1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425
|
package raft
import (
"bytes"
"fmt"
"io"
"io/ioutil"
"log"
"os"
"reflect"
"strings"
"sync"
"testing"
"time"
"github.com/hashicorp/go-msgpack/codec"
)
// MockFSM is an implementation of the FSM interface, and just stores
// the logs sequentially.
type MockFSM struct {
sync.Mutex
logs [][]byte
}
type MockSnapshot struct {
logs [][]byte
maxIndex int
}
func (m *MockFSM) Apply(log *Log) interface{} {
m.Lock()
defer m.Unlock()
m.logs = append(m.logs, log.Data)
return len(m.logs)
}
func (m *MockFSM) Snapshot() (FSMSnapshot, error) {
m.Lock()
defer m.Unlock()
return &MockSnapshot{m.logs, len(m.logs)}, nil
}
func (m *MockFSM) Restore(inp io.ReadCloser) error {
m.Lock()
defer m.Unlock()
defer inp.Close()
hd := codec.MsgpackHandle{}
dec := codec.NewDecoder(inp, &hd)
m.logs = nil
return dec.Decode(&m.logs)
}
func (m *MockSnapshot) Persist(sink SnapshotSink) error {
hd := codec.MsgpackHandle{}
enc := codec.NewEncoder(sink, &hd)
if err := enc.Encode(m.logs[:m.maxIndex]); err != nil {
sink.Cancel()
return err
}
sink.Close()
return nil
}
func (m *MockSnapshot) Release() {
}
// Return configurations optimized for in-memory
func inmemConfig(t *testing.T) *Config {
conf := DefaultConfig()
conf.HeartbeatTimeout = 50 * time.Millisecond
conf.ElectionTimeout = 50 * time.Millisecond
conf.LeaderLeaseTimeout = 50 * time.Millisecond
conf.CommitTimeout = 5 * time.Millisecond
conf.Logger = newTestLogger(t)
return conf
}
// This can be used as the destination for a logger and it'll
// map them into calls to testing.T.Log, so that you only see
// the logging for failed tests.
type testLoggerAdapter struct {
t *testing.T
prefix string
}
func (a *testLoggerAdapter) Write(d []byte) (int, error) {
if d[len(d)-1] == '\n' {
d = d[:len(d)-1]
}
if a.prefix != "" {
l := a.prefix + ": " + string(d)
if testing.Verbose() {
fmt.Printf("testLoggerAdapter verbose: %s\n", l)
}
a.t.Log(l)
return len(l), nil
}
a.t.Log(string(d))
return len(d), nil
}
func newTestLogger(t *testing.T) *log.Logger {
return log.New(&testLoggerAdapter{t: t}, "", log.Lmicroseconds)
}
func newTestLoggerWithPrefix(t *testing.T, prefix string) *log.Logger {
return log.New(&testLoggerAdapter{t: t, prefix: prefix}, "", log.Lmicroseconds)
}
type cluster struct {
dirs []string
stores []*InmemStore
fsms []*MockFSM
snaps []*FileSnapshotStore
trans []LoopbackTransport
rafts []*Raft
t *testing.T
observationCh chan Observation
conf *Config
propagateTimeout time.Duration
longstopTimeout time.Duration
logger *log.Logger
startTime time.Time
failedLock sync.Mutex
failedCh chan struct{}
failed bool
}
func (c *cluster) Merge(other *cluster) {
c.dirs = append(c.dirs, other.dirs...)
c.stores = append(c.stores, other.stores...)
c.fsms = append(c.fsms, other.fsms...)
c.snaps = append(c.snaps, other.snaps...)
c.trans = append(c.trans, other.trans...)
c.rafts = append(c.rafts, other.rafts...)
}
// notifyFailed will close the failed channel which can signal the goroutine
// running the test that another goroutine has detected a failure in order to
// terminate the test.
func (c *cluster) notifyFailed() {
c.failedLock.Lock()
defer c.failedLock.Unlock()
if !c.failed {
c.failed = true
close(c.failedCh)
}
}
// Failf provides a logging function that fails the tests, prints the output
// with microseconds, and does not mysteriously eat the string. This can be
// safely called from goroutines but won't immediately halt the test. The
// failedCh will be closed to allow blocking functions in the main thread to
// detect the failure and react. Note that you should arrange for the main
// thread to block until all goroutines have completed in order to reliably
// fail tests using this function.
func (c *cluster) Failf(format string, args ...interface{}) {
c.logger.Printf(format, args...)
c.t.Fail()
c.notifyFailed()
}
// FailNowf provides a logging function that fails the tests, prints the output
// with microseconds, and does not mysteriously eat the string. FailNowf must be
// called from the goroutine running the test or benchmark function, not from
// other goroutines created during the test. Calling FailNowf does not stop
// those other goroutines.
func (c *cluster) FailNowf(format string, args ...interface{}) {
c.logger.Printf(format, args...)
c.t.FailNow()
}
// Close shuts down the cluster and cleans up.
func (c *cluster) Close() {
var futures []Future
for _, r := range c.rafts {
futures = append(futures, r.Shutdown())
}
// Wait for shutdown
limit := time.AfterFunc(c.longstopTimeout, func() {
// We can't FailNowf here, and c.Failf won't do anything if we
// hang, so panic.
panic("timed out waiting for shutdown")
})
defer limit.Stop()
for _, f := range futures {
if err := f.Error(); err != nil {
c.FailNowf("[ERR] shutdown future err: %v", err)
}
}
for _, d := range c.dirs {
os.RemoveAll(d)
}
}
// WaitEventChan returns a channel which will signal if an observation is made
// or a timeout occurs. It is possible to set a filter to look for specific
// observations. Setting timeout to 0 means that it will wait forever until a
// non-filtered observation is made.
func (c *cluster) WaitEventChan(filter FilterFn, timeout time.Duration) <-chan struct{} {
ch := make(chan struct{})
go func() {
defer close(ch)
var timeoutCh <-chan time.Time
if timeout > 0 {
timeoutCh = time.After(timeout)
}
for {
select {
case <-timeoutCh:
return
case o, ok := <-c.observationCh:
if !ok || filter == nil || filter(&o) {
return
}
}
}
}()
return ch
}
// WaitEvent waits until an observation is made, a timeout occurs, or a test
// failure is signaled. It is possible to set a filter to look for specific
// observations. Setting timeout to 0 means that it will wait forever until a
// non-filtered observation is made or a test failure is signaled.
func (c *cluster) WaitEvent(filter FilterFn, timeout time.Duration) {
select {
case <-c.failedCh:
c.t.FailNow()
case <-c.WaitEventChan(filter, timeout):
}
}
// WaitForReplication blocks until every FSM in the cluster has the given
// length, or the long sanity check timeout expires.
func (c *cluster) WaitForReplication(fsmLength int) {
limitCh := time.After(c.longstopTimeout)
CHECK:
for {
ch := c.WaitEventChan(nil, c.conf.CommitTimeout)
select {
case <-c.failedCh:
c.t.FailNow()
case <-limitCh:
c.FailNowf("[ERR] Timeout waiting for replication")
case <-ch:
for _, fsm := range c.fsms {
fsm.Lock()
num := len(fsm.logs)
fsm.Unlock()
if num != fsmLength {
continue CHECK
}
}
return
}
}
}
// pollState takes a snapshot of the state of the cluster. This might not be
// stable, so use GetInState() to apply some additional checks when waiting
// for the cluster to achieve a particular state.
func (c *cluster) pollState(s RaftState) ([]*Raft, uint64) {
var highestTerm uint64
in := make([]*Raft, 0, 1)
for _, r := range c.rafts {
if r.State() == s {
in = append(in, r)
}
term := r.getCurrentTerm()
if term > highestTerm {
highestTerm = term
}
}
return in, highestTerm
}
// GetInState polls the state of the cluster and attempts to identify when it has
// settled into the given state.
func (c *cluster) GetInState(s RaftState) []*Raft {
c.logger.Printf("[INFO] Starting stability test for raft state: %+v", s)
limitCh := time.After(c.longstopTimeout)
// An election should complete after 2 * max(HeartbeatTimeout, ElectionTimeout)
// because of the randomised timer expiring in 1 x interval ... 2 x interval.
// We add a bit for propagation delay. If the election fails (e.g. because
// two elections start at once), we will have got something through our
// observer channel indicating a different state (i.e. one of the nodes
// will have moved to candidate state) which will reset the timer.
//
// Because of an implementation peculiarity, it can actually be 3 x timeout.
timeout := c.conf.HeartbeatTimeout
if timeout < c.conf.ElectionTimeout {
timeout = c.conf.ElectionTimeout
}
timeout = 2*timeout + c.conf.CommitTimeout
timer := time.NewTimer(timeout)
defer timer.Stop()
// Wait until we have a stable instate slice. Each time we see an
// observation a state has changed, recheck it and if it has changed,
// restart the timer.
var pollStartTime = time.Now()
for {
inState, highestTerm := c.pollState(s)
inStateTime := time.Now()
// Sometimes this routine is called very early on before the
// rafts have started up. We then timeout even though no one has
// even started an election. So if the highest term in use is
// zero, we know there are no raft processes that have yet issued
// a RequestVote, and we set a long time out. This is fixed when
// we hear the first RequestVote, at which point we reset the
// timer.
if highestTerm == 0 {
timer.Reset(c.longstopTimeout)
} else {
timer.Reset(timeout)
}
// Filter will wake up whenever we observe a RequestVote.
filter := func(ob *Observation) bool {
switch ob.Data.(type) {
case RaftState:
return true
case RequestVoteRequest:
return true
default:
return false
}
}
select {
case <-c.failedCh:
c.t.FailNow()
case <-limitCh:
c.FailNowf("[ERR] Timeout waiting for stable %s state", s)
case <-c.WaitEventChan(filter, 0):
c.logger.Printf("[DEBUG] Resetting stability timeout")
case t, ok := <-timer.C:
if !ok {
c.FailNowf("[ERR] Timer channel errored")
}
c.logger.Printf("[INFO] Stable state for %s reached at %s (%d nodes), %s from start of poll, %s from cluster start. Timeout at %s, %s after stability",
s, inStateTime, len(inState), inStateTime.Sub(pollStartTime), inStateTime.Sub(c.startTime), t, t.Sub(inStateTime))
return inState
}
}
}
// Leader waits for the cluster to elect a leader and stay in a stable state.
func (c *cluster) Leader() *Raft {
leaders := c.GetInState(Leader)
if len(leaders) != 1 {
c.FailNowf("[ERR] expected one leader: %v", leaders)
}
return leaders[0]
}
// Followers waits for the cluster to have N-1 followers and stay in a stable
// state.
func (c *cluster) Followers() []*Raft {
expFollowers := len(c.rafts) - 1
followers := c.GetInState(Follower)
if len(followers) != expFollowers {
c.FailNowf("[ERR] timeout waiting for %d followers (followers are %v)", expFollowers, followers)
}
return followers
}
// FullyConnect connects all the transports together.
func (c *cluster) FullyConnect() {
c.logger.Printf("[DEBUG] Fully Connecting")
for i, t1 := range c.trans {
for j, t2 := range c.trans {
if i != j {
t1.Connect(t2.LocalAddr(), t2)
t2.Connect(t1.LocalAddr(), t1)
}
}
}
}
// Disconnect disconnects all transports from the given address.
func (c *cluster) Disconnect(a ServerAddress) {
c.logger.Printf("[DEBUG] Disconnecting %v", a)
for _, t := range c.trans {
if t.LocalAddr() == a {
t.DisconnectAll()
} else {
t.Disconnect(a)
}
}
}
// Partition keeps the given list of addresses connected but isolates them
// from the other members of the cluster.
func (c *cluster) Partition(far []ServerAddress) {
c.logger.Printf("[DEBUG] Partitioning %v", far)
// Gather the set of nodes on the "near" side of the partition (we
// will call the supplied list of nodes the "far" side).
near := make(map[ServerAddress]struct{})
OUTER:
for _, t := range c.trans {
l := t.LocalAddr()
for _, a := range far {
if l == a {
continue OUTER
}
}
near[l] = struct{}{}
}
// Now fixup all the connections. The near side will be separated from
// the far side, and vice-versa.
for _, t := range c.trans {
l := t.LocalAddr()
if _, ok := near[l]; ok {
for _, a := range far {
t.Disconnect(a)
}
} else {
for a, _ := range near {
t.Disconnect(a)
}
}
}
}
// IndexOf returns the index of the given raft instance.
func (c *cluster) IndexOf(r *Raft) int {
for i, n := range c.rafts {
if n == r {
return i
}
}
return -1
}
// EnsureLeader checks that ALL the nodes think the leader is the given expected
// leader.
func (c *cluster) EnsureLeader(t *testing.T, expect ServerAddress) {
// We assume c.Leader() has been called already; now check all the rafts
// think the leader is correct
fail := false
for _, r := range c.rafts {
leader := ServerAddress(r.Leader())
if leader != expect {
if leader == "" {
leader = "[none]"
}
if expect == "" {
c.logger.Printf("[ERR] Peer %s sees leader %v expected [none]", r, leader)
} else {
c.logger.Printf("[ERR] Peer %s sees leader %v expected %v", r, leader, expect)
}
fail = true
}
}
if fail {
c.FailNowf("[ERR] At least one peer has the wrong notion of leader")
}
}
// EnsureSame makes sure all the FSMs have the same contents.
func (c *cluster) EnsureSame(t *testing.T) {
limit := time.Now().Add(c.longstopTimeout)
first := c.fsms[0]
CHECK:
first.Lock()
for i, fsm := range c.fsms {
if i == 0 {
continue
}
fsm.Lock()
if len(first.logs) != len(fsm.logs) {
fsm.Unlock()
if time.Now().After(limit) {
c.FailNowf("[ERR] FSM log length mismatch: %d %d",
len(first.logs), len(fsm.logs))
} else {
goto WAIT
}
}
for idx := 0; idx < len(first.logs); idx++ {
if bytes.Compare(first.logs[idx], fsm.logs[idx]) != 0 {
fsm.Unlock()
if time.Now().After(limit) {
c.FailNowf("[ERR] FSM log mismatch at index %d", idx)
} else {
goto WAIT
}
}
}
fsm.Unlock()
}
first.Unlock()
return
WAIT:
first.Unlock()
c.WaitEvent(nil, c.conf.CommitTimeout)
goto CHECK
}
// getConfiguration returns the configuration of the given Raft instance, or
// fails the test if there's an error
func (c *cluster) getConfiguration(r *Raft) Configuration {
future := r.GetConfiguration()
if err := future.Error(); err != nil {
c.FailNowf("[ERR] failed to get configuration: %v", err)
return Configuration{}
}
return future.Configuration()
}
// EnsureSamePeers makes sure all the rafts have the same set of peers.
func (c *cluster) EnsureSamePeers(t *testing.T) {
limit := time.Now().Add(c.longstopTimeout)
peerSet := c.getConfiguration(c.rafts[0])
CHECK:
for i, raft := range c.rafts {
if i == 0 {
continue
}
otherSet := c.getConfiguration(raft)
if !reflect.DeepEqual(peerSet, otherSet) {
if time.Now().After(limit) {
c.FailNowf("[ERR] peer mismatch: %+v %+v", peerSet, otherSet)
} else {
goto WAIT
}
}
}
return
WAIT:
c.WaitEvent(nil, c.conf.CommitTimeout)
goto CHECK
}
// makeCluster will return a cluster with the given config and number of peers.
// If bootstrap is true, the servers will know about each other before starting,
// otherwise their transports will be wired up but they won't yet have configured
// each other.
func makeCluster(n int, bootstrap bool, t *testing.T, conf *Config) *cluster {
if conf == nil {
conf = inmemConfig(t)
}
c := &cluster{
observationCh: make(chan Observation, 1024),
conf: conf,
// Propagation takes a maximum of 2 heartbeat timeouts (time to
// get a new heartbeat that would cause a commit) plus a bit.
propagateTimeout: conf.HeartbeatTimeout*2 + conf.CommitTimeout,
longstopTimeout: 5 * time.Second,
logger: newTestLoggerWithPrefix(t, "cluster"),
failedCh: make(chan struct{}),
}
c.t = t
var configuration Configuration
// Setup the stores and transports
for i := 0; i < n; i++ {
dir, err := ioutil.TempDir("", "raft")
if err != nil {
c.FailNowf("[ERR] err: %v ", err)
}
store := NewInmemStore()
c.dirs = append(c.dirs, dir)
c.stores = append(c.stores, store)
c.fsms = append(c.fsms, &MockFSM{})
dir2, snap := FileSnapTest(t)
c.dirs = append(c.dirs, dir2)
c.snaps = append(c.snaps, snap)
addr, trans := NewInmemTransport("")
c.trans = append(c.trans, trans)
localID := ServerID(fmt.Sprintf("server-%s", addr))
if conf.ProtocolVersion < 3 {
localID = ServerID(addr)
}
configuration.Servers = append(configuration.Servers, Server{
Suffrage: Voter,
ID: localID,
Address: addr,
})
}
// Wire the transports together
c.FullyConnect()
// Create all the rafts
c.startTime = time.Now()
for i := 0; i < n; i++ {
logs := c.stores[i]
store := c.stores[i]
snap := c.snaps[i]
trans := c.trans[i]
peerConf := conf
peerConf.LocalID = configuration.Servers[i].ID
peerConf.Logger = newTestLoggerWithPrefix(t, string(configuration.Servers[i].ID))
if bootstrap {
err := BootstrapCluster(peerConf, logs, store, snap, trans, configuration)
if err != nil {
c.FailNowf("[ERR] BootstrapCluster failed: %v", err)
}
}
raft, err := NewRaft(peerConf, c.fsms[i], logs, store, snap, trans)
if err != nil {
c.FailNowf("[ERR] NewRaft failed: %v", err)
}
raft.RegisterObserver(NewObserver(c.observationCh, false, nil))
if err != nil {
c.FailNowf("[ERR] RegisterObserver failed: %v", err)
}
c.rafts = append(c.rafts, raft)
}
return c
}
// See makeCluster. This adds the peers initially to the peer store.
func MakeCluster(n int, t *testing.T, conf *Config) *cluster {
return makeCluster(n, true, t, conf)
}
// See makeCluster. This doesn't add the peers initially to the peer store.
func MakeClusterNoBootstrap(n int, t *testing.T, conf *Config) *cluster {
return makeCluster(n, false, t, conf)
}
/*
func TestRaft_StartStop(t *testing.T) {
c := MakeCluster(1, t, nil)
c.Close()
}
func TestRaft_AfterShutdown(t *testing.T) {
c := MakeCluster(1, t, nil)
c.Close()
raft := c.rafts[0]
// Everything should fail now
if f := raft.Apply(nil, 0); f.Error() != ErrRaftShutdown {
c.FailNowf("[ERR] should be shutdown: %v", f.Error())
}
// TODO (slackpad) - Barrier, VerifyLeader, and GetConfiguration can get
// stuck if the buffered channel consumes the future but things are shut
// down so they never get processed.
if f := raft.AddVoter(ServerID("id"), ServerAddress("addr"), 0, 0); f.Error() != ErrRaftShutdown {
c.FailNowf("[ERR] should be shutdown: %v", f.Error())
}
if f := raft.AddNonvoter(ServerID("id"), ServerAddress("addr"), 0, 0); f.Error() != ErrRaftShutdown {
c.FailNowf("[ERR] should be shutdown: %v", f.Error())
}
if f := raft.RemoveServer(ServerID("id"), 0, 0); f.Error() != ErrRaftShutdown {
c.FailNowf("[ERR] should be shutdown: %v", f.Error())
}
if f := raft.DemoteVoter(ServerID("id"), 0, 0); f.Error() != ErrRaftShutdown {
c.FailNowf("[ERR] should be shutdown: %v", f.Error())
}
if f := raft.Snapshot(); f.Error() != ErrRaftShutdown {
c.FailNowf("[ERR] should be shutdown: %v", f.Error())
}
// Should be idempotent
if f := raft.Shutdown(); f.Error() != nil {
c.FailNowf("[ERR] shutdown should be idempotent")
}
}
func TestRaft_LiveBootstrap(t *testing.T) {
// Make the cluster.
c := MakeClusterNoBootstrap(3, t, nil)
defer c.Close()
// Build the configuration.
configuration := Configuration{}
for _, r := range c.rafts {
server := Server{
ID: r.localID,
Address: r.localAddr,
}
configuration.Servers = append(configuration.Servers, server)
}
// Bootstrap one of the nodes live.
boot := c.rafts[0].BootstrapCluster(configuration)
if err := boot.Error(); err != nil {
c.FailNowf("[ERR] bootstrap err: %v", err)
}
// Should be one leader.
c.Followers()
leader := c.Leader()
c.EnsureLeader(t, leader.localAddr)
// Should be able to apply.
future := leader.Apply([]byte("test"), c.conf.CommitTimeout)
if err := future.Error(); err != nil {
c.FailNowf("[ERR] apply err: %v", err)
}
c.WaitForReplication(1)
// Make sure the live bootstrap fails now that things are started up.
boot = c.rafts[0].BootstrapCluster(configuration)
if err := boot.Error(); err != ErrCantBootstrap {
c.FailNowf("[ERR] bootstrap should have failed: %v", err)
}
}
func TestRaft_RecoverCluster_NoState(t *testing.T) {
c := MakeClusterNoBootstrap(1, t, nil)
defer c.Close()
r := c.rafts[0]
configuration := Configuration{
Servers: []Server{
Server{
ID: r.localID,
Address: r.localAddr,
},
},
}
err := RecoverCluster(&r.conf, &MockFSM{}, r.logs, r.stable,
r.snapshots, r.trans, configuration)
if err == nil || !strings.Contains(err.Error(), "no initial state") {
c.FailNowf("[ERR] should have failed for no initial state: %v", err)
}
}
func TestRaft_RecoverCluster(t *testing.T) {
// Run with different number of applies which will cover no snapshot and
// snapshot + log scenarios. By sweeping through the trailing logs value
// we will also hit the case where we have a snapshot only.
runRecover := func(applies int) {
conf := inmemConfig(t)
conf.TrailingLogs = 10
c := MakeCluster(3, t, conf)
defer c.Close()
// Perform some commits.
c.logger.Printf("[DEBUG] Running with applies=%d", applies)
leader := c.Leader()
for i := 0; i < applies; i++ {
future := leader.Apply([]byte(fmt.Sprintf("test%d", i)), 0)
if err := future.Error(); err != nil {
c.FailNowf("[ERR] apply err: %v", err)
}
}
// Snap the configuration.
future := leader.GetConfiguration()
if err := future.Error(); err != nil {
c.FailNowf("[ERR] get configuration err: %v", err)
}
configuration := future.Configuration()
// Shut down the cluster.
for _, sec := range c.rafts {
if err := sec.Shutdown().Error(); err != nil {
c.FailNowf("[ERR] shutdown err: %v", err)
}
}
// Recover the cluster. We need to replace the transport and we
// replace the FSM so no state can carry over.
for i, r := range c.rafts {
before, err := r.snapshots.List()
if err != nil {
c.FailNowf("[ERR] snapshot list err: %v", err)
}
if err := RecoverCluster(&r.conf, &MockFSM{}, r.logs, r.stable,
r.snapshots, r.trans, configuration); err != nil {
c.FailNowf("[ERR] recover err: %v", err)
}
// Make sure the recovery looks right.
after, err := r.snapshots.List()
if err != nil {
c.FailNowf("[ERR] snapshot list err: %v", err)
}
if len(after) != len(before)+1 {
c.FailNowf("[ERR] expected a new snapshot, %d vs. %d", len(before), len(after))
}
first, err := r.logs.FirstIndex()
if err != nil {
c.FailNowf("[ERR] first log index err: %v", err)
}
last, err := r.logs.LastIndex()
if err != nil {
c.FailNowf("[ERR] last log index err: %v", err)
}
if first != 0 || last != 0 {
c.FailNowf("[ERR] expected empty logs, got %d/%d", first, last)
}
// Fire up the recovered Raft instance. We have to patch
// up the cluster state manually since this is an unusual
// operation.
_, trans := NewInmemTransport(r.localAddr)
r2, err := NewRaft(&r.conf, &MockFSM{}, r.logs, r.stable, r.snapshots, trans)
if err != nil {
c.FailNowf("[ERR] new raft err: %v", err)
}
c.rafts[i] = r2
c.trans[i] = r2.trans.(*InmemTransport)
c.fsms[i] = r2.fsm.(*MockFSM)
}
c.FullyConnect()
time.Sleep(c.propagateTimeout)
// Let things settle and make sure we recovered.
c.EnsureLeader(t, c.Leader().localAddr)
c.EnsureSame(t)
c.EnsureSamePeers(t)
}
for applies := 0; applies < 20; applies++ {
runRecover(applies)
}
}
func TestRaft_HasExistingState(t *testing.T) {
// Make a cluster.
c := MakeCluster(2, t, nil)
defer c.Close()
// Make a new cluster of 1.
c1 := MakeClusterNoBootstrap(1, t, nil)
// Make sure the initial state is clean.
hasState, err := HasExistingState(c1.rafts[0].logs, c1.rafts[0].stable, c1.rafts[0].snapshots)
if err != nil || hasState {
c.FailNowf("[ERR] should not have any existing state, %v", err)
}
// Merge clusters.
c.Merge(c1)
c.FullyConnect()
// Join the new node in.
future := c.Leader().AddVoter(c1.rafts[0].localID, c1.rafts[0].localAddr, 0, 0)
if err := future.Error(); err != nil {
c.FailNowf("[ERR] err: %v", err)
}
// Check the FSMs.
c.EnsureSame(t)
// Check the peers.
c.EnsureSamePeers(t)
// Ensure one leader.
c.EnsureLeader(t, c.Leader().localAddr)
// Make sure it's not clean.
hasState, err = HasExistingState(c1.rafts[0].logs, c1.rafts[0].stable, c1.rafts[0].snapshots)
if err != nil || !hasState {
c.FailNowf("[ERR] should have some existing state, %v", err)
}
}
func TestRaft_SingleNode(t *testing.T) {
conf := inmemConfig(t)
c := MakeCluster(1, t, conf)
defer c.Close()
raft := c.rafts[0]
// Watch leaderCh for change
select {
case v := <-raft.LeaderCh():
if !v {
c.FailNowf("[ERR] should become leader")
}
case <-time.After(conf.HeartbeatTimeout * 3):
c.FailNowf("[ERR] timeout becoming leader")
}
// Should be leader
if s := raft.State(); s != Leader {
c.FailNowf("[ERR] expected leader: %v", s)
}
// Should be able to apply
future := raft.Apply([]byte("test"), c.conf.HeartbeatTimeout)
if err := future.Error(); err != nil {
c.FailNowf("[ERR] err: %v", err)
}
// Check the response
if future.Response().(int) != 1 {
c.FailNowf("[ERR] bad response: %v", future.Response())
}
// Check the index
if idx := future.Index(); idx == 0 {
c.FailNowf("[ERR] bad index: %d", idx)
}
// Check that it is applied to the FSM
if len(c.fsms[0].logs) != 1 {
c.FailNowf("[ERR] did not apply to FSM!")
}
}
func TestRaft_TripleNode(t *testing.T) {
// Make the cluster
c := MakeCluster(3, t, nil)
defer c.Close()
// Should be one leader
c.Followers()
leader := c.Leader()
c.EnsureLeader(t, leader.localAddr)
// Should be able to apply
future := leader.Apply([]byte("test"), c.conf.CommitTimeout)
if err := future.Error(); err != nil {
c.FailNowf("[ERR] err: %v", err)
}
c.WaitForReplication(1)
}
func TestRaft_LeaderFail(t *testing.T) {
// Make the cluster
c := MakeCluster(3, t, nil)
defer c.Close()
// Should be one leader
c.Followers()
leader := c.Leader()
// Should be able to apply
future := leader.Apply([]byte("test"), c.conf.CommitTimeout)
if err := future.Error(); err != nil {
c.FailNowf("[ERR] err: %v", err)
}
c.WaitForReplication(1)
// Disconnect the leader now
t.Logf("[INFO] Disconnecting %v", leader)
leaderTerm := leader.getCurrentTerm()
c.Disconnect(leader.localAddr)
// Wait for new leader
limit := time.Now().Add(c.longstopTimeout)
var newLead *Raft
for time.Now().Before(limit) && newLead == nil {
c.WaitEvent(nil, c.conf.CommitTimeout)
leaders := c.GetInState(Leader)
if len(leaders) == 1 && leaders[0] != leader {
newLead = leaders[0]
}
}
if newLead == nil {
c.FailNowf("[ERR] expected new leader")
}
// Ensure the term is greater
if newLead.getCurrentTerm() <= leaderTerm {
c.FailNowf("[ERR] expected newer term! %d %d (%v, %v)", newLead.getCurrentTerm(), leaderTerm, newLead, leader)
}
// Apply should work not work on old leader
future1 := leader.Apply([]byte("fail"), c.conf.CommitTimeout)
// Apply should work on newer leader
future2 := newLead.Apply([]byte("apply"), c.conf.CommitTimeout)
// Future2 should work
if err := future2.Error(); err != nil {
c.FailNowf("[ERR] err: %v", err)
}
// Reconnect the networks
t.Logf("[INFO] Reconnecting %v", leader)
c.FullyConnect()
// Future1 should fail
if err := future1.Error(); err != ErrLeadershipLost && err != ErrNotLeader {
c.FailNowf("[ERR] err: %v", err)
}
// Wait for log replication
c.EnsureSame(t)
// Check two entries are applied to the FSM
for _, fsm := range c.fsms {
fsm.Lock()
if len(fsm.logs) != 2 {
c.FailNowf("[ERR] did not apply both to FSM! %v", fsm.logs)
}
if bytes.Compare(fsm.logs[0], []byte("test")) != 0 {
c.FailNowf("[ERR] first entry should be 'test'")
}
if bytes.Compare(fsm.logs[1], []byte("apply")) != 0 {
c.FailNowf("[ERR] second entry should be 'apply'")
}
fsm.Unlock()
}
}
func TestRaft_BehindFollower(t *testing.T) {
// Make the cluster
c := MakeCluster(3, t, nil)
defer c.Close()
// Disconnect one follower
leader := c.Leader()
followers := c.Followers()
behind := followers[0]
c.Disconnect(behind.localAddr)
// Commit a lot of things
var future Future
for i := 0; i < 100; i++ {
future = leader.Apply([]byte(fmt.Sprintf("test%d", i)), 0)
}
// Wait for the last future to apply
if err := future.Error(); err != nil {
c.FailNowf("[ERR] err: %v", err)
} else {
t.Logf("[INFO] Finished apply without behind follower")
}
// Check that we have a non zero last contact
if behind.LastContact().IsZero() {
c.FailNowf("[ERR] expected previous contact")
}
// Reconnect the behind node
c.FullyConnect()
// Ensure all the logs are the same
c.EnsureSame(t)
// Ensure one leader
leader = c.Leader()
c.EnsureLeader(t, leader.localAddr)
}
func TestRaft_ApplyNonLeader(t *testing.T) {
// Make the cluster
c := MakeCluster(3, t, nil)
defer c.Close()
// Wait for a leader
c.Leader()
// Try to apply to them
followers := c.GetInState(Follower)
if len(followers) != 2 {
c.FailNowf("[ERR] Expected 2 followers")
}
follower := followers[0]
// Try to apply
future := follower.Apply([]byte("test"), c.conf.CommitTimeout)
if future.Error() != ErrNotLeader {
c.FailNowf("[ERR] should not apply on follower")
}
// Should be cached
if future.Error() != ErrNotLeader {
c.FailNowf("[ERR] should not apply on follower")
}
}
func TestRaft_ApplyConcurrent(t *testing.T) {
// Make the cluster
conf := inmemConfig(t)
conf.HeartbeatTimeout = 2 * conf.HeartbeatTimeout
conf.ElectionTimeout = 2 * conf.ElectionTimeout
c := MakeCluster(3, t, conf)
defer c.Close()
// Wait for a leader
leader := c.Leader()
// Create a wait group
const sz = 100
var group sync.WaitGroup
group.Add(sz)
applyF := func(i int) {
defer group.Done()
future := leader.Apply([]byte(fmt.Sprintf("test%d", i)), 0)
if err := future.Error(); err != nil {
c.Failf("[ERR] err: %v", err)
}
}
// Concurrently apply
for i := 0; i < sz; i++ {
go applyF(i)
}
// Wait to finish
doneCh := make(chan struct{})
go func() {
group.Wait()
close(doneCh)
}()
select {
case <-doneCh:
case <-time.After(c.longstopTimeout):
c.FailNowf("[ERR] timeout")
}
// If anything failed up to this point then bail now, rather than do a
// confusing compare.
if t.Failed() {
c.FailNowf("[ERR] One or more of the apply operations failed")
}
// Check the FSMs
c.EnsureSame(t)
}
func TestRaft_ApplyConcurrent_Timeout(t *testing.T) {
// Make the cluster
conf := inmemConfig(t)
conf.CommitTimeout = 1 * time.Millisecond
conf.HeartbeatTimeout = 2 * conf.HeartbeatTimeout
conf.ElectionTimeout = 2 * conf.ElectionTimeout
c := MakeCluster(1, t, conf)
defer c.Close()
// Wait for a leader
leader := c.Leader()
// Enough enqueues should cause at least one timeout...
var didTimeout int32
for i := 0; (i < 5000) && (atomic.LoadInt32(&didTimeout) == 0); i++ {
go func(i int) {
future := leader.Apply([]byte(fmt.Sprintf("test%d", i)), time.Microsecond)
if future.Error() == ErrEnqueueTimeout {
atomic.StoreInt32(&didTimeout, 1)
}
}(i)
// Give the leader loop some other things to do in order to
// increase the odds of a timeout.
if i%5 == 0 {
leader.VerifyLeader()
}
}
// Loop until we see a timeout, or give up.
limit := time.Now().Add(c.longstopTimeout)
for time.Now().Before(limit) {
if atomic.LoadInt32(&didTimeout) != 0 {
return
}
c.WaitEvent(nil, c.propagateTimeout)
}
c.FailNowf("[ERR] Timeout waiting to detect apply timeouts")
}
func TestRaft_JoinNode(t *testing.T) {
// Make a cluster
c := MakeCluster(2, t, nil)
defer c.Close()
// Make a new cluster of 1
c1 := MakeClusterNoBootstrap(1, t, nil)
// Merge clusters
c.Merge(c1)
c.FullyConnect()
// Join the new node in
future := c.Leader().AddVoter(c1.rafts[0].localID, c1.rafts[0].localAddr, 0, 0)
if err := future.Error(); err != nil {
c.FailNowf("[ERR] err: %v", err)
}
// Ensure one leader
c.EnsureLeader(t, c.Leader().localAddr)
// Check the FSMs
c.EnsureSame(t)
// Check the peers
c.EnsureSamePeers(t)
}
func TestRaft_RemoveFollower(t *testing.T) {
// Make a cluster
c := MakeCluster(3, t, nil)
defer c.Close()
// Get the leader
leader := c.Leader()
// Wait until we have 2 followers
limit := time.Now().Add(c.longstopTimeout)
var followers []*Raft
for time.Now().Before(limit) && len(followers) != 2 {
c.WaitEvent(nil, c.conf.CommitTimeout)
followers = c.GetInState(Follower)
}
if len(followers) != 2 {
c.FailNowf("[ERR] expected two followers: %v", followers)
}
// Remove a follower
follower := followers[0]
future := leader.RemoveServer(follower.localID, 0, 0)
if err := future.Error(); err != nil {
c.FailNowf("[ERR] err: %v", err)
}
// Wait a while
time.Sleep(c.propagateTimeout)
// Other nodes should have fewer peers
if configuration := c.getConfiguration(leader); len(configuration.Servers) != 2 {
c.FailNowf("[ERR] too many peers")
}
if configuration := c.getConfiguration(followers[1]); len(configuration.Servers) != 2 {
c.FailNowf("[ERR] too many peers")
}
}
func TestRaft_RemoveLeader(t *testing.T) {
// Make a cluster
c := MakeCluster(3, t, nil)
defer c.Close()
// Get the leader
leader := c.Leader()
// Wait until we have 2 followers
limit := time.Now().Add(c.longstopTimeout)
var followers []*Raft
for time.Now().Before(limit) && len(followers) != 2 {
c.WaitEvent(nil, c.conf.CommitTimeout)
followers = c.GetInState(Follower)
}
if len(followers) != 2 {
c.FailNowf("[ERR] expected two followers: %v", followers)
}
// Remove the leader
f := leader.RemoveServer(leader.localID, 0, 0)
// Wait for the future to complete
if f.Error() != nil {
c.FailNowf("RemoveServer() returned error %v", f.Error())
}
// Wait a bit for log application
time.Sleep(c.propagateTimeout)
// Should have a new leader
time.Sleep(c.propagateTimeout)
newLeader := c.Leader()
if newLeader == leader {
c.FailNowf("[ERR] removed leader is still leader")
}
// Other nodes should have fewer peers
if configuration := c.getConfiguration(newLeader); len(configuration.Servers) != 2 {
c.FailNowf("[ERR] wrong number of peers %d", len(configuration.Servers))
}
// Old leader should be shutdown
if leader.State() != Shutdown {
c.FailNowf("[ERR] old leader should be shutdown")
}
}
func TestRaft_RemoveLeader_NoShutdown(t *testing.T) {
// Make a cluster
conf := inmemConfig(t)
conf.ShutdownOnRemove = false
c := MakeCluster(3, t, conf)
defer c.Close()
// Get the leader
c.Followers()
leader := c.Leader()
// Remove the leader
for i := byte(0); i < 100; i++ {
if i == 80 {
removeFuture := leader.RemoveServer(leader.localID, 0, 0)
if err := removeFuture.Error(); err != nil {
c.FailNowf("[ERR] err: %v, remove leader failed", err)
}
}
future := leader.Apply([]byte{i}, 0)
if i > 80 {
if err := future.Error(); err == nil || err != ErrNotLeader {
c.FailNowf("[ERR] err: %v, future entries should fail", err)
}
}
}
// Wait a while
time.Sleep(c.propagateTimeout)
// Should have a new leader
newLeader := c.Leader()
// Wait a bit for log application
time.Sleep(c.propagateTimeout)
// Other nodes should have pulled the leader.
configuration := c.getConfiguration(newLeader)
if len(configuration.Servers) != 2 {
c.FailNowf("[ERR] too many peers")
}
if hasVote(configuration, leader.localID) {
c.FailNowf("[ERR] old leader should no longer have a vote")
}
// Old leader should be a follower.
if leader.State() != Follower {
c.FailNowf("[ERR] leader should be follower")
}
// Old leader should not include itself in its peers.
configuration = c.getConfiguration(leader)
if len(configuration.Servers) != 2 {
c.FailNowf("[ERR] too many peers")
}
if hasVote(configuration, leader.localID) {
c.FailNowf("[ERR] old leader should no longer have a vote")
}
// Other nodes should have the same state
c.EnsureSame(t)
}
func TestRaft_RemoveFollower_SplitCluster(t *testing.T) {
// Make a cluster.
conf := inmemConfig(t)
c := MakeCluster(4, t, conf)
defer c.Close()
// Wait for a leader to get elected.
leader := c.Leader()
// Wait to make sure knowledge of the 4th server is known to all the
// peers.
numServers := 0
limit := time.Now().Add(c.longstopTimeout)
for time.Now().Before(limit) && numServers != 4 {
time.Sleep(c.propagateTimeout)
configuration := c.getConfiguration(leader)
numServers = len(configuration.Servers)
}
if numServers != 4 {
c.FailNowf("[ERR] Leader should have 4 servers, got %d", numServers)
}
c.EnsureSamePeers(t)
// Isolate two of the followers.
followers := c.Followers()
if len(followers) != 3 {
c.FailNowf("[ERR] Expected 3 followers, got %d", len(followers))
}
c.Partition([]ServerAddress{followers[0].localAddr, followers[1].localAddr})
// Try to remove the remaining follower that was left with the leader.
future := leader.RemoveServer(followers[2].localID, 0, 0)
if err := future.Error(); err == nil {
c.FailNowf("[ERR] Should not have been able to make peer change")
}
}
func TestRaft_AddKnownPeer(t *testing.T) {
// Make a cluster
c := MakeCluster(3, t, nil)
defer c.Close()
// Get the leader
leader := c.Leader()
followers := c.GetInState(Follower)
configReq := &configurationsFuture{}
configReq.init()
leader.configurationsCh <- configReq
if err := configReq.Error(); err != nil {
c.FailNowf("[ERR] err: %v", err)
}
startingConfig := configReq.configurations.committed
startingConfigIdx := configReq.configurations.committedIndex
// Add a follower
future := leader.AddVoter(followers[0].localID, followers[0].localAddr, 0, 0)
if err := future.Error(); err != nil {
c.FailNowf("[ERR] AddVoter() err: %v", err)
}
configReq = &configurationsFuture{}
configReq.init()
leader.configurationsCh <- configReq
if err := configReq.Error(); err != nil {
c.FailNowf("[ERR] err: %v", err)
}
newConfig := configReq.configurations.committed
newConfigIdx := configReq.configurations.committedIndex
if newConfigIdx <= startingConfigIdx {
c.FailNowf("[ERR] AddVoter should have written a new config entry, but configurations.commitedIndex still %d", newConfigIdx)
}
if !reflect.DeepEqual(newConfig, startingConfig) {
c.FailNowf("[ERR} AddVoter with existing peer shouldn't have changed config, was %#v, but now %#v", startingConfig, newConfig)
}
}
func TestRaft_RemoveUnknownPeer(t *testing.T) {
// Make a cluster
c := MakeCluster(3, t, nil)
defer c.Close()
// Get the leader
leader := c.Leader()
configReq := &configurationsFuture{}
configReq.init()
leader.configurationsCh <- configReq
if err := configReq.Error(); err != nil {
c.FailNowf("[ERR] err: %v", err)
}
startingConfig := configReq.configurations.committed
startingConfigIdx := configReq.configurations.committedIndex
// Remove unknown
future := leader.RemoveServer(ServerID(NewInmemAddr()), 0, 0)
// nothing to do, should be a new config entry that's the same as before
if err := future.Error(); err != nil {
c.FailNowf("[ERR] RemoveServer() err: %v", err)
}
configReq = &configurationsFuture{}
configReq.init()
leader.configurationsCh <- configReq
if err := configReq.Error(); err != nil {
c.FailNowf("[ERR] err: %v", err)
}
newConfig := configReq.configurations.committed
newConfigIdx := configReq.configurations.committedIndex
if newConfigIdx <= startingConfigIdx {
c.FailNowf("[ERR] RemoveServer should have written a new config entry, but configurations.commitedIndex still %d", newConfigIdx)
}
if !reflect.DeepEqual(newConfig, startingConfig) {
c.FailNowf("[ERR} RemoveServer with unknown peer shouldn't of changed config, was %#v, but now %#v", startingConfig, newConfig)
}
}
func TestRaft_SnapshotRestore(t *testing.T) {
// Make the cluster
conf := inmemConfig(t)
conf.TrailingLogs = 10
c := MakeCluster(1, t, conf)
defer c.Close()
// Commit a lot of things
leader := c.Leader()
var future Future
for i := 0; i < 100; i++ {
future = leader.Apply([]byte(fmt.Sprintf("test%d", i)), 0)
}
// Wait for the last future to apply
if err := future.Error(); err != nil {
c.FailNowf("[ERR] err: %v", err)
}
// Take a snapshot
snapFuture := leader.Snapshot()
if err := snapFuture.Error(); err != nil {
c.FailNowf("[ERR] err: %v", err)
}
// Check for snapshot
snaps, _ := leader.snapshots.List()
if len(snaps) != 1 {
c.FailNowf("[ERR] should have a snapshot")
}
snap := snaps[0]
// Logs should be trimmed
if idx, _ := leader.logs.FirstIndex(); idx != snap.Index-conf.TrailingLogs+1 {
c.FailNowf("[ERR] should trim logs to %d: but is %d", snap.Index-conf.TrailingLogs+1, idx)
}
// Shutdown
shutdown := leader.Shutdown()
if err := shutdown.Error(); err != nil {
c.FailNowf("[ERR] err: %v", err)
}
// Restart the Raft
r := leader
// Can't just reuse the old transport as it will be closed
_, trans2 := NewInmemTransport(r.trans.LocalAddr())
r, err := NewRaft(&r.conf, r.fsm, r.logs, r.stable, r.snapshots, trans2)
if err != nil {
c.FailNowf("[ERR] err: %v", err)
}
c.rafts[0] = r
// We should have restored from the snapshot!
if last := r.getLastApplied(); last != snap.Index {
c.FailNowf("[ERR] bad last index: %d, expecting %d", last, snap.Index)
}
}
// TODO: Need a test that has a previous format Snapshot and check that it can
// be read/installed on the new code.
// TODO: Need a test to process old-style entries in the Raft log when starting
// up.
func TestRaft_SnapshotRestore_PeerChange(t *testing.T) {
// Make the cluster.
conf := inmemConfig(t)
conf.ProtocolVersion = 1
conf.TrailingLogs = 10
c := MakeCluster(3, t, conf)
defer c.Close()
// Commit a lot of things.
leader := c.Leader()
var future Future
for i := 0; i < 100; i++ {
future = leader.Apply([]byte(fmt.Sprintf("test%d", i)), 0)
}
// Wait for the last future to apply
if err := future.Error(); err != nil {
c.FailNowf("[ERR] err: %v", err)
}
// Take a snapshot.
snapFuture := leader.Snapshot()
if err := snapFuture.Error(); err != nil {
c.FailNowf("[ERR] err: %v", err)
}
// Shutdown.
shutdown := leader.Shutdown()
if err := shutdown.Error(); err != nil {
c.FailNowf("[ERR] err: %v", err)
}
// Make a separate cluster.
c2 := MakeClusterNoBootstrap(2, t, conf)
defer c2.Close()
// Kill the old cluster.
for _, sec := range c.rafts {
if sec != leader {
if err := sec.Shutdown().Error(); err != nil {
c.FailNowf("[ERR] shutdown err: %v", err)
}
}
}
// Restart the Raft with new peers.
r := leader
// Gather the new peer address list.
var peers []string
peers = append(peers, fmt.Sprintf("%q", leader.trans.LocalAddr()))
for _, sec := range c2.rafts {
peers = append(peers, fmt.Sprintf("%q", sec.trans.LocalAddr()))
}
content := []byte(fmt.Sprintf("[%s]", strings.Join(peers, ",")))
// Perform a manual recovery on the cluster.
base, err := ioutil.TempDir("", "")
if err != nil {
c.FailNowf("[ERR] err: %v", err)
}
defer os.RemoveAll(base)
peersFile := filepath.Join(base, "peers.json")
if err := ioutil.WriteFile(peersFile, content, 0666); err != nil {
c.FailNowf("[ERR] err: %v", err)
}
configuration, err := ReadPeersJSON(peersFile)
if err != nil {
c.FailNowf("[ERR] err: %v", err)
}
if err := RecoverCluster(&r.conf, &MockFSM{}, r.logs, r.stable,
r.snapshots, r.trans, configuration); err != nil {
c.FailNowf("[ERR] err: %v", err)
}
// Can't just reuse the old transport as it will be closed. We also start
// with a fresh FSM for good measure so no state can carry over.
_, trans := NewInmemTransport(r.localAddr)
r, err = NewRaft(&r.conf, &MockFSM{}, r.logs, r.stable, r.snapshots, trans)
if err != nil {
c.FailNowf("[ERR] err: %v", err)
}
c.rafts[0] = r
c2.rafts = append(c2.rafts, r)
c2.trans = append(c2.trans, r.trans.(*InmemTransport))
c2.fsms = append(c2.fsms, r.fsm.(*MockFSM))
c2.FullyConnect()
// Wait a while.
time.Sleep(c.propagateTimeout)
// Ensure we elect a leader, and that we replicate to our new followers.
c2.EnsureSame(t)
// We should have restored from the snapshot! Note that there's one
// index bump from the noop the leader tees up when it takes over.
if last := r.getLastApplied(); last != 103 {
c.FailNowf("[ERR] bad last: %v", last)
}
// Check the peers.
c2.EnsureSamePeers(t)
}
func TestRaft_AutoSnapshot(t *testing.T) {
// Make the cluster
conf := inmemConfig(t)
conf.SnapshotInterval = conf.CommitTimeout * 2
conf.SnapshotThreshold = 50
conf.TrailingLogs = 10
c := MakeCluster(1, t, conf)
defer c.Close()
// Commit a lot of things
leader := c.Leader()
var future Future
for i := 0; i < 100; i++ {
future = leader.Apply([]byte(fmt.Sprintf("test%d", i)), 0)
}
// Wait for the last future to apply
if err := future.Error(); err != nil {
c.FailNowf("[ERR] err: %v", err)
}
// Wait for a snapshot to happen
time.Sleep(c.propagateTimeout)
// Check for snapshot
if snaps, _ := leader.snapshots.List(); len(snaps) == 0 {
c.FailNowf("[ERR] should have a snapshot")
}
}
func TestRaft_UserSnapshot(t *testing.T) {
// Make the cluster.
conf := inmemConfig(t)
conf.SnapshotThreshold = 50
conf.TrailingLogs = 10
c := MakeCluster(1, t, conf)
defer c.Close()
// With nothing committed, asking for a snapshot should return an error.
leader := c.Leader()
if err := leader.Snapshot().Error(); err != ErrNothingNewToSnapshot {
c.FailNowf("[ERR] Request for Snapshot failed: %v", err)
}
// Commit some things.
var future Future
for i := 0; i < 10; i++ {
future = leader.Apply([]byte(fmt.Sprintf("test %d", i)), 0)
}
if err := future.Error(); err != nil {
c.FailNowf("[ERR] Error Apply new log entries: %v", err)
}
// Now we should be able to ask for a snapshot without getting an error.
if err := leader.Snapshot().Error(); err != nil {
c.FailNowf("[ERR] Request for Snapshot failed: %v", err)
}
// Check for snapshot
if snaps, _ := leader.snapshots.List(); len(snaps) == 0 {
c.FailNowf("[ERR] should have a snapshot")
}
}
// snapshotAndRestore does a snapshot and restore sequence and applies the given
// offset to the snapshot index, so we can try out different situations.
func snapshotAndRestore(t *testing.T, offset uint64) {
// Make the cluster.
conf := inmemConfig(t)
c := MakeCluster(3, t, conf)
defer c.Close()
// Wait for things to get stable and commit some things.
leader := c.Leader()
var future Future
for i := 0; i < 10; i++ {
future = leader.Apply([]byte(fmt.Sprintf("test %d", i)), 0)
}
if err := future.Error(); err != nil {
c.FailNowf("[ERR] Error Apply new log entries: %v", err)
}
// Take a snapshot.
snap := leader.Snapshot()
if err := snap.Error(); err != nil {
c.FailNowf("[ERR] Request for Snapshot failed: %v", err)
}
// Commit some more things.
for i := 10; i < 20; i++ {
future = leader.Apply([]byte(fmt.Sprintf("test %d", i)), 0)
}
if err := future.Error(); err != nil {
c.FailNowf("[ERR] Error Apply new log entries: %v", err)
}
// Get the last index before the restore.
preIndex := leader.getLastIndex()
// Restore the snapshot, twiddling the index with the offset.
meta, reader, err := snap.Open()
meta.Index += offset
if err != nil {
c.FailNowf("[ERR] Snapshot open failed: %v", err)
}
defer reader.Close()
if err := leader.Restore(meta, reader, 5*time.Second); err != nil {
c.FailNowf("[ERR] Restore failed: %v", err)
}
// Make sure the index was updated correctly. We add 2 because we burn
// an index to create a hole, and then we apply a no-op after the
// restore.
var expected uint64
if meta.Index < preIndex {
expected = preIndex + 2
} else {
expected = meta.Index + 2
}
lastIndex := leader.getLastIndex()
if lastIndex != expected {
c.FailNowf("[ERR] Index was not updated correctly: %d vs. %d", lastIndex, expected)
}
// Ensure all the logs are the same and that we have everything that was
// part of the original snapshot, and that the contents after were
// reverted.
c.EnsureSame(t)
fsm := c.fsms[0]
fsm.Lock()
if len(fsm.logs) != 10 {
c.FailNowf("[ERR] Log length bad: %d", len(fsm.logs))
}
for i, entry := range fsm.logs {
expected := []byte(fmt.Sprintf("test %d", i))
if bytes.Compare(entry, expected) != 0 {
c.FailNowf("[ERR] Log entry bad: %v", entry)
}
}
fsm.Unlock()
// Commit some more things.
for i := 20; i < 30; i++ {
future = leader.Apply([]byte(fmt.Sprintf("test %d", i)), 0)
}
if err := future.Error(); err != nil {
c.FailNowf("[ERR] Error Apply new log entries: %v", err)
}
c.EnsureSame(t)
}
func TestRaft_UserRestore(t *testing.T) {
// Snapshots from the past.
snapshotAndRestore(t, 0)
snapshotAndRestore(t, 1)
snapshotAndRestore(t, 2)
// Snapshots from the future.
snapshotAndRestore(t, 100)
snapshotAndRestore(t, 1000)
snapshotAndRestore(t, 10000)
}
func TestRaft_SendSnapshotFollower(t *testing.T) {
// Make the cluster
conf := inmemConfig(t)
conf.TrailingLogs = 10
c := MakeCluster(3, t, conf)
defer c.Close()
// Disconnect one follower
followers := c.Followers()
leader := c.Leader()
behind := followers[0]
c.Disconnect(behind.localAddr)
// Commit a lot of things
var future Future
for i := 0; i < 100; i++ {
future = leader.Apply([]byte(fmt.Sprintf("test%d", i)), 0)
}
// Wait for the last future to apply
if err := future.Error(); err != nil {
c.FailNowf("[ERR] err: %v", err)
} else {
t.Logf("[INFO] Finished apply without behind follower")
}
// Snapshot, this will truncate logs!
for _, r := range c.rafts {
future = r.Snapshot()
// the disconnected node will have nothing to snapshot, so that's expected
if err := future.Error(); err != nil && err != ErrNothingNewToSnapshot {
c.FailNowf("[ERR] err: %v", err)
}
}
// Reconnect the behind node
c.FullyConnect()
// Ensure all the logs are the same
c.EnsureSame(t)
}
func TestRaft_SendSnapshotAndLogsFollower(t *testing.T) {
// Make the cluster
conf := inmemConfig(t)
conf.TrailingLogs = 10
c := MakeCluster(3, t, conf)
defer c.Close()
// Disconnect one follower
followers := c.Followers()
leader := c.Leader()
behind := followers[0]
c.Disconnect(behind.localAddr)
// Commit a lot of things
var future Future
for i := 0; i < 100; i++ {
future = leader.Apply([]byte(fmt.Sprintf("test%d", i)), 0)
}
// Wait for the last future to apply
if err := future.Error(); err != nil {
c.FailNowf("[ERR] err: %v", err)
} else {
t.Logf("[INFO] Finished apply without behind follower")
}
// Snapshot, this will truncate logs!
for _, r := range c.rafts {
future = r.Snapshot()
// the disconnected node will have nothing to snapshot, so that's expected
if err := future.Error(); err != nil && err != ErrNothingNewToSnapshot {
c.FailNowf("[ERR] err: %v", err)
}
}
// Commit more logs past the snapshot.
for i := 100; i < 200; i++ {
future = leader.Apply([]byte(fmt.Sprintf("test%d", i)), 0)
}
// Wait for the last future to apply
if err := future.Error(); err != nil {
c.FailNowf("[ERR] err: %v", err)
} else {
t.Logf("[INFO] Finished apply without behind follower")
}
// Reconnect the behind node
c.FullyConnect()
// Ensure all the logs are the same
c.EnsureSame(t)
}
func TestRaft_ReJoinFollower(t *testing.T) {
// Enable operation after a remove.
conf := inmemConfig(t)
conf.ShutdownOnRemove = false
c := MakeCluster(3, t, conf)
defer c.Close()
// Get the leader.
leader := c.Leader()
// Wait until we have 2 followers.
limit := time.Now().Add(c.longstopTimeout)
var followers []*Raft
for time.Now().Before(limit) && len(followers) != 2 {
c.WaitEvent(nil, c.conf.CommitTimeout)
followers = c.GetInState(Follower)
}
if len(followers) != 2 {
c.FailNowf("[ERR] expected two followers: %v", followers)
}
// Remove a follower.
follower := followers[0]
future := leader.RemoveServer(follower.localID, 0, 0)
if err := future.Error(); err != nil {
c.FailNowf("[ERR] err: %v", err)
}
// Other nodes should have fewer peers.
time.Sleep(c.propagateTimeout)
if configuration := c.getConfiguration(leader); len(configuration.Servers) != 2 {
c.FailNowf("[ERR] too many peers: %v", configuration)
}
if configuration := c.getConfiguration(followers[1]); len(configuration.Servers) != 2 {
c.FailNowf("[ERR] too many peers: %v", configuration)
}
// Get the leader. We can't use the normal stability checker here because
// the removed server will be trying to run an election but will be
// ignored. The stability check will think this is off nominal because
// the RequestVote RPCs won't stop firing.
limit = time.Now().Add(c.longstopTimeout)
var leaders []*Raft
for time.Now().Before(limit) && len(leaders) != 1 {
c.WaitEvent(nil, c.conf.CommitTimeout)
leaders, _ = c.pollState(Leader)
}
if len(leaders) != 1 {
c.FailNowf("[ERR] expected a leader")
}
leader = leaders[0]
// Rejoin. The follower will have a higher term than the leader,
// this will cause the leader to step down, and a new round of elections
// to take place. We should eventually re-stabilize.
future = leader.AddVoter(follower.localID, follower.localAddr, 0, 0)
if err := future.Error(); err != nil && err != ErrLeadershipLost {
c.FailNowf("[ERR] err: %v", err)
}
// We should level back up to the proper number of peers. We add a
// stability check here to make sure the cluster gets to a state where
// there's a solid leader.
leader = c.Leader()
if configuration := c.getConfiguration(leader); len(configuration.Servers) != 3 {
c.FailNowf("[ERR] missing peers: %v", configuration)
}
if configuration := c.getConfiguration(followers[1]); len(configuration.Servers) != 3 {
c.FailNowf("[ERR] missing peers: %v", configuration)
}
// Should be a follower now.
if follower.State() != Follower {
c.FailNowf("[ERR] bad state: %v", follower.State())
}
}
func TestRaft_LeaderLeaseExpire(t *testing.T) {
// Make a cluster
conf := inmemConfig(t)
c := MakeCluster(2, t, conf)
defer c.Close()
// Get the leader
leader := c.Leader()
// Wait until we have a followers
limit := time.Now().Add(c.longstopTimeout)
var followers []*Raft
for time.Now().Before(limit) && len(followers) != 1 {
c.WaitEvent(nil, c.conf.CommitTimeout)
followers = c.GetInState(Follower)
}
if len(followers) != 1 {
c.FailNowf("[ERR] expected a followers: %v", followers)
}
// Disconnect the follower now
follower := followers[0]
t.Logf("[INFO] Disconnecting %v", follower)
c.Disconnect(follower.localAddr)
// Watch the leaderCh
select {
case v := <-leader.LeaderCh():
if v {
c.FailNowf("[ERR] should step down as leader")
}
case <-time.After(conf.LeaderLeaseTimeout * 2):
c.FailNowf("[ERR] timeout stepping down as leader")
}
// Ensure the last contact of the leader is non-zero
if leader.LastContact().IsZero() {
c.FailNowf("[ERR] expected non-zero contact time")
}
// Should be no leaders
if len(c.GetInState(Leader)) != 0 {
c.FailNowf("[ERR] expected step down")
}
// Verify no further contact
last := follower.LastContact()
time.Sleep(c.propagateTimeout)
// Check that last contact has not changed
if last != follower.LastContact() {
c.FailNowf("[ERR] unexpected further contact")
}
// Ensure both have cleared their leader
if l := leader.Leader(); l != "" {
c.FailNowf("[ERR] bad: %v", l)
}
if l := follower.Leader(); l != "" {
c.FailNowf("[ERR] bad: %v", l)
}
}
func TestRaft_Barrier(t *testing.T) {
// Make the cluster
c := MakeCluster(3, t, nil)
defer c.Close()
// Get the leader
leader := c.Leader()
// Commit a lot of things
for i := 0; i < 100; i++ {
leader.Apply([]byte(fmt.Sprintf("test%d", i)), 0)
}
// Wait for a barrier complete
barrier := leader.Barrier(0)
// Wait for the barrier future to apply
if err := barrier.Error(); err != nil {
c.FailNowf("[ERR] err: %v", err)
}
// Ensure all the logs are the same
c.EnsureSame(t)
if len(c.fsms[0].logs) != 100 {
c.FailNowf("[ERR] Bad log length")
}
}
func TestRaft_VerifyLeader(t *testing.T) {
// Make the cluster
c := MakeCluster(3, t, nil)
defer c.Close()
// Get the leader
leader := c.Leader()
// Verify we are leader
verify := leader.VerifyLeader()
// Wait for the verify to apply
if err := verify.Error(); err != nil {
c.FailNowf("[ERR] err: %v", err)
}
}
func TestRaft_VerifyLeader_Single(t *testing.T) {
// Make the cluster
c := MakeCluster(1, t, nil)
defer c.Close()
// Get the leader
leader := c.Leader()
// Verify we are leader
verify := leader.VerifyLeader()
// Wait for the verify to apply
if err := verify.Error(); err != nil {
c.FailNowf("[ERR] err: %v", err)
}
}
func TestRaft_VerifyLeader_Fail(t *testing.T) {
// Make a cluster
conf := inmemConfig(t)
c := MakeCluster(2, t, conf)
defer c.Close()
// Get the leader
leader := c.Leader()
// Wait until we have a followers
followers := c.Followers()
// Force follower to different term
follower := followers[0]
follower.setCurrentTerm(follower.getCurrentTerm() + 1)
// Verify we are leader
verify := leader.VerifyLeader()
// Wait for the leader to step down
if err := verify.Error(); err != ErrNotLeader && err != ErrLeadershipLost {
c.FailNowf("[ERR] err: %v", err)
}
// Ensure the known leader is cleared
if l := leader.Leader(); l != "" {
c.FailNowf("[ERR] bad: %v", l)
}
}
func TestRaft_VerifyLeader_PartialConnect(t *testing.T) {
// Make a cluster
conf := inmemConfig(t)
c := MakeCluster(3, t, conf)
defer c.Close()
// Get the leader
leader := c.Leader()
// Wait until we have a followers
limit := time.Now().Add(c.longstopTimeout)
var followers []*Raft
for time.Now().Before(limit) && len(followers) != 2 {
c.WaitEvent(nil, c.conf.CommitTimeout)
followers = c.GetInState(Follower)
}
if len(followers) != 2 {
c.FailNowf("[ERR] expected two followers but got: %v", followers)
}
// Force partial disconnect
follower := followers[0]
t.Logf("[INFO] Disconnecting %v", follower)
c.Disconnect(follower.localAddr)
// Verify we are leader
verify := leader.VerifyLeader()
// Wait for the leader to step down
if err := verify.Error(); err != nil {
c.FailNowf("[ERR] err: %v", err)
}
}
func TestRaft_StartAsLeader(t *testing.T) {
conf := inmemConfig(t)
conf.StartAsLeader = true
c := MakeCluster(1, t, conf)
defer c.Close()
raft := c.rafts[0]
// Watch leaderCh for change
select {
case v := <-raft.LeaderCh():
if !v {
c.FailNowf("[ERR] should become leader")
}
case <-time.After(c.conf.HeartbeatTimeout * 4):
// Longer than you think as possibility of multiple elections
c.FailNowf("[ERR] timeout becoming leader")
}
// Should be leader
if s := raft.State(); s != Leader {
c.FailNowf("[ERR] expected leader: %v", s)
}
// Should be able to apply
future := raft.Apply([]byte("test"), c.conf.CommitTimeout)
if err := future.Error(); err != nil {
c.FailNowf("[ERR] err: %v", err)
}
// Check the response
if future.Response().(int) != 1 {
c.FailNowf("[ERR] bad response: %v", future.Response())
}
// Check the index
if idx := future.Index(); idx == 0 {
c.FailNowf("[ERR] bad index: %d", idx)
}
// Check that it is applied to the FSM
if len(c.fsms[0].logs) != 1 {
c.FailNowf("[ERR] did not apply to FSM!")
}
}
func TestRaft_NotifyCh(t *testing.T) {
ch := make(chan bool, 1)
conf := inmemConfig(t)
conf.NotifyCh = ch
c := MakeCluster(1, t, conf)
defer c.Close()
// Watch leaderCh for change
select {
case v := <-ch:
if !v {
c.FailNowf("[ERR] should become leader")
}
case <-time.After(conf.HeartbeatTimeout * 8):
c.FailNowf("[ERR] timeout becoming leader")
}
// Close the cluster
c.Close()
// Watch leaderCh for change
select {
case v := <-ch:
if v {
c.FailNowf("[ERR] should step down as leader")
}
case <-time.After(conf.HeartbeatTimeout * 6):
c.FailNowf("[ERR] timeout on step down as leader")
}
}
func TestRaft_Voting(t *testing.T) {
c := MakeCluster(3, t, nil)
defer c.Close()
followers := c.Followers()
ldr := c.Leader()
ldrT := c.trans[c.IndexOf(ldr)]
reqVote := RequestVoteRequest{
RPCHeader: ldr.getRPCHeader(),
Term: ldr.getCurrentTerm() + 10,
Candidate: ldrT.EncodePeer(ldr.localID, ldr.localAddr),
LastLogIndex: ldr.LastIndex(),
LastLogTerm: ldr.getCurrentTerm(),
}
// a follower that thinks there's a leader should vote for that leader.
var resp RequestVoteResponse
if err := ldrT.RequestVote(followers[0].localID, followers[0].localAddr, &reqVote, &resp); err != nil {
c.FailNowf("[ERR] RequestVote RPC failed %v", err)
}
if !resp.Granted {
c.FailNowf("[ERR] expected vote to be granted, but wasn't %+v", resp)
}
// a follow that thinks there's a leader shouldn't vote for a different candidate
reqVote.Candidate = ldrT.EncodePeer(followers[0].localID, followers[0].localAddr)
if err := ldrT.RequestVote(followers[1].localID, followers[1].localAddr, &reqVote, &resp); err != nil {
c.FailNowf("[ERR] RequestVote RPC failed %v", err)
}
if resp.Granted {
c.FailNowf("[ERR] expected vote not to be granted, but was %+v", resp)
}
}
*/
func TestRaft_ProtocolVersion_RejectRPC(t *testing.T) {
c := MakeCluster(3, t, nil)
defer c.Close()
followers := c.Followers()
ldr := c.Leader()
ldrT := c.trans[c.IndexOf(ldr)]
reqVote := RequestVoteRequest{
RPCHeader: RPCHeader{
ProtocolVersion: ProtocolVersionMax + 1,
},
Term: ldr.getCurrentTerm() + 10,
Candidate: ldrT.EncodePeer(ldr.localID, ldr.localAddr),
LastLogIndex: ldr.LastIndex(),
LastLogTerm: ldr.getCurrentTerm(),
}
// Reject a message from a future version we don't understand.
var resp RequestVoteResponse
err := ldrT.RequestVote(followers[0].localID, followers[0].localAddr, &reqVote, &resp)
if err == nil || !strings.Contains(err.Error(), "protocol version") {
c.FailNowf("[ERR] expected RPC to get rejected: %v", err)
}
// Reject a message that's too old.
reqVote.RPCHeader.ProtocolVersion = followers[0].protocolVersion - 2
err = ldrT.RequestVote(followers[0].localID, followers[0].localAddr, &reqVote, &resp)
if err == nil || !strings.Contains(err.Error(), "protocol version") {
c.FailNowf("[ERR] expected RPC to get rejected: %v", err)
}
}
func TestRaft_ProtocolVersion_Upgrade_1_2(t *testing.T) {
// Make a cluster back on protocol version 1.
conf := inmemConfig(t)
conf.ProtocolVersion = 1
c := MakeCluster(2, t, conf)
defer c.Close()
// Set up another server speaking protocol version 2.
conf = inmemConfig(t)
conf.ProtocolVersion = 2
c1 := MakeClusterNoBootstrap(1, t, conf)
// Merge clusters.
c.Merge(c1)
c.FullyConnect()
// Make sure the new ID-based operations aren't supported in the old
// protocol.
future := c.Leader().AddNonvoter(c1.rafts[0].localID, c1.rafts[0].localAddr, 0, 1*time.Second)
if err := future.Error(); err != ErrUnsupportedProtocol {
c.FailNowf("[ERR] err: %v", err)
}
future = c.Leader().DemoteVoter(c1.rafts[0].localID, 0, 1*time.Second)
if err := future.Error(); err != ErrUnsupportedProtocol {
c.FailNowf("[ERR] err: %v", err)
}
// Now do the join using the old address-based API.
if future := c.Leader().AddPeer(c1.rafts[0].localAddr); future.Error() != nil {
c.FailNowf("[ERR] err: %v", future.Error())
}
// Sanity check the cluster.
c.EnsureSame(t)
c.EnsureSamePeers(t)
c.EnsureLeader(t, c.Leader().localAddr)
// Now do the remove using the old address-based API.
if future := c.Leader().RemovePeer(c1.rafts[0].localAddr); future.Error() != nil {
c.FailNowf("[ERR] err: %v", future.Error())
}
}
func TestRaft_ProtocolVersion_Upgrade_2_3(t *testing.T) {
// Make a cluster back on protocol version 2.
conf := inmemConfig(t)
conf.ProtocolVersion = 2
c := MakeCluster(2, t, conf)
defer c.Close()
oldAddr := c.Followers()[0].localAddr
// Set up another server speaking protocol version 3.
conf = inmemConfig(t)
conf.ProtocolVersion = 3
c1 := MakeClusterNoBootstrap(1, t, conf)
// Merge clusters.
c.Merge(c1)
c.FullyConnect()
// Use the new ID-based API to add the server with its ID.
future := c.Leader().AddVoter(c1.rafts[0].localID, c1.rafts[0].localAddr, 0, 1*time.Second)
if err := future.Error(); err != nil {
c.FailNowf("[ERR] err: %v", err)
}
// Sanity check the cluster.
c.EnsureSame(t)
c.EnsureSamePeers(t)
c.EnsureLeader(t, c.Leader().localAddr)
// Remove an old server using the old address-based API.
if future := c.Leader().RemovePeer(oldAddr); future.Error() != nil {
c.FailNowf("[ERR] err: %v", future.Error())
}
}
// TODO: These are test cases we'd like to write for appendEntries().
// Unfortunately, it's difficult to do so with the current way this file is
// tested.
//
// Term check:
// - m.term is too small: no-op.
// - m.term is too large: update term, become follower, process request.
// - m.term is right but we're candidate: become follower, process request.
//
// Previous entry check:
// - prev is within the snapshot, before the snapshot's index: assume match.
// - prev is within the snapshot, exactly the snapshot's index: check
// snapshot's term.
// - prev is a log entry: check entry's term.
// - prev is past the end of the log: return fail.
//
// New entries:
// - new entries are all new: add them all.
// - new entries are all duplicate: ignore them all without ever removing dups.
// - new entries some duplicate, some new: add the new ones without ever
// removing dups.
// - new entries all conflict: remove the conflicting ones, add their
// replacements.
// - new entries some duplicate, some conflict: remove the conflicting ones,
// add their replacement, without ever removing dups.
//
// Storage errors handled properly.
// Commit index updated properly.
|