1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
|
// Copyright (c) HashiCorp, Inc.
// SPDX-License-Identifier: MPL-2.0
package raft
import (
"bytes"
"container/list"
"fmt"
"io"
"sync/atomic"
"time"
"github.com/hashicorp/go-hclog"
"github.com/armon/go-metrics"
)
const (
minCheckInterval = 10 * time.Millisecond
oldestLogGaugeInterval = 10 * time.Second
)
var (
keyCurrentTerm = []byte("CurrentTerm")
keyLastVoteTerm = []byte("LastVoteTerm")
keyLastVoteCand = []byte("LastVoteCand")
)
// getRPCHeader returns an initialized RPCHeader struct for the given
// Raft instance. This structure is sent along with RPC requests and
// responses.
func (r *Raft) getRPCHeader() RPCHeader {
return RPCHeader{
ProtocolVersion: r.config().ProtocolVersion,
ID: []byte(r.config().LocalID),
Addr: r.trans.EncodePeer(r.config().LocalID, r.localAddr),
}
}
// checkRPCHeader houses logic about whether this instance of Raft can process
// the given RPC message.
func (r *Raft) checkRPCHeader(rpc RPC) error {
// Get the header off the RPC message.
wh, ok := rpc.Command.(WithRPCHeader)
if !ok {
return fmt.Errorf("RPC does not have a header")
}
header := wh.GetRPCHeader()
// First check is to just make sure the code can understand the
// protocol at all.
if header.ProtocolVersion < ProtocolVersionMin ||
header.ProtocolVersion > ProtocolVersionMax {
return ErrUnsupportedProtocol
}
// Second check is whether we should support this message, given the
// current protocol we are configured to run. This will drop support
// for protocol version 0 starting at protocol version 2, which is
// currently what we want, and in general support one version back. We
// may need to revisit this policy depending on how future protocol
// changes evolve.
if header.ProtocolVersion < r.config().ProtocolVersion-1 {
return ErrUnsupportedProtocol
}
return nil
}
// getSnapshotVersion returns the snapshot version that should be used when
// creating snapshots, given the protocol version in use.
func getSnapshotVersion(protocolVersion ProtocolVersion) SnapshotVersion {
// Right now we only have two versions and they are backwards compatible
// so we don't need to look at the protocol version.
return 1
}
// commitTuple is used to send an index that was committed,
// with an optional associated future that should be invoked.
type commitTuple struct {
log *Log
future *logFuture
}
// leaderState is state that is used while we are a leader.
type leaderState struct {
leadershipTransferInProgress int32 // indicates that a leadership transfer is in progress.
commitCh chan struct{}
commitment *commitment
inflight *list.List // list of logFuture in log index order
replState map[ServerID]*followerReplication
notify map[*verifyFuture]struct{}
stepDown chan struct{}
}
// setLeader is used to modify the current leader Address and ID of the cluster
func (r *Raft) setLeader(leaderAddr ServerAddress, leaderID ServerID) {
r.leaderLock.Lock()
oldLeaderAddr := r.leaderAddr
r.leaderAddr = leaderAddr
oldLeaderID := r.leaderID
r.leaderID = leaderID
r.leaderLock.Unlock()
if oldLeaderAddr != leaderAddr || oldLeaderID != leaderID {
r.observe(LeaderObservation{Leader: leaderAddr, LeaderAddr: leaderAddr, LeaderID: leaderID})
}
}
// requestConfigChange is a helper for the above functions that make
// configuration change requests. 'req' describes the change. For timeout,
// see AddVoter.
func (r *Raft) requestConfigChange(req configurationChangeRequest, timeout time.Duration) IndexFuture {
var timer <-chan time.Time
if timeout > 0 {
timer = time.After(timeout)
}
future := &configurationChangeFuture{
req: req,
}
future.init()
select {
case <-timer:
return errorFuture{ErrEnqueueTimeout}
case r.configurationChangeCh <- future:
return future
case <-r.shutdownCh:
return errorFuture{ErrRaftShutdown}
}
}
// run the main thread that handles leadership and RPC requests.
func (r *Raft) run() {
for {
// Check if we are doing a shutdown
select {
case <-r.shutdownCh:
// Clear the leader to prevent forwarding
r.setLeader("", "")
return
default:
}
switch r.getState() {
case Follower:
r.runFollower()
case Candidate:
r.runCandidate()
case Leader:
r.runLeader()
}
}
}
// runFollower runs the main loop while in the follower state.
func (r *Raft) runFollower() {
didWarn := false
leaderAddr, leaderID := r.LeaderWithID()
r.logger.Info("entering follower state", "follower", r, "leader-address", leaderAddr, "leader-id", leaderID)
metrics.IncrCounter([]string{"raft", "state", "follower"}, 1)
heartbeatTimer := randomTimeout(r.config().HeartbeatTimeout)
for r.getState() == Follower {
r.mainThreadSaturation.sleeping()
select {
case rpc := <-r.rpcCh:
r.mainThreadSaturation.working()
r.processRPC(rpc)
case c := <-r.configurationChangeCh:
r.mainThreadSaturation.working()
// Reject any operations since we are not the leader
c.respond(ErrNotLeader)
case a := <-r.applyCh:
r.mainThreadSaturation.working()
// Reject any operations since we are not the leader
a.respond(ErrNotLeader)
case v := <-r.verifyCh:
r.mainThreadSaturation.working()
// Reject any operations since we are not the leader
v.respond(ErrNotLeader)
case ur := <-r.userRestoreCh:
r.mainThreadSaturation.working()
// Reject any restores since we are not the leader
ur.respond(ErrNotLeader)
case l := <-r.leadershipTransferCh:
r.mainThreadSaturation.working()
// Reject any operations since we are not the leader
l.respond(ErrNotLeader)
case c := <-r.configurationsCh:
r.mainThreadSaturation.working()
c.configurations = r.configurations.Clone()
c.respond(nil)
case b := <-r.bootstrapCh:
r.mainThreadSaturation.working()
b.respond(r.liveBootstrap(b.configuration))
case <-r.leaderNotifyCh:
// Ignore since we are not the leader
case <-r.followerNotifyCh:
heartbeatTimer = time.After(0)
case <-heartbeatTimer:
r.mainThreadSaturation.working()
// Restart the heartbeat timer
hbTimeout := r.config().HeartbeatTimeout
heartbeatTimer = randomTimeout(hbTimeout)
// Check if we have had a successful contact
lastContact := r.LastContact()
if time.Since(lastContact) < hbTimeout {
continue
}
// Heartbeat failed! Transition to the candidate state
lastLeaderAddr, lastLeaderID := r.LeaderWithID()
r.setLeader("", "")
if r.configurations.latestIndex == 0 {
if !didWarn {
r.logger.Warn("no known peers, aborting election")
didWarn = true
}
} else if r.configurations.latestIndex == r.configurations.committedIndex &&
!hasVote(r.configurations.latest, r.localID) {
if !didWarn {
r.logger.Warn("not part of stable configuration, aborting election")
didWarn = true
}
} else {
metrics.IncrCounter([]string{"raft", "transition", "heartbeat_timeout"}, 1)
if hasVote(r.configurations.latest, r.localID) {
r.logger.Warn("heartbeat timeout reached, starting election", "last-leader-addr", lastLeaderAddr, "last-leader-id", lastLeaderID)
r.setState(Candidate)
return
} else if !didWarn {
r.logger.Warn("heartbeat timeout reached, not part of a stable configuration or a non-voter, not triggering a leader election")
didWarn = true
}
}
case <-r.shutdownCh:
return
}
}
}
// liveBootstrap attempts to seed an initial configuration for the cluster. See
// the Raft object's member BootstrapCluster for more details. This must only be
// called on the main thread, and only makes sense in the follower state.
func (r *Raft) liveBootstrap(configuration Configuration) error {
if !hasVote(configuration, r.localID) {
// Reject this operation since we are not a voter
return ErrNotVoter
}
// Use the pre-init API to make the static updates.
cfg := r.config()
err := BootstrapCluster(&cfg, r.logs, r.stable, r.snapshots, r.trans, configuration)
if err != nil {
return err
}
// Make the configuration live.
var entry Log
if err := r.logs.GetLog(1, &entry); err != nil {
panic(err)
}
r.setCurrentTerm(1)
r.setLastLog(entry.Index, entry.Term)
return r.processConfigurationLogEntry(&entry)
}
// runCandidate runs the main loop while in the candidate state.
func (r *Raft) runCandidate() {
term := r.getCurrentTerm() + 1
r.logger.Info("entering candidate state", "node", r, "term", term)
metrics.IncrCounter([]string{"raft", "state", "candidate"}, 1)
// Start vote for us, and set a timeout
voteCh := r.electSelf()
// Make sure the leadership transfer flag is reset after each run. Having this
// flag will set the field LeadershipTransfer in a RequestVoteRequst to true,
// which will make other servers vote even though they have a leader already.
// It is important to reset that flag, because this priviledge could be abused
// otherwise.
defer func() { r.candidateFromLeadershipTransfer = false }()
electionTimeout := r.config().ElectionTimeout
electionTimer := randomTimeout(electionTimeout)
// Tally the votes, need a simple majority
grantedVotes := 0
votesNeeded := r.quorumSize()
r.logger.Debug("calculated votes needed", "needed", votesNeeded, "term", term)
for r.getState() == Candidate {
r.mainThreadSaturation.sleeping()
select {
case rpc := <-r.rpcCh:
r.mainThreadSaturation.working()
r.processRPC(rpc)
case vote := <-voteCh:
r.mainThreadSaturation.working()
// Check if the term is greater than ours, bail
if vote.Term > r.getCurrentTerm() {
r.logger.Debug("newer term discovered, fallback to follower", "term", vote.Term)
r.setState(Follower)
r.setCurrentTerm(vote.Term)
return
}
// Check if the vote is granted
if vote.Granted {
grantedVotes++
r.logger.Debug("vote granted", "from", vote.voterID, "term", vote.Term, "tally", grantedVotes)
}
// Check if we've become the leader
if grantedVotes >= votesNeeded {
r.logger.Info("election won", "term", vote.Term, "tally", grantedVotes)
r.setState(Leader)
r.setLeader(r.localAddr, r.localID)
return
}
case c := <-r.configurationChangeCh:
r.mainThreadSaturation.working()
// Reject any operations since we are not the leader
c.respond(ErrNotLeader)
case a := <-r.applyCh:
r.mainThreadSaturation.working()
// Reject any operations since we are not the leader
a.respond(ErrNotLeader)
case v := <-r.verifyCh:
r.mainThreadSaturation.working()
// Reject any operations since we are not the leader
v.respond(ErrNotLeader)
case ur := <-r.userRestoreCh:
r.mainThreadSaturation.working()
// Reject any restores since we are not the leader
ur.respond(ErrNotLeader)
case l := <-r.leadershipTransferCh:
r.mainThreadSaturation.working()
// Reject any operations since we are not the leader
l.respond(ErrNotLeader)
case c := <-r.configurationsCh:
r.mainThreadSaturation.working()
c.configurations = r.configurations.Clone()
c.respond(nil)
case b := <-r.bootstrapCh:
r.mainThreadSaturation.working()
b.respond(ErrCantBootstrap)
case <-r.leaderNotifyCh:
// Ignore since we are not the leader
case <-r.followerNotifyCh:
if electionTimeout != r.config().ElectionTimeout {
electionTimeout = r.config().ElectionTimeout
electionTimer = randomTimeout(electionTimeout)
}
case <-electionTimer:
r.mainThreadSaturation.working()
// Election failed! Restart the election. We simply return,
// which will kick us back into runCandidate
r.logger.Warn("Election timeout reached, restarting election")
return
case <-r.shutdownCh:
return
}
}
}
func (r *Raft) setLeadershipTransferInProgress(v bool) {
if v {
atomic.StoreInt32(&r.leaderState.leadershipTransferInProgress, 1)
} else {
atomic.StoreInt32(&r.leaderState.leadershipTransferInProgress, 0)
}
}
func (r *Raft) getLeadershipTransferInProgress() bool {
v := atomic.LoadInt32(&r.leaderState.leadershipTransferInProgress)
return v == 1
}
func (r *Raft) setupLeaderState() {
r.leaderState.commitCh = make(chan struct{}, 1)
r.leaderState.commitment = newCommitment(r.leaderState.commitCh,
r.configurations.latest,
r.getLastIndex()+1 /* first index that may be committed in this term */)
r.leaderState.inflight = list.New()
r.leaderState.replState = make(map[ServerID]*followerReplication)
r.leaderState.notify = make(map[*verifyFuture]struct{})
r.leaderState.stepDown = make(chan struct{}, 1)
}
// runLeader runs the main loop while in leader state. Do the setup here and drop into
// the leaderLoop for the hot loop.
func (r *Raft) runLeader() {
r.logger.Info("entering leader state", "leader", r)
metrics.IncrCounter([]string{"raft", "state", "leader"}, 1)
// Notify that we are the leader
overrideNotifyBool(r.leaderCh, true)
// Store the notify chan. It's not reloadable so shouldn't change before the
// defer below runs, but this makes sure we always notify the same chan if
// ever for both gaining and loosing leadership.
notify := r.config().NotifyCh
// Push to the notify channel if given
if notify != nil {
select {
case notify <- true:
case <-r.shutdownCh:
}
}
// setup leader state. This is only supposed to be accessed within the
// leaderloop.
r.setupLeaderState()
// Run a background go-routine to emit metrics on log age
stopCh := make(chan struct{})
go emitLogStoreMetrics(r.logs, []string{"raft", "leader"}, oldestLogGaugeInterval, stopCh)
// Cleanup state on step down
defer func() {
close(stopCh)
// Since we were the leader previously, we update our
// last contact time when we step down, so that we are not
// reporting a last contact time from before we were the
// leader. Otherwise, to a client it would seem our data
// is extremely stale.
r.setLastContact()
// Stop replication
for _, p := range r.leaderState.replState {
close(p.stopCh)
}
// Respond to all inflight operations
for e := r.leaderState.inflight.Front(); e != nil; e = e.Next() {
e.Value.(*logFuture).respond(ErrLeadershipLost)
}
// Respond to any pending verify requests
for future := range r.leaderState.notify {
future.respond(ErrLeadershipLost)
}
// Clear all the state
r.leaderState.commitCh = nil
r.leaderState.commitment = nil
r.leaderState.inflight = nil
r.leaderState.replState = nil
r.leaderState.notify = nil
r.leaderState.stepDown = nil
// If we are stepping down for some reason, no known leader.
// We may have stepped down due to an RPC call, which would
// provide the leader, so we cannot always blank this out.
r.leaderLock.Lock()
if r.leaderAddr == r.localAddr && r.leaderID == r.localID {
r.leaderAddr = ""
r.leaderID = ""
}
r.leaderLock.Unlock()
// Notify that we are not the leader
overrideNotifyBool(r.leaderCh, false)
// Push to the notify channel if given
if notify != nil {
select {
case notify <- false:
case <-r.shutdownCh:
// On shutdown, make a best effort but do not block
select {
case notify <- false:
default:
}
}
}
}()
// Start a replication routine for each peer
r.startStopReplication()
// Dispatch a no-op log entry first. This gets this leader up to the latest
// possible commit index, even in the absence of client commands. This used
// to append a configuration entry instead of a noop. However, that permits
// an unbounded number of uncommitted configurations in the log. We now
// maintain that there exists at most one uncommitted configuration entry in
// any log, so we have to do proper no-ops here.
noop := &logFuture{log: Log{Type: LogNoop}}
r.dispatchLogs([]*logFuture{noop})
// Sit in the leader loop until we step down
r.leaderLoop()
}
// startStopReplication will set up state and start asynchronous replication to
// new peers, and stop replication to removed peers. Before removing a peer,
// it'll instruct the replication routines to try to replicate to the current
// index. This must only be called from the main thread.
func (r *Raft) startStopReplication() {
inConfig := make(map[ServerID]bool, len(r.configurations.latest.Servers))
lastIdx := r.getLastIndex()
// Start replication goroutines that need starting
for _, server := range r.configurations.latest.Servers {
if server.ID == r.localID {
continue
}
inConfig[server.ID] = true
s, ok := r.leaderState.replState[server.ID]
if !ok {
r.logger.Info("added peer, starting replication", "peer", server.ID)
s = &followerReplication{
peer: server,
commitment: r.leaderState.commitment,
stopCh: make(chan uint64, 1),
triggerCh: make(chan struct{}, 1),
triggerDeferErrorCh: make(chan *deferError, 1),
currentTerm: r.getCurrentTerm(),
nextIndex: lastIdx + 1,
lastContact: time.Now(),
notify: make(map[*verifyFuture]struct{}),
notifyCh: make(chan struct{}, 1),
stepDown: r.leaderState.stepDown,
}
r.leaderState.replState[server.ID] = s
r.goFunc(func() { r.replicate(s) })
asyncNotifyCh(s.triggerCh)
r.observe(PeerObservation{Peer: server, Removed: false})
} else if ok {
s.peerLock.RLock()
peer := s.peer
s.peerLock.RUnlock()
if peer.Address != server.Address {
r.logger.Info("updating peer", "peer", server.ID)
s.peerLock.Lock()
s.peer = server
s.peerLock.Unlock()
}
}
}
// Stop replication goroutines that need stopping
for serverID, repl := range r.leaderState.replState {
if inConfig[serverID] {
continue
}
// Replicate up to lastIdx and stop
r.logger.Info("removed peer, stopping replication", "peer", serverID, "last-index", lastIdx)
repl.stopCh <- lastIdx
close(repl.stopCh)
delete(r.leaderState.replState, serverID)
r.observe(PeerObservation{Peer: repl.peer, Removed: true})
}
// Update peers metric
metrics.SetGauge([]string{"raft", "peers"}, float32(len(r.configurations.latest.Servers)))
}
// configurationChangeChIfStable returns r.configurationChangeCh if it's safe
// to process requests from it, or nil otherwise. This must only be called
// from the main thread.
//
// Note that if the conditions here were to change outside of leaderLoop to take
// this from nil to non-nil, we would need leaderLoop to be kicked.
func (r *Raft) configurationChangeChIfStable() chan *configurationChangeFuture {
// Have to wait until:
// 1. The latest configuration is committed, and
// 2. This leader has committed some entry (the noop) in this term
// https://groups.google.com/forum/#!msg/raft-dev/t4xj6dJTP6E/d2D9LrWRza8J
if r.configurations.latestIndex == r.configurations.committedIndex &&
r.getCommitIndex() >= r.leaderState.commitment.startIndex {
return r.configurationChangeCh
}
return nil
}
// leaderLoop is the hot loop for a leader. It is invoked
// after all the various leader setup is done.
func (r *Raft) leaderLoop() {
// stepDown is used to track if there is an inflight log that
// would cause us to lose leadership (specifically a RemovePeer of
// ourselves). If this is the case, we must not allow any logs to
// be processed in parallel, otherwise we are basing commit on
// only a single peer (ourself) and replicating to an undefined set
// of peers.
stepDown := false
// This is only used for the first lease check, we reload lease below
// based on the current config value.
lease := time.After(r.config().LeaderLeaseTimeout)
for r.getState() == Leader {
r.mainThreadSaturation.sleeping()
select {
case rpc := <-r.rpcCh:
r.mainThreadSaturation.working()
r.processRPC(rpc)
case <-r.leaderState.stepDown:
r.mainThreadSaturation.working()
r.setState(Follower)
case future := <-r.leadershipTransferCh:
r.mainThreadSaturation.working()
if r.getLeadershipTransferInProgress() {
r.logger.Debug(ErrLeadershipTransferInProgress.Error())
future.respond(ErrLeadershipTransferInProgress)
continue
}
r.logger.Debug("starting leadership transfer", "id", future.ID, "address", future.Address)
// When we are leaving leaderLoop, we are no longer
// leader, so we should stop transferring.
leftLeaderLoop := make(chan struct{})
defer func() { close(leftLeaderLoop) }()
stopCh := make(chan struct{})
doneCh := make(chan error, 1)
// This is intentionally being setup outside of the
// leadershipTransfer function. Because the TimeoutNow
// call is blocking and there is no way to abort that
// in case eg the timer expires.
// The leadershipTransfer function is controlled with
// the stopCh and doneCh.
// No matter how this exits, have this function set
// leadership transfer to false before we return
//
// Note that this leaves a window where callers of
// LeadershipTransfer() and LeadershipTransferToServer()
// may start executing after they get their future but before
// this routine has set leadershipTransferInProgress back to false.
// It may be safe to modify things such that setLeadershipTransferInProgress
// is set to false before calling future.Respond, but that still needs
// to be tested and this situation mirrors what callers already had to deal with.
go func() {
defer r.setLeadershipTransferInProgress(false)
select {
case <-time.After(r.config().ElectionTimeout):
close(stopCh)
err := fmt.Errorf("leadership transfer timeout")
r.logger.Debug(err.Error())
future.respond(err)
<-doneCh
case <-leftLeaderLoop:
close(stopCh)
err := fmt.Errorf("lost leadership during transfer (expected)")
r.logger.Debug(err.Error())
future.respond(nil)
<-doneCh
case err := <-doneCh:
if err != nil {
r.logger.Debug(err.Error())
}
future.respond(err)
}
}()
// leaderState.replState is accessed here before
// starting leadership transfer asynchronously because
// leaderState is only supposed to be accessed in the
// leaderloop.
id := future.ID
address := future.Address
if id == nil {
s := r.pickServer()
if s != nil {
id = &s.ID
address = &s.Address
} else {
doneCh <- fmt.Errorf("cannot find peer")
continue
}
}
state, ok := r.leaderState.replState[*id]
if !ok {
doneCh <- fmt.Errorf("cannot find replication state for %v", id)
continue
}
r.setLeadershipTransferInProgress(true)
go r.leadershipTransfer(*id, *address, state, stopCh, doneCh)
case <-r.leaderState.commitCh:
r.mainThreadSaturation.working()
// Process the newly committed entries
oldCommitIndex := r.getCommitIndex()
commitIndex := r.leaderState.commitment.getCommitIndex()
r.setCommitIndex(commitIndex)
// New configuration has been committed, set it as the committed
// value.
if r.configurations.latestIndex > oldCommitIndex &&
r.configurations.latestIndex <= commitIndex {
r.setCommittedConfiguration(r.configurations.latest, r.configurations.latestIndex)
if !hasVote(r.configurations.committed, r.localID) {
stepDown = true
}
}
start := time.Now()
var groupReady []*list.Element
var groupFutures = make(map[uint64]*logFuture)
var lastIdxInGroup uint64
// Pull all inflight logs that are committed off the queue.
for e := r.leaderState.inflight.Front(); e != nil; e = e.Next() {
commitLog := e.Value.(*logFuture)
idx := commitLog.log.Index
if idx > commitIndex {
// Don't go past the committed index
break
}
// Measure the commit time
metrics.MeasureSince([]string{"raft", "commitTime"}, commitLog.dispatch)
groupReady = append(groupReady, e)
groupFutures[idx] = commitLog
lastIdxInGroup = idx
}
// Process the group
if len(groupReady) != 0 {
r.processLogs(lastIdxInGroup, groupFutures)
for _, e := range groupReady {
r.leaderState.inflight.Remove(e)
}
}
// Measure the time to enqueue batch of logs for FSM to apply
metrics.MeasureSince([]string{"raft", "fsm", "enqueue"}, start)
// Count the number of logs enqueued
metrics.SetGauge([]string{"raft", "commitNumLogs"}, float32(len(groupReady)))
if stepDown {
if r.config().ShutdownOnRemove {
r.logger.Info("removed ourself, shutting down")
r.Shutdown()
} else {
r.logger.Info("removed ourself, transitioning to follower")
r.setState(Follower)
}
}
case v := <-r.verifyCh:
r.mainThreadSaturation.working()
if v.quorumSize == 0 {
// Just dispatched, start the verification
r.verifyLeader(v)
} else if v.votes < v.quorumSize {
// Early return, means there must be a new leader
r.logger.Warn("new leader elected, stepping down")
r.setState(Follower)
delete(r.leaderState.notify, v)
for _, repl := range r.leaderState.replState {
repl.cleanNotify(v)
}
v.respond(ErrNotLeader)
} else {
// Quorum of members agree, we are still leader
delete(r.leaderState.notify, v)
for _, repl := range r.leaderState.replState {
repl.cleanNotify(v)
}
v.respond(nil)
}
case future := <-r.userRestoreCh:
r.mainThreadSaturation.working()
if r.getLeadershipTransferInProgress() {
r.logger.Debug(ErrLeadershipTransferInProgress.Error())
future.respond(ErrLeadershipTransferInProgress)
continue
}
err := r.restoreUserSnapshot(future.meta, future.reader)
future.respond(err)
case future := <-r.configurationsCh:
r.mainThreadSaturation.working()
if r.getLeadershipTransferInProgress() {
r.logger.Debug(ErrLeadershipTransferInProgress.Error())
future.respond(ErrLeadershipTransferInProgress)
continue
}
future.configurations = r.configurations.Clone()
future.respond(nil)
case future := <-r.configurationChangeChIfStable():
r.mainThreadSaturation.working()
if r.getLeadershipTransferInProgress() {
r.logger.Debug(ErrLeadershipTransferInProgress.Error())
future.respond(ErrLeadershipTransferInProgress)
continue
}
r.appendConfigurationEntry(future)
case b := <-r.bootstrapCh:
r.mainThreadSaturation.working()
b.respond(ErrCantBootstrap)
case newLog := <-r.applyCh:
r.mainThreadSaturation.working()
if r.getLeadershipTransferInProgress() {
r.logger.Debug(ErrLeadershipTransferInProgress.Error())
newLog.respond(ErrLeadershipTransferInProgress)
continue
}
// Group commit, gather all the ready commits
ready := []*logFuture{newLog}
GROUP_COMMIT_LOOP:
for i := 0; i < r.config().MaxAppendEntries; i++ {
select {
case newLog := <-r.applyCh:
ready = append(ready, newLog)
default:
break GROUP_COMMIT_LOOP
}
}
// Dispatch the logs
if stepDown {
// we're in the process of stepping down as leader, don't process anything new
for i := range ready {
ready[i].respond(ErrNotLeader)
}
} else {
r.dispatchLogs(ready)
}
case <-lease:
r.mainThreadSaturation.working()
// Check if we've exceeded the lease, potentially stepping down
maxDiff := r.checkLeaderLease()
// Next check interval should adjust for the last node we've
// contacted, without going negative
checkInterval := r.config().LeaderLeaseTimeout - maxDiff
if checkInterval < minCheckInterval {
checkInterval = minCheckInterval
}
// Renew the lease timer
lease = time.After(checkInterval)
case <-r.leaderNotifyCh:
for _, repl := range r.leaderState.replState {
asyncNotifyCh(repl.notifyCh)
}
case <-r.followerNotifyCh:
// Ignore since we are not a follower
case <-r.shutdownCh:
return
}
}
}
// verifyLeader must be called from the main thread for safety.
// Causes the followers to attempt an immediate heartbeat.
func (r *Raft) verifyLeader(v *verifyFuture) {
// Current leader always votes for self
v.votes = 1
// Set the quorum size, hot-path for single node
v.quorumSize = r.quorumSize()
if v.quorumSize == 1 {
v.respond(nil)
return
}
// Track this request
v.notifyCh = r.verifyCh
r.leaderState.notify[v] = struct{}{}
// Trigger immediate heartbeats
for _, repl := range r.leaderState.replState {
repl.notifyLock.Lock()
repl.notify[v] = struct{}{}
repl.notifyLock.Unlock()
asyncNotifyCh(repl.notifyCh)
}
}
// leadershipTransfer is doing the heavy lifting for the leadership transfer.
func (r *Raft) leadershipTransfer(id ServerID, address ServerAddress, repl *followerReplication, stopCh chan struct{}, doneCh chan error) {
// make sure we are not already stopped
select {
case <-stopCh:
doneCh <- nil
return
default:
}
for atomic.LoadUint64(&repl.nextIndex) <= r.getLastIndex() {
err := &deferError{}
err.init()
repl.triggerDeferErrorCh <- err
select {
case err := <-err.errCh:
if err != nil {
doneCh <- err
return
}
case <-stopCh:
doneCh <- nil
return
}
}
// Step ?: the thesis describes in chap 6.4.1: Using clocks to reduce
// messaging for read-only queries. If this is implemented, the lease
// has to be reset as well, in case leadership is transferred. This
// implementation also has a lease, but it serves another purpose and
// doesn't need to be reset. The lease mechanism in our raft lib, is
// setup in a similar way to the one in the thesis, but in practice
// it's a timer that just tells the leader how often to check
// heartbeats are still coming in.
// Step 3: send TimeoutNow message to target server.
err := r.trans.TimeoutNow(id, address, &TimeoutNowRequest{RPCHeader: r.getRPCHeader()}, &TimeoutNowResponse{})
if err != nil {
err = fmt.Errorf("failed to make TimeoutNow RPC to %v: %v", id, err)
}
doneCh <- err
}
// checkLeaderLease is used to check if we can contact a quorum of nodes
// within the last leader lease interval. If not, we need to step down,
// as we may have lost connectivity. Returns the maximum duration without
// contact. This must only be called from the main thread.
func (r *Raft) checkLeaderLease() time.Duration {
// Track contacted nodes, we can always contact ourself
contacted := 0
// Store lease timeout for this one check invocation as we need to refer to it
// in the loop and would be confusing if it ever becomes reloadable and
// changes between iterations below.
leaseTimeout := r.config().LeaderLeaseTimeout
// Check each follower
var maxDiff time.Duration
now := time.Now()
for _, server := range r.configurations.latest.Servers {
if server.Suffrage == Voter {
if server.ID == r.localID {
contacted++
continue
}
f := r.leaderState.replState[server.ID]
diff := now.Sub(f.LastContact())
if diff <= leaseTimeout {
contacted++
if diff > maxDiff {
maxDiff = diff
}
} else {
// Log at least once at high value, then debug. Otherwise it gets very verbose.
if diff <= 3*leaseTimeout {
r.logger.Warn("failed to contact", "server-id", server.ID, "time", diff)
} else {
r.logger.Debug("failed to contact", "server-id", server.ID, "time", diff)
}
}
metrics.AddSample([]string{"raft", "leader", "lastContact"}, float32(diff/time.Millisecond))
}
}
// Verify we can contact a quorum
quorum := r.quorumSize()
if contacted < quorum {
r.logger.Warn("failed to contact quorum of nodes, stepping down")
r.setState(Follower)
metrics.IncrCounter([]string{"raft", "transition", "leader_lease_timeout"}, 1)
}
return maxDiff
}
// quorumSize is used to return the quorum size. This must only be called on
// the main thread.
// TODO: revisit usage
func (r *Raft) quorumSize() int {
voters := 0
for _, server := range r.configurations.latest.Servers {
if server.Suffrage == Voter {
voters++
}
}
return voters/2 + 1
}
// restoreUserSnapshot is used to manually consume an external snapshot, such
// as if restoring from a backup. We will use the current Raft configuration,
// not the one from the snapshot, so that we can restore into a new cluster. We
// will also use the higher of the index of the snapshot, or the current index,
// and then add 1 to that, so we force a new state with a hole in the Raft log,
// so that the snapshot will be sent to followers and used for any new joiners.
// This can only be run on the leader, and returns a future that can be used to
// block until complete.
func (r *Raft) restoreUserSnapshot(meta *SnapshotMeta, reader io.Reader) error {
defer metrics.MeasureSince([]string{"raft", "restoreUserSnapshot"}, time.Now())
// Sanity check the version.
version := meta.Version
if version < SnapshotVersionMin || version > SnapshotVersionMax {
return fmt.Errorf("unsupported snapshot version %d", version)
}
// We don't support snapshots while there's a config change
// outstanding since the snapshot doesn't have a means to
// represent this state.
committedIndex := r.configurations.committedIndex
latestIndex := r.configurations.latestIndex
if committedIndex != latestIndex {
return fmt.Errorf("cannot restore snapshot now, wait until the configuration entry at %v has been applied (have applied %v)",
latestIndex, committedIndex)
}
// Cancel any inflight requests.
for {
e := r.leaderState.inflight.Front()
if e == nil {
break
}
e.Value.(*logFuture).respond(ErrAbortedByRestore)
r.leaderState.inflight.Remove(e)
}
// We will overwrite the snapshot metadata with the current term,
// an index that's greater than the current index, or the last
// index in the snapshot. It's important that we leave a hole in
// the index so we know there's nothing in the Raft log there and
// replication will fault and send the snapshot.
term := r.getCurrentTerm()
lastIndex := r.getLastIndex()
if meta.Index > lastIndex {
lastIndex = meta.Index
}
lastIndex++
// Dump the snapshot. Note that we use the latest configuration,
// not the one that came with the snapshot.
sink, err := r.snapshots.Create(version, lastIndex, term,
r.configurations.latest, r.configurations.latestIndex, r.trans)
if err != nil {
return fmt.Errorf("failed to create snapshot: %v", err)
}
n, err := io.Copy(sink, reader)
if err != nil {
sink.Cancel()
return fmt.Errorf("failed to write snapshot: %v", err)
}
if n != meta.Size {
sink.Cancel()
return fmt.Errorf("failed to write snapshot, size didn't match (%d != %d)", n, meta.Size)
}
if err := sink.Close(); err != nil {
return fmt.Errorf("failed to close snapshot: %v", err)
}
r.logger.Info("copied to local snapshot", "bytes", n)
// Restore the snapshot into the FSM. If this fails we are in a
// bad state so we panic to take ourselves out.
fsm := &restoreFuture{ID: sink.ID()}
fsm.ShutdownCh = r.shutdownCh
fsm.init()
select {
case r.fsmMutateCh <- fsm:
case <-r.shutdownCh:
return ErrRaftShutdown
}
if err := fsm.Error(); err != nil {
panic(fmt.Errorf("failed to restore snapshot: %v", err))
}
// We set the last log so it looks like we've stored the empty
// index we burned. The last applied is set because we made the
// FSM take the snapshot state, and we store the last snapshot
// in the stable store since we created a snapshot as part of
// this process.
r.setLastLog(lastIndex, term)
r.setLastApplied(lastIndex)
r.setLastSnapshot(lastIndex, term)
// Remove old logs if r.logs is a MonotonicLogStore. Log any errors and continue.
if logs, ok := r.logs.(MonotonicLogStore); ok && logs.IsMonotonic() {
if err := r.removeOldLogs(); err != nil {
r.logger.Error("failed to remove old logs", "error", err)
}
}
r.logger.Info("restored user snapshot", "index", lastIndex)
return nil
}
// appendConfigurationEntry changes the configuration and adds a new
// configuration entry to the log. This must only be called from the
// main thread.
func (r *Raft) appendConfigurationEntry(future *configurationChangeFuture) {
configuration, err := nextConfiguration(r.configurations.latest, r.configurations.latestIndex, future.req)
if err != nil {
future.respond(err)
return
}
r.logger.Info("updating configuration",
"command", future.req.command,
"server-id", future.req.serverID,
"server-addr", future.req.serverAddress,
"servers", hclog.Fmt("%+v", configuration.Servers))
// In pre-ID compatibility mode we translate all configuration changes
// in to an old remove peer message, which can handle all supported
// cases for peer changes in the pre-ID world (adding and removing
// voters). Both add peer and remove peer log entries are handled
// similarly on old Raft servers, but remove peer does extra checks to
// see if a leader needs to step down. Since they both assert the full
// configuration, then we can safely call remove peer for everything.
if r.protocolVersion < 2 {
future.log = Log{
Type: LogRemovePeerDeprecated,
Data: encodePeers(configuration, r.trans),
}
} else {
future.log = Log{
Type: LogConfiguration,
Data: EncodeConfiguration(configuration),
}
}
r.dispatchLogs([]*logFuture{&future.logFuture})
index := future.Index()
r.setLatestConfiguration(configuration, index)
r.leaderState.commitment.setConfiguration(configuration)
r.startStopReplication()
}
// dispatchLog is called on the leader to push a log to disk, mark it
// as inflight and begin replication of it.
func (r *Raft) dispatchLogs(applyLogs []*logFuture) {
now := time.Now()
defer metrics.MeasureSince([]string{"raft", "leader", "dispatchLog"}, now)
term := r.getCurrentTerm()
lastIndex := r.getLastIndex()
n := len(applyLogs)
logs := make([]*Log, n)
metrics.SetGauge([]string{"raft", "leader", "dispatchNumLogs"}, float32(n))
for idx, applyLog := range applyLogs {
applyLog.dispatch = now
lastIndex++
applyLog.log.Index = lastIndex
applyLog.log.Term = term
applyLog.log.AppendedAt = now
logs[idx] = &applyLog.log
r.leaderState.inflight.PushBack(applyLog)
}
// Write the log entry locally
if err := r.logs.StoreLogs(logs); err != nil {
r.logger.Error("failed to commit logs", "error", err)
for _, applyLog := range applyLogs {
applyLog.respond(err)
}
r.setState(Follower)
return
}
r.leaderState.commitment.match(r.localID, lastIndex)
// Update the last log since it's on disk now
r.setLastLog(lastIndex, term)
// Notify the replicators of the new log
for _, f := range r.leaderState.replState {
asyncNotifyCh(f.triggerCh)
}
}
// processLogs is used to apply all the committed entries that haven't been
// applied up to the given index limit.
// This can be called from both leaders and followers.
// Followers call this from AppendEntries, for n entries at a time, and always
// pass futures=nil.
// Leaders call this when entries are committed. They pass the futures from any
// inflight logs.
func (r *Raft) processLogs(index uint64, futures map[uint64]*logFuture) {
// Reject logs we've applied already
lastApplied := r.getLastApplied()
if index <= lastApplied {
r.logger.Warn("skipping application of old log", "index", index)
return
}
applyBatch := func(batch []*commitTuple) {
select {
case r.fsmMutateCh <- batch:
case <-r.shutdownCh:
for _, cl := range batch {
if cl.future != nil {
cl.future.respond(ErrRaftShutdown)
}
}
}
}
// Store maxAppendEntries for this call in case it ever becomes reloadable. We
// need to use the same value for all lines here to get the expected result.
maxAppendEntries := r.config().MaxAppendEntries
batch := make([]*commitTuple, 0, maxAppendEntries)
// Apply all the preceding logs
for idx := lastApplied + 1; idx <= index; idx++ {
var preparedLog *commitTuple
// Get the log, either from the future or from our log store
future, futureOk := futures[idx]
if futureOk {
preparedLog = r.prepareLog(&future.log, future)
} else {
l := new(Log)
if err := r.logs.GetLog(idx, l); err != nil {
r.logger.Error("failed to get log", "index", idx, "error", err)
panic(err)
}
preparedLog = r.prepareLog(l, nil)
}
switch {
case preparedLog != nil:
// If we have a log ready to send to the FSM add it to the batch.
// The FSM thread will respond to the future.
batch = append(batch, preparedLog)
// If we have filled up a batch, send it to the FSM
if len(batch) >= maxAppendEntries {
applyBatch(batch)
batch = make([]*commitTuple, 0, maxAppendEntries)
}
case futureOk:
// Invoke the future if given.
future.respond(nil)
}
}
// If there are any remaining logs in the batch apply them
if len(batch) != 0 {
applyBatch(batch)
}
// Update the lastApplied index and term
r.setLastApplied(index)
}
// processLog is invoked to process the application of a single committed log entry.
func (r *Raft) prepareLog(l *Log, future *logFuture) *commitTuple {
switch l.Type {
case LogBarrier:
// Barrier is handled by the FSM
fallthrough
case LogCommand:
return &commitTuple{l, future}
case LogConfiguration:
// Only support this with the v2 configuration format
if r.protocolVersion > 2 {
return &commitTuple{l, future}
}
case LogAddPeerDeprecated:
case LogRemovePeerDeprecated:
case LogNoop:
// Ignore the no-op
default:
panic(fmt.Errorf("unrecognized log type: %#v", l))
}
return nil
}
// processRPC is called to handle an incoming RPC request. This must only be
// called from the main thread.
func (r *Raft) processRPC(rpc RPC) {
if err := r.checkRPCHeader(rpc); err != nil {
rpc.Respond(nil, err)
return
}
switch cmd := rpc.Command.(type) {
case *AppendEntriesRequest:
r.appendEntries(rpc, cmd)
case *RequestVoteRequest:
r.requestVote(rpc, cmd)
case *InstallSnapshotRequest:
r.installSnapshot(rpc, cmd)
case *TimeoutNowRequest:
r.timeoutNow(rpc, cmd)
default:
r.logger.Error("got unexpected command",
"command", hclog.Fmt("%#v", rpc.Command))
rpc.Respond(nil, fmt.Errorf("unexpected command"))
}
}
// processHeartbeat is a special handler used just for heartbeat requests
// so that they can be fast-pathed if a transport supports it. This must only
// be called from the main thread.
func (r *Raft) processHeartbeat(rpc RPC) {
defer metrics.MeasureSince([]string{"raft", "rpc", "processHeartbeat"}, time.Now())
// Check if we are shutdown, just ignore the RPC
select {
case <-r.shutdownCh:
return
default:
}
// Ensure we are only handling a heartbeat
switch cmd := rpc.Command.(type) {
case *AppendEntriesRequest:
r.appendEntries(rpc, cmd)
default:
r.logger.Error("expected heartbeat, got", "command", hclog.Fmt("%#v", rpc.Command))
rpc.Respond(nil, fmt.Errorf("unexpected command"))
}
}
// appendEntries is invoked when we get an append entries RPC call. This must
// only be called from the main thread.
func (r *Raft) appendEntries(rpc RPC, a *AppendEntriesRequest) {
defer metrics.MeasureSince([]string{"raft", "rpc", "appendEntries"}, time.Now())
// Setup a response
resp := &AppendEntriesResponse{
RPCHeader: r.getRPCHeader(),
Term: r.getCurrentTerm(),
LastLog: r.getLastIndex(),
Success: false,
NoRetryBackoff: false,
}
var rpcErr error
defer func() {
rpc.Respond(resp, rpcErr)
}()
// Ignore an older term
if a.Term < r.getCurrentTerm() {
return
}
// Increase the term if we see a newer one, also transition to follower
// if we ever get an appendEntries call
if a.Term > r.getCurrentTerm() || (r.getState() != Follower && !r.candidateFromLeadershipTransfer) {
// Ensure transition to follower
r.setState(Follower)
r.setCurrentTerm(a.Term)
resp.Term = a.Term
}
// Save the current leader
if len(a.Addr) > 0 {
r.setLeader(r.trans.DecodePeer(a.Addr), ServerID(a.ID))
} else {
r.setLeader(r.trans.DecodePeer(a.Leader), ServerID(a.ID))
}
// Verify the last log entry
if a.PrevLogEntry > 0 {
lastIdx, lastTerm := r.getLastEntry()
var prevLogTerm uint64
if a.PrevLogEntry == lastIdx {
prevLogTerm = lastTerm
} else {
var prevLog Log
if err := r.logs.GetLog(a.PrevLogEntry, &prevLog); err != nil {
r.logger.Warn("failed to get previous log",
"previous-index", a.PrevLogEntry,
"last-index", lastIdx,
"error", err)
resp.NoRetryBackoff = true
return
}
prevLogTerm = prevLog.Term
}
if a.PrevLogTerm != prevLogTerm {
r.logger.Warn("previous log term mis-match",
"ours", prevLogTerm,
"remote", a.PrevLogTerm)
resp.NoRetryBackoff = true
return
}
}
// Process any new entries
if len(a.Entries) > 0 {
start := time.Now()
// Delete any conflicting entries, skip any duplicates
lastLogIdx, _ := r.getLastLog()
var newEntries []*Log
for i, entry := range a.Entries {
if entry.Index > lastLogIdx {
newEntries = a.Entries[i:]
break
}
var storeEntry Log
if err := r.logs.GetLog(entry.Index, &storeEntry); err != nil {
r.logger.Warn("failed to get log entry",
"index", entry.Index,
"error", err)
return
}
if entry.Term != storeEntry.Term {
r.logger.Warn("clearing log suffix", "from", entry.Index, "to", lastLogIdx)
if err := r.logs.DeleteRange(entry.Index, lastLogIdx); err != nil {
r.logger.Error("failed to clear log suffix", "error", err)
return
}
if entry.Index <= r.configurations.latestIndex {
r.setLatestConfiguration(r.configurations.committed, r.configurations.committedIndex)
}
newEntries = a.Entries[i:]
break
}
}
if n := len(newEntries); n > 0 {
// Append the new entries
if err := r.logs.StoreLogs(newEntries); err != nil {
r.logger.Error("failed to append to logs", "error", err)
// TODO: leaving r.getLastLog() in the wrong
// state if there was a truncation above
return
}
// Handle any new configuration changes
for _, newEntry := range newEntries {
if err := r.processConfigurationLogEntry(newEntry); err != nil {
r.logger.Warn("failed to append entry",
"index", newEntry.Index,
"error", err)
rpcErr = err
return
}
}
// Update the lastLog
last := newEntries[n-1]
r.setLastLog(last.Index, last.Term)
}
metrics.MeasureSince([]string{"raft", "rpc", "appendEntries", "storeLogs"}, start)
}
// Update the commit index
if a.LeaderCommitIndex > 0 && a.LeaderCommitIndex > r.getCommitIndex() {
start := time.Now()
idx := min(a.LeaderCommitIndex, r.getLastIndex())
r.setCommitIndex(idx)
if r.configurations.latestIndex <= idx {
r.setCommittedConfiguration(r.configurations.latest, r.configurations.latestIndex)
}
r.processLogs(idx, nil)
metrics.MeasureSince([]string{"raft", "rpc", "appendEntries", "processLogs"}, start)
}
// Everything went well, set success
resp.Success = true
r.setLastContact()
}
// processConfigurationLogEntry takes a log entry and updates the latest
// configuration if the entry results in a new configuration. This must only be
// called from the main thread, or from NewRaft() before any threads have begun.
func (r *Raft) processConfigurationLogEntry(entry *Log) error {
switch entry.Type {
case LogConfiguration:
r.setCommittedConfiguration(r.configurations.latest, r.configurations.latestIndex)
r.setLatestConfiguration(DecodeConfiguration(entry.Data), entry.Index)
case LogAddPeerDeprecated, LogRemovePeerDeprecated:
r.setCommittedConfiguration(r.configurations.latest, r.configurations.latestIndex)
conf, err := decodePeers(entry.Data, r.trans)
if err != nil {
return err
}
r.setLatestConfiguration(conf, entry.Index)
}
return nil
}
// requestVote is invoked when we get a request vote RPC call.
func (r *Raft) requestVote(rpc RPC, req *RequestVoteRequest) {
defer metrics.MeasureSince([]string{"raft", "rpc", "requestVote"}, time.Now())
r.observe(*req)
// Setup a response
resp := &RequestVoteResponse{
RPCHeader: r.getRPCHeader(),
Term: r.getCurrentTerm(),
Granted: false,
}
var rpcErr error
defer func() {
rpc.Respond(resp, rpcErr)
}()
// Version 0 servers will panic unless the peers is present. It's only
// used on them to produce a warning message.
if r.protocolVersion < 2 {
resp.Peers = encodePeers(r.configurations.latest, r.trans)
}
// Check if we have an existing leader [who's not the candidate] and also
// check the LeadershipTransfer flag is set. Usually votes are rejected if
// there is a known leader. But if the leader initiated a leadership transfer,
// vote!
var candidate ServerAddress
var candidateBytes []byte
if len(req.RPCHeader.Addr) > 0 {
candidate = r.trans.DecodePeer(req.RPCHeader.Addr)
candidateBytes = req.RPCHeader.Addr
} else {
candidate = r.trans.DecodePeer(req.Candidate)
candidateBytes = req.Candidate
}
// For older raft version ID is not part of the packed message
// We assume that the peer is part of the configuration and skip this check
if len(req.ID) > 0 {
candidateID := ServerID(req.ID)
// if the Servers list is empty that mean the cluster is very likely trying to bootstrap,
// Grant the vote
if len(r.configurations.latest.Servers) > 0 && !inConfiguration(r.configurations.latest, candidateID) {
r.logger.Warn("rejecting vote request since node is not in configuration",
"from", candidate)
return
}
}
if leaderAddr, leaderID := r.LeaderWithID(); leaderAddr != "" && leaderAddr != candidate && !req.LeadershipTransfer {
r.logger.Warn("rejecting vote request since we have a leader",
"from", candidate,
"leader", leaderAddr,
"leader-id", string(leaderID))
return
}
// Ignore an older term
if req.Term < r.getCurrentTerm() {
return
}
// Increase the term if we see a newer one
if req.Term > r.getCurrentTerm() {
// Ensure transition to follower
r.logger.Debug("lost leadership because received a requestVote with a newer term")
r.setState(Follower)
r.setCurrentTerm(req.Term)
resp.Term = req.Term
}
// if we get a request for vote from a nonVoter and the request term is higher,
// step down and update term, but reject the vote request
// This could happen when a node, previously voter, is converted to non-voter
// The reason we need to step in is to permit to the cluster to make progress in such a scenario
// More details about that in https://github.com/hashicorp/raft/pull/526
if len(req.ID) > 0 {
candidateID := ServerID(req.ID)
if len(r.configurations.latest.Servers) > 0 && !hasVote(r.configurations.latest, candidateID) {
r.logger.Warn("rejecting vote request since node is not a voter", "from", candidate)
return
}
}
// Check if we have voted yet
lastVoteTerm, err := r.stable.GetUint64(keyLastVoteTerm)
if err != nil && err.Error() != "not found" {
r.logger.Error("failed to get last vote term", "error", err)
return
}
lastVoteCandBytes, err := r.stable.Get(keyLastVoteCand)
if err != nil && err.Error() != "not found" {
r.logger.Error("failed to get last vote candidate", "error", err)
return
}
// Check if we've voted in this election before
if lastVoteTerm == req.Term && lastVoteCandBytes != nil {
r.logger.Info("duplicate requestVote for same term", "term", req.Term)
if bytes.Equal(lastVoteCandBytes, candidateBytes) {
r.logger.Warn("duplicate requestVote from", "candidate", candidate)
resp.Granted = true
}
return
}
// Reject if their term is older
lastIdx, lastTerm := r.getLastEntry()
if lastTerm > req.LastLogTerm {
r.logger.Warn("rejecting vote request since our last term is greater",
"candidate", candidate,
"last-term", lastTerm,
"last-candidate-term", req.LastLogTerm)
return
}
if lastTerm == req.LastLogTerm && lastIdx > req.LastLogIndex {
r.logger.Warn("rejecting vote request since our last index is greater",
"candidate", candidate,
"last-index", lastIdx,
"last-candidate-index", req.LastLogIndex)
return
}
// Persist a vote for safety
if err := r.persistVote(req.Term, candidateBytes); err != nil {
r.logger.Error("failed to persist vote", "error", err)
return
}
resp.Granted = true
r.setLastContact()
}
// installSnapshot is invoked when we get a InstallSnapshot RPC call.
// We must be in the follower state for this, since it means we are
// too far behind a leader for log replay. This must only be called
// from the main thread.
func (r *Raft) installSnapshot(rpc RPC, req *InstallSnapshotRequest) {
defer metrics.MeasureSince([]string{"raft", "rpc", "installSnapshot"}, time.Now())
// Setup a response
resp := &InstallSnapshotResponse{
Term: r.getCurrentTerm(),
Success: false,
}
var rpcErr error
defer func() {
_, _ = io.Copy(io.Discard, rpc.Reader) // ensure we always consume all the snapshot data from the stream [see issue #212]
rpc.Respond(resp, rpcErr)
}()
// Sanity check the version
if req.SnapshotVersion < SnapshotVersionMin ||
req.SnapshotVersion > SnapshotVersionMax {
rpcErr = fmt.Errorf("unsupported snapshot version %d", req.SnapshotVersion)
return
}
// Ignore an older term
if req.Term < r.getCurrentTerm() {
r.logger.Info("ignoring installSnapshot request with older term than current term",
"request-term", req.Term,
"current-term", r.getCurrentTerm())
return
}
// Increase the term if we see a newer one
if req.Term > r.getCurrentTerm() {
// Ensure transition to follower
r.setState(Follower)
r.setCurrentTerm(req.Term)
resp.Term = req.Term
}
// Save the current leader
if len(req.ID) > 0 {
r.setLeader(r.trans.DecodePeer(req.RPCHeader.Addr), ServerID(req.ID))
} else {
r.setLeader(r.trans.DecodePeer(req.Leader), ServerID(req.ID))
}
// Create a new snapshot
var reqConfiguration Configuration
var reqConfigurationIndex uint64
if req.SnapshotVersion > 0 {
reqConfiguration = DecodeConfiguration(req.Configuration)
reqConfigurationIndex = req.ConfigurationIndex
} else {
reqConfiguration, rpcErr = decodePeers(req.Peers, r.trans)
if rpcErr != nil {
r.logger.Error("failed to install snapshot", "error", rpcErr)
return
}
reqConfigurationIndex = req.LastLogIndex
}
version := getSnapshotVersion(r.protocolVersion)
sink, err := r.snapshots.Create(version, req.LastLogIndex, req.LastLogTerm,
reqConfiguration, reqConfigurationIndex, r.trans)
if err != nil {
r.logger.Error("failed to create snapshot to install", "error", err)
rpcErr = fmt.Errorf("failed to create snapshot: %v", err)
return
}
// Separately track the progress of streaming a snapshot over the network
// because this too can take a long time.
countingRPCReader := newCountingReader(rpc.Reader)
// Spill the remote snapshot to disk
transferMonitor := startSnapshotRestoreMonitor(r.logger, countingRPCReader, req.Size, true)
n, err := io.Copy(sink, countingRPCReader)
transferMonitor.StopAndWait()
if err != nil {
sink.Cancel()
r.logger.Error("failed to copy snapshot", "error", err)
rpcErr = err
return
}
// Check that we received it all
if n != req.Size {
sink.Cancel()
r.logger.Error("failed to receive whole snapshot",
"received", hclog.Fmt("%d / %d", n, req.Size))
rpcErr = fmt.Errorf("short read")
return
}
// Finalize the snapshot
if err := sink.Close(); err != nil {
r.logger.Error("failed to finalize snapshot", "error", err)
rpcErr = err
return
}
r.logger.Info("copied to local snapshot", "bytes", n)
// Restore snapshot
future := &restoreFuture{ID: sink.ID()}
future.ShutdownCh = r.shutdownCh
future.init()
select {
case r.fsmMutateCh <- future:
case <-r.shutdownCh:
future.respond(ErrRaftShutdown)
return
}
// Wait for the restore to happen
if err := future.Error(); err != nil {
r.logger.Error("failed to restore snapshot", "error", err)
rpcErr = err
return
}
// Update the lastApplied so we don't replay old logs
r.setLastApplied(req.LastLogIndex)
// Update the last stable snapshot info
r.setLastSnapshot(req.LastLogIndex, req.LastLogTerm)
// Restore the peer set
r.setLatestConfiguration(reqConfiguration, reqConfigurationIndex)
r.setCommittedConfiguration(reqConfiguration, reqConfigurationIndex)
// Clear old logs if r.logs is a MonotonicLogStore. Otherwise compact the
// logs. In both cases, log any errors and continue.
if mlogs, ok := r.logs.(MonotonicLogStore); ok && mlogs.IsMonotonic() {
if err := r.removeOldLogs(); err != nil {
r.logger.Error("failed to reset logs", "error", err)
}
} else if err := r.compactLogs(req.LastLogIndex); err != nil {
r.logger.Error("failed to compact logs", "error", err)
}
r.logger.Info("Installed remote snapshot")
resp.Success = true
r.setLastContact()
}
// setLastContact is used to set the last contact time to now
func (r *Raft) setLastContact() {
r.lastContactLock.Lock()
r.lastContact = time.Now()
r.lastContactLock.Unlock()
}
type voteResult struct {
RequestVoteResponse
voterID ServerID
}
// electSelf is used to send a RequestVote RPC to all peers, and vote for
// ourself. This has the side affecting of incrementing the current term. The
// response channel returned is used to wait for all the responses (including a
// vote for ourself). This must only be called from the main thread.
func (r *Raft) electSelf() <-chan *voteResult {
// Create a response channel
respCh := make(chan *voteResult, len(r.configurations.latest.Servers))
// Increment the term
r.setCurrentTerm(r.getCurrentTerm() + 1)
// Construct the request
lastIdx, lastTerm := r.getLastEntry()
req := &RequestVoteRequest{
RPCHeader: r.getRPCHeader(),
Term: r.getCurrentTerm(),
// this is needed for retro compatibility, before RPCHeader.Addr was added
Candidate: r.trans.EncodePeer(r.localID, r.localAddr),
LastLogIndex: lastIdx,
LastLogTerm: lastTerm,
LeadershipTransfer: r.candidateFromLeadershipTransfer,
}
// Construct a function to ask for a vote
askPeer := func(peer Server) {
r.goFunc(func() {
defer metrics.MeasureSince([]string{"raft", "candidate", "electSelf"}, time.Now())
resp := &voteResult{voterID: peer.ID}
err := r.trans.RequestVote(peer.ID, peer.Address, req, &resp.RequestVoteResponse)
if err != nil {
r.logger.Error("failed to make requestVote RPC",
"target", peer,
"error", err,
"term", req.Term)
resp.Term = req.Term
resp.Granted = false
}
respCh <- resp
})
}
// For each peer, request a vote
for _, server := range r.configurations.latest.Servers {
if server.Suffrage == Voter {
if server.ID == r.localID {
r.logger.Debug("voting for self", "term", req.Term, "id", r.localID)
// Persist a vote for ourselves
if err := r.persistVote(req.Term, req.RPCHeader.Addr); err != nil {
r.logger.Error("failed to persist vote", "error", err)
return nil
}
// Include our own vote
respCh <- &voteResult{
RequestVoteResponse: RequestVoteResponse{
RPCHeader: r.getRPCHeader(),
Term: req.Term,
Granted: true,
},
voterID: r.localID,
}
} else {
r.logger.Debug("asking for vote", "term", req.Term, "from", server.ID, "address", server.Address)
askPeer(server)
}
}
}
return respCh
}
// persistVote is used to persist our vote for safety.
func (r *Raft) persistVote(term uint64, candidate []byte) error {
if err := r.stable.SetUint64(keyLastVoteTerm, term); err != nil {
return err
}
if err := r.stable.Set(keyLastVoteCand, candidate); err != nil {
return err
}
return nil
}
// setCurrentTerm is used to set the current term in a durable manner.
func (r *Raft) setCurrentTerm(t uint64) {
// Persist to disk first
if err := r.stable.SetUint64(keyCurrentTerm, t); err != nil {
panic(fmt.Errorf("failed to save current term: %v", err))
}
r.raftState.setCurrentTerm(t)
}
// setState is used to update the current state. Any state
// transition causes the known leader to be cleared. This means
// that leader should be set only after updating the state.
func (r *Raft) setState(state RaftState) {
r.setLeader("", "")
oldState := r.raftState.getState()
r.raftState.setState(state)
if oldState != state {
r.observe(state)
}
}
// pickServer returns the follower that is most up to date and participating in quorum.
// Because it accesses leaderstate, it should only be called from the leaderloop.
func (r *Raft) pickServer() *Server {
var pick *Server
var current uint64
for _, server := range r.configurations.latest.Servers {
if server.ID == r.localID || server.Suffrage != Voter {
continue
}
state, ok := r.leaderState.replState[server.ID]
if !ok {
continue
}
nextIdx := atomic.LoadUint64(&state.nextIndex)
if nextIdx > current {
current = nextIdx
tmp := server
pick = &tmp
}
}
return pick
}
// initiateLeadershipTransfer starts the leadership on the leader side, by
// sending a message to the leadershipTransferCh, to make sure it runs in the
// mainloop.
func (r *Raft) initiateLeadershipTransfer(id *ServerID, address *ServerAddress) LeadershipTransferFuture {
future := &leadershipTransferFuture{ID: id, Address: address}
future.init()
if id != nil && *id == r.localID {
err := fmt.Errorf("cannot transfer leadership to itself")
r.logger.Info(err.Error())
future.respond(err)
return future
}
select {
case r.leadershipTransferCh <- future:
return future
case <-r.shutdownCh:
return errorFuture{ErrRaftShutdown}
default:
return errorFuture{ErrEnqueueTimeout}
}
}
// timeoutNow is what happens when a server receives a TimeoutNowRequest.
func (r *Raft) timeoutNow(rpc RPC, req *TimeoutNowRequest) {
r.setLeader("", "")
r.setState(Candidate)
r.candidateFromLeadershipTransfer = true
rpc.Respond(&TimeoutNowResponse{}, nil)
}
// setLatestConfiguration stores the latest configuration and updates a copy of it.
func (r *Raft) setLatestConfiguration(c Configuration, i uint64) {
r.configurations.latest = c
r.configurations.latestIndex = i
r.latestConfiguration.Store(c.Clone())
}
// setCommittedConfiguration stores the committed configuration.
func (r *Raft) setCommittedConfiguration(c Configuration, i uint64) {
r.configurations.committed = c
r.configurations.committedIndex = i
}
// getLatestConfiguration reads the configuration from a copy of the main
// configuration, which means it can be accessed independently from the main
// loop.
func (r *Raft) getLatestConfiguration() Configuration {
// this switch catches the case where this is called without having set
// a configuration previously.
switch c := r.latestConfiguration.Load().(type) {
case Configuration:
return c
default:
return Configuration{}
}
}
|