry()
	if lastTerm > req.LastLogTerm {
		r.logger.Printf("[WARN] raft: Rejecting vote request from %v since our last term is greater (%d, %d)",
			candidate, lastTerm, req.LastLogTerm)
		return
	}

	if lastTerm == req.LastLogTerm && lastIdx > req.LastLogIndex {
		r.logger.Printf("[WARN] raft: Rejecting vote request from %v since our last index is greater (%d, %d)",
			candidate, lastIdx, req.LastLogIndex)
		return
	}

	// Persist a vote for safety
	if err := r.persistVote(req.Term, req.Candidate); err != nil {
		r.logger.Printf("[ERR] raft: Failed to persist vote: %v", err)
		return
	}

	resp.Granted = true
	r.setLastContact()
	return
}

// installSnapshot is invoked when we get a InstallSnapshot RPC call.
// We must be in the follower state for this, since it means we are
// too far behind a leader for log replay. This must only be called
// from the main thread.
func (r *Raft) installSnapshot(rpc RPC, req *InstallSnapshotRequest) {
	defer metrics.MeasureSince([]string{"raft", "rpc", "installSnapshot"}, time.Now())
	// Setup a response
	resp := &InstallSnapshotResponse{
		Term:    r.getCurrentTerm(),
		Success: false,
	}
	var rpcErr error
	defer func() {
		io.Copy(ioutil.Discard, rpc.Reader) // ensure we always consume all the snapshot data from the stream [see issue #212]
		rpc.Respond(resp, rpcErr)
	}()

	// Sanity check the version
	if req.SnapshotVersion < SnapshotVersionMin ||
		req.SnapshotVersion > SnapshotVersionMax {
		rpcErr = fmt.Errorf("unsupported snapshot version %d", req.SnapshotVersion)
		return
	}

	// Ignore an older term
	if req.Term < r.getCurrentTerm() {
		r.logger.Printf("[INFO] raft: Ignoring installSnapshot request with older term of %d vs currentTerm %d", req.Term, r.getCurrentTerm())
		return
	}

	// Increase the term if we see a newer one
	if req.Term > r.getCurrentTerm() {
		// Ensure transition to follower
		r.setState(Follower)
		r.setCurrentTerm(req.Term)
		resp.Term = req.Term
	}

	// Save the current leader
	r.setLeader(ServerAddress(r.trans.DecodePeer(req.Leader)))

	// Create a new snapshot
	var reqConfiguration Configuration
	var reqConfigurationIndex uint64
	if req.SnapshotVersion > 0 {
		reqConfiguration = decodeConfiguration(req.Configuration)
		reqConfigurationIndex = req.ConfigurationIndex
	} else {
		reqConfiguration = decodePeers(req.Peers, r.trans)
		reqConfigurationIndex = req.LastLogIndex
	}
	version := getSnapshotVersion(r.protocolVersion)
	sink, err := r.snapshots.Create(version, req.LastLogIndex, req.LastLogTerm,
		reqConfiguration, reqConfigurationIndex, r.trans)
	if err != nil {
		r.logger.Printf("[ERR] raft: Failed to create snapshot to install: %v", err)
		rpcErr = fmt.Errorf("failed to create snapshot: %v", err)
		return
	}

	// Spill the remote snapshot to disk
	n, err := io.Copy(sink, rpc.Reader)
	if err != nil {
		sink.Cancel()
		r.logger.Printf("[ERR] raft: Failed to copy snapshot: %v", err)
		rpcErr = err
		return
	}

	// Check that we received it all
	if n != req.Size {
		sink.Cancel()
		r.logger.Printf("[ERR] raft: Failed to receive whole snapshot: %d / %d", n, req.Size)
		rpcErr = fmt.Errorf("short read")
		return
	}

	// Finalize the snapshot
	if err := sink.Close(); err != nil {
		r.logger.Printf("[ERR] raft: Failed to finalize snapshot: %v", err)
		rpcErr = err
		return
	}
	r.logger.Printf("[INFO] raft: Copied %d bytes to local snapshot", n)

	// Restore snapshot
	future := &restoreFuture{ID: sink.ID()}
	future.init()
	select {
	case r.fsmMutateCh <- future:
	case <-r.shutdownCh:
		future.respond(ErrRaftShutdown)
		return
	}

	// Wait for the restore to happen
	if err := future.Error(); err != nil {
		r.logger.Printf("[ERR] raft: Failed to restore snapshot: %v", err)
		rpcErr = err
		return
	}

	// Update the lastApplied so we don't replay old logs
	r.setLastApplied(req.LastLogIndex)

	// Update the last stable snapshot info
	r.setLastSnapshot(req.LastLogIndex, req.LastLogTerm)

	// Restore the peer set
	r.configurations.latest = reqConfiguration
	r.configurations.latestIndex = reqConfigurationIndex
	r.configurations.committed = reqConfiguration
	r.configurations.committedIndex = reqConfigurationIndex

	// Compact logs, continue even if this fails
	if err := r.compactLogs(req.LastLogIndex); err != nil {
		r.logger.Printf("[ERR] raft: Failed to compact logs: %v", err)
	}

	r.logger.Printf("[INFO] raft: Installed remote snapshot")
	resp.Success = true
	r.setLastContact()
	return
}

// setLastContact is used to set the last contact time to now
func (r *Raft) setLastContact() {
	r.lastContactLock.Lock()
	r.lastContact = time.Now()
	r.lastContactLock.Unlock()
}

type voteResult struct {
	RequestVoteResponse
	voterID ServerID
}

// electSelf is used to send a RequestVote RPC to all peers, and vote for
// ourself. This has the side affecting of incrementing the current term. The
// response channel returned is used to wait for all the responses (including a
// vote for ourself). This must only be called from the main thread.
func (r *Raft) electSelf() <-chan *voteResult {
	// Create a response channel
	respCh := make(chan *voteResult, len(r.configurations.latest.Servers))

	// Increment the term
	r.setCurrentTerm(r.getCurrentTerm() + 1)

	// Construct the request
	lastIdx, lastTerm := r.getLastEntry()
	req := &RequestVoteRequest{
		RPCHeader:    r.getRPCHeader(),
		Term:         r.getCurrentTerm(),
		Candidate:    r.trans.EncodePeer(r.localID, r.localAddr),
		LastLogIndex: lastIdx,
		LastLogTerm:  lastTerm,
	}

	// Construct a function to ask for a vote
	askPeer := func(peer Server) {
		r.goFunc(func() {
			defer metrics.MeasureSince([]string{"raft", "candidate", "electSelf"}, time.Now())
			resp := &voteResult{voterID: peer.ID}
			err := r.trans.RequestVote(peer.ID, peer.Address, req, &resp.RequestVoteResponse)
			if err != nil {
				r.logger.Printf("[ERR] raft: Failed to make RequestVote RPC to %v: %v", peer, err)
				resp.Term = req.Term
				resp.Granted = false
			}
			respCh <- resp
		})
	}

	// For each peer, request a vote
	for _, server := range r.configurations.latest.Servers {
		if server.Suffrage == Voter {
			if server.ID == r.localID {
				// Persist a vote for ourselves
				if err := r.persistVote(req.Term, req.Candidate); err != nil {
					r.logger.Printf("[ERR] raft: Failed to persist vote : %v", err)
					return nil
				}
				// Include our own vote
				respCh <- &voteResult{
					RequestVoteResponse: RequestVoteResponse{
						RPCHeader: r.getRPCHeader(),
						Term:      req.Term,
						Granted:   true,
					},
					voterID: r.localID,
				}
			} else {
				askPeer(server)
			}
		}
	}

	return respCh
}

// persistVote is used to persist our vote for safety.
func (r *Raft) persistVote(term uint64, candidate []byte) error {
	if err := r.stable.SetUint64(keyLastVoteTerm, term); err != nil {
		return err
	}
	if err := r.stable.Set(keyLastVoteCand, candidate); err != nil {
		return err
	}
	return nil
}

// setCurrentTerm is used to set the current term in a durable manner.
func (r *Raft) setCurrentTerm(t uint64) {
	// Persist to disk first
	if err := r.stable.SetUint64(keyCurrentTerm, t); err != nil {
		panic(fmt.Errorf("failed to save current term: %v", err))
	}
	r.raftState.setCurrentTerm(t)
}

// setState is used to update the current state. Any state
// transition causes the known leader to be cleared. This means
// that leader should be set only after updating the state.
func (r *Raft) setState(state RaftState) {
	r.setLeader("")
	oldState := r.raftState.getState()
	r.raftState.setState(state)
	if oldState != state {
		r.observe(state)
	}
}