1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
|
// Package hdrhistogram provides an implementation of Gil Tene's HDR Histogram
// data structure. The HDR Histogram allows for fast and accurate analysis of
// the extreme ranges of data with non-normal distributions, like latency.
package hdrhistogram
import (
"fmt"
"io"
"math"
"math/bits"
"sort"
)
// A Bracket is a part of a cumulative distribution.
type Bracket struct {
Quantile float64
Count, ValueAt int64
}
// A Snapshot is an exported view of a Histogram, useful for serializing them.
// A Histogram can be constructed from it by passing it to Import.
type Snapshot struct {
LowestTrackableValue int64
HighestTrackableValue int64
SignificantFigures int64
Counts []int64
}
// A Histogram is a lossy data structure used to record the distribution of
// non-normally distributed data (like latency) with a high degree of accuracy
// and a bounded degree of precision.
type Histogram struct {
lowestDiscernibleValue int64
highestTrackableValue int64
unitMagnitude int64
significantFigures int64
subBucketHalfCountMagnitude int32
subBucketHalfCount int32
subBucketMask int64
subBucketCount int32
bucketCount int32
countsLen int32
totalCount int64
counts []int64
startTimeMs int64
endTimeMs int64
tag string
}
func (h *Histogram) Tag() string {
return h.tag
}
func (h *Histogram) SetTag(tag string) {
h.tag = tag
}
func (h *Histogram) EndTimeMs() int64 {
return h.endTimeMs
}
func (h *Histogram) SetEndTimeMs(endTimeMs int64) {
h.endTimeMs = endTimeMs
}
func (h *Histogram) StartTimeMs() int64 {
return h.startTimeMs
}
func (h *Histogram) SetStartTimeMs(startTimeMs int64) {
h.startTimeMs = startTimeMs
}
// Construct a Histogram given the Lowest and Highest values to be tracked and a number of significant decimal digits.
//
// Providing a lowestDiscernibleValue is useful in situations where the units used for the histogram's values are
// much smaller that the minimal accuracy required.
// E.g. when tracking time values stated in nanosecond units, where the minimal accuracy required is a microsecond,
// the proper value for lowestDiscernibleValue would be 1000.
//
// Note: the numberOfSignificantValueDigits must be [1,5]. If lower than 1 the numberOfSignificantValueDigits will be
// forced to 1, and if higher than 5 the numberOfSignificantValueDigits will be forced to 5.
func New(lowestDiscernibleValue, highestTrackableValue int64, numberOfSignificantValueDigits int) *Histogram {
if numberOfSignificantValueDigits < 1 {
numberOfSignificantValueDigits = 1
} else if numberOfSignificantValueDigits > 5 {
numberOfSignificantValueDigits = 5
}
if lowestDiscernibleValue < 1 {
lowestDiscernibleValue = 1
}
// Given a 3 decimal point accuracy, the expectation is obviously for "+/- 1 unit at 1000". It also means that
// it's "ok to be +/- 2 units at 2000". The "tricky" thing is that it is NOT ok to be +/- 2 units at 1999. Only
// starting at 2000. So internally, we need to maintain single unit resolution to 2x 10^decimalPoints.
largestValueWithSingleUnitResolution := 2 * math.Pow10(numberOfSignificantValueDigits)
// We need to maintain power-of-two subBucketCount (for clean direct indexing) that is large enough to
// provide unit resolution to at least largestValueWithSingleUnitResolution. So figure out
// largestValueWithSingleUnitResolution's nearest power-of-two (rounded up), and use that:
subBucketCountMagnitude := int32(math.Ceil(math.Log2(float64(largestValueWithSingleUnitResolution))))
subBucketHalfCountMagnitude := subBucketCountMagnitude
if subBucketHalfCountMagnitude < 1 {
subBucketHalfCountMagnitude = 1
}
subBucketHalfCountMagnitude--
unitMagnitude := int32(math.Floor(math.Log2(float64(lowestDiscernibleValue))))
if unitMagnitude < 0 {
unitMagnitude = 0
}
subBucketCount := int32(math.Pow(2, float64(subBucketHalfCountMagnitude)+1))
subBucketHalfCount := subBucketCount / 2
subBucketMask := int64(subBucketCount-1) << uint(unitMagnitude)
// determine exponent range needed to support the trackable value with no
// overflow:
smallestUntrackableValue := int64(subBucketCount) << uint(unitMagnitude)
bucketsNeeded := getBucketsNeededToCoverValue(smallestUntrackableValue, highestTrackableValue)
bucketCount := bucketsNeeded
countsLen := (bucketCount + 1) * (subBucketCount / 2)
return &Histogram{
lowestDiscernibleValue: lowestDiscernibleValue,
highestTrackableValue: highestTrackableValue,
unitMagnitude: int64(unitMagnitude),
significantFigures: int64(numberOfSignificantValueDigits),
subBucketHalfCountMagnitude: subBucketHalfCountMagnitude,
subBucketHalfCount: subBucketHalfCount,
subBucketMask: subBucketMask,
subBucketCount: subBucketCount,
bucketCount: bucketCount,
countsLen: countsLen,
totalCount: 0,
counts: make([]int64, countsLen),
startTimeMs: 0,
endTimeMs: 0,
tag: "",
}
}
func getBucketsNeededToCoverValue(smallestUntrackableValue int64, maxValue int64) int32 {
// always have at least 1 bucket
bucketsNeeded := int32(1)
for smallestUntrackableValue < maxValue {
if smallestUntrackableValue > (math.MaxInt64 / 2) {
// next shift will overflow, meaning that bucket could represent values up to ones greater than
// math.MaxInt64, so it's the last bucket
return bucketsNeeded + 1
}
smallestUntrackableValue <<= 1
bucketsNeeded++
}
return bucketsNeeded
}
// ByteSize returns an estimate of the amount of memory allocated to the
// histogram in bytes.
//
// N.B.: This does not take into account the overhead for slices, which are
// small, constant, and specific to the compiler version.
func (h *Histogram) ByteSize() int {
return 6*8 + 5*4 + len(h.counts)*8
}
func (h *Histogram) getNormalizingIndexOffset() int32 {
return 1
}
// Merge merges the data stored in the given histogram with the receiver,
// returning the number of recorded values which had to be dropped.
func (h *Histogram) Merge(from *Histogram) (dropped int64) {
i := from.rIterator()
for i.next() {
v := i.valueFromIdx
c := i.countAtIdx
if h.RecordValues(v, c) != nil {
dropped += c
}
}
return
}
// TotalCount returns total number of values recorded.
func (h *Histogram) TotalCount() int64 {
return h.totalCount
}
// Max returns the approximate maximum recorded value.
func (h *Histogram) Max() int64 {
var max int64
i := h.iterator()
for i.next() {
if i.countAtIdx != 0 {
max = i.highestEquivalentValue
}
}
return h.highestEquivalentValue(max)
}
// Min returns the approximate minimum recorded value.
func (h *Histogram) Min() int64 {
var min int64
i := h.iterator()
for i.next() {
if i.countAtIdx != 0 && min == 0 {
min = i.highestEquivalentValue
break
}
}
return h.lowestEquivalentValue(min)
}
// Mean returns the approximate arithmetic mean of the recorded values.
func (h *Histogram) Mean() float64 {
if h.totalCount == 0 {
return 0
}
var total int64
i := h.iterator()
for i.next() {
if i.countAtIdx != 0 {
total += i.countAtIdx * h.medianEquivalentValue(i.valueFromIdx)
}
}
return float64(total) / float64(h.totalCount)
}
// StdDev returns the approximate standard deviation of the recorded values.
func (h *Histogram) StdDev() float64 {
if h.totalCount == 0 {
return 0
}
mean := h.Mean()
geometricDevTotal := 0.0
i := h.iterator()
for i.next() {
if i.countAtIdx != 0 {
dev := float64(h.medianEquivalentValue(i.valueFromIdx)) - mean
geometricDevTotal += (dev * dev) * float64(i.countAtIdx)
}
}
return math.Sqrt(geometricDevTotal / float64(h.totalCount))
}
// Reset deletes all recorded values and restores the histogram to its original
// state.
func (h *Histogram) Reset() {
h.totalCount = 0
for i := range h.counts {
h.counts[i] = 0
}
}
// RecordValue records the given value, returning an error if the value is out
// of range.
func (h *Histogram) RecordValue(v int64) error {
return h.RecordValues(v, 1)
}
// RecordCorrectedValue records the given value, correcting for stalls in the
// recording process. This only works for processes which are recording values
// at an expected interval (e.g., doing jitter analysis). Processes which are
// recording ad-hoc values (e.g., latency for incoming requests) can't take
// advantage of this.
func (h *Histogram) RecordCorrectedValue(v, expectedInterval int64) error {
if err := h.RecordValue(v); err != nil {
return err
}
if expectedInterval <= 0 || v <= expectedInterval {
return nil
}
missingValue := v - expectedInterval
for missingValue >= expectedInterval {
if err := h.RecordValue(missingValue); err != nil {
return err
}
missingValue -= expectedInterval
}
return nil
}
// RecordValues records n occurrences of the given value, returning an error if
// the value is out of range.
func (h *Histogram) RecordValues(v, n int64) error {
idx := h.countsIndexFor(v)
if idx < 0 || int(h.countsLen) <= idx {
return fmt.Errorf("value %d is too large to be recorded", v)
}
h.setCountAtIndex(idx, n)
return nil
}
func (h *Histogram) setCountAtIndex(idx int, n int64) {
h.counts[idx] += n
h.totalCount += n
}
// ValueAtQuantile returns the largest value that (100% - percentile) of the overall recorded value entries
// in the histogram are either larger than or equivalent to.
//
// The passed quantile must be a float64 value in [0.0 .. 100.0]
// Note that two values are "equivalent" if `ValuesAreEquivalent(value1,value2)` would return true.
//
// Returns 0 if no recorded values exist.
func (h *Histogram) ValueAtQuantile(q float64) int64 {
return h.ValueAtPercentile(q)
}
// ValueAtPercentile returns the largest value that (100% - percentile) of the overall recorded value entries
// in the histogram are either larger than or equivalent to.
//
// The passed percentile must be a float64 value in [0.0 .. 100.0]
// Note that two values are "equivalent" if `ValuesAreEquivalent(value1,value2)` would return true.
//
// Returns 0 if no recorded values exist.
func (h *Histogram) ValueAtPercentile(percentile float64) int64 {
if percentile > 100 {
percentile = 100
}
countAtPercentile := int64(((percentile / 100) * float64(h.totalCount)) + 0.5)
valueFromIdx := h.getValueFromIdxUpToCount(countAtPercentile)
if percentile == 0.0 {
return h.lowestEquivalentValue(valueFromIdx)
}
return h.highestEquivalentValue(valueFromIdx)
}
func (h *Histogram) getValueFromIdxUpToCount(countAtPercentile int64) int64 {
var countToIdx int64
var valueFromIdx int64
var subBucketIdx int32 = -1
var bucketIdx int32
bucketBaseIdx := h.getBucketBaseIdx(bucketIdx)
for {
if countToIdx >= countAtPercentile {
break
}
// increment bucket
subBucketIdx++
if subBucketIdx >= h.subBucketCount {
subBucketIdx = h.subBucketHalfCount
bucketIdx++
bucketBaseIdx = h.getBucketBaseIdx(bucketIdx)
}
countToIdx += h.getCountAtIndexGivenBucketBaseIdx(bucketBaseIdx, subBucketIdx)
valueFromIdx = int64(subBucketIdx) << uint(int64(bucketIdx)+h.unitMagnitude)
}
return valueFromIdx
}
// ValueAtPercentiles, given an slice of percentiles returns a map containing for each passed percentile,
// the largest value that (100% - percentile) of the overall recorded value entries
// in the histogram are either larger than or equivalent to.
//
// Each element in the given an slice of percentiles must be a float64 value in [0.0 .. 100.0]
// Note that two values are "equivalent" if `ValuesAreEquivalent(value1,value2)` would return true.
//
// Returns a map of 0's if no recorded values exist.
func (h *Histogram) ValueAtPercentiles(percentiles []float64) (values map[float64]int64) {
sort.Float64s(percentiles)
totalQuantilesToCalculate := len(percentiles)
values = make(map[float64]int64, totalQuantilesToCalculate)
countAtPercentiles := make([]int64, totalQuantilesToCalculate)
for i, percentile := range percentiles {
if percentile > 100 {
percentile = 100
}
values[percentile] = 0
countAtPercentiles[i] = int64(((percentile / 100) * float64(h.totalCount)) + 0.5)
}
total := int64(0)
currentQuantileSlicePos := 0
i := h.iterator()
for currentQuantileSlicePos < totalQuantilesToCalculate && i.nextCountAtIdx(h.totalCount) {
total += i.countAtIdx
for currentQuantileSlicePos < totalQuantilesToCalculate && total >= countAtPercentiles[currentQuantileSlicePos] {
currentPercentile := percentiles[currentQuantileSlicePos]
if currentPercentile == 0.0 {
values[currentPercentile] = h.lowestEquivalentValue(i.valueFromIdx)
} else {
values[currentPercentile] = h.highestEquivalentValue(i.valueFromIdx)
}
currentQuantileSlicePos++
}
}
return
}
// Determine if two values are equivalent with the histogram's resolution.
// Where "equivalent" means that value samples recorded for any two
// equivalent values are counted in a common total count.
func (h *Histogram) ValuesAreEquivalent(value1, value2 int64) (result bool) {
result = h.lowestEquivalentValue(value1) == h.lowestEquivalentValue(value2)
return
}
// CumulativeDistribution returns an ordered list of brackets of the
// distribution of recorded values.
func (h *Histogram) CumulativeDistribution() []Bracket {
var result []Bracket
i := h.pIterator(1)
for i.next() {
result = append(result, Bracket{
Quantile: i.percentile,
Count: i.countToIdx,
ValueAt: i.highestEquivalentValue,
})
}
return result
}
// SignificantFigures returns the significant figures used to create the
// histogram
func (h *Histogram) SignificantFigures() int64 {
return h.significantFigures
}
// LowestTrackableValue returns the lower bound on values that will be added
// to the histogram
func (h *Histogram) LowestTrackableValue() int64 {
return h.lowestDiscernibleValue
}
// HighestTrackableValue returns the upper bound on values that will be added
// to the histogram
func (h *Histogram) HighestTrackableValue() int64 {
return h.highestTrackableValue
}
// Histogram bar for plotting
type Bar struct {
From, To, Count int64
}
// Pretty print as csv for easy plotting
func (b Bar) String() string {
return fmt.Sprintf("%v, %v, %v\n", b.From, b.To, b.Count)
}
// Distribution returns an ordered list of bars of the
// distribution of recorded values, counts can be normalized to a probability
func (h *Histogram) Distribution() (result []Bar) {
i := h.iterator()
for i.next() {
result = append(result, Bar{
Count: i.countAtIdx,
From: h.lowestEquivalentValue(i.valueFromIdx),
To: i.highestEquivalentValue,
})
}
return result
}
// Equals returns true if the two Histograms are equivalent, false if not.
func (h *Histogram) Equals(other *Histogram) bool {
switch {
case
h.lowestDiscernibleValue != other.lowestDiscernibleValue,
h.highestTrackableValue != other.highestTrackableValue,
h.unitMagnitude != other.unitMagnitude,
h.significantFigures != other.significantFigures,
h.subBucketHalfCountMagnitude != other.subBucketHalfCountMagnitude,
h.subBucketHalfCount != other.subBucketHalfCount,
h.subBucketMask != other.subBucketMask,
h.subBucketCount != other.subBucketCount,
h.bucketCount != other.bucketCount,
h.countsLen != other.countsLen,
h.totalCount != other.totalCount:
return false
default:
for i, c := range h.counts {
if c != other.counts[i] {
return false
}
}
}
return true
}
// Export returns a snapshot view of the Histogram. This can be later passed to
// Import to construct a new Histogram with the same state.
func (h *Histogram) Export() *Snapshot {
return &Snapshot{
LowestTrackableValue: h.lowestDiscernibleValue,
HighestTrackableValue: h.highestTrackableValue,
SignificantFigures: h.significantFigures,
Counts: append([]int64(nil), h.counts...), // copy
}
}
// Import returns a new Histogram populated from the Snapshot data (which the
// caller must stop accessing).
func Import(s *Snapshot) *Histogram {
h := New(s.LowestTrackableValue, s.HighestTrackableValue, int(s.SignificantFigures))
h.counts = s.Counts
totalCount := int64(0)
for i := int32(0); i < h.countsLen; i++ {
countAtIndex := h.counts[i]
if countAtIndex > 0 {
totalCount += countAtIndex
}
}
h.totalCount = totalCount
return h
}
func (h *Histogram) iterator() *iterator {
return &iterator{
h: h,
subBucketIdx: -1,
}
}
func (h *Histogram) rIterator() *rIterator {
return &rIterator{
iterator: iterator{
h: h,
subBucketIdx: -1,
},
}
}
func (h *Histogram) pIterator(ticksPerHalfDistance int32) *pIterator {
return &pIterator{
iterator: iterator{
h: h,
subBucketIdx: -1,
},
ticksPerHalfDistance: ticksPerHalfDistance,
}
}
func (h *Histogram) sizeOfEquivalentValueRange(v int64) int64 {
bucketIdx := h.getBucketIndex(v)
return h.sizeOfEquivalentValueRangeGivenBucketIdx(v, bucketIdx)
}
func (h *Histogram) sizeOfEquivalentValueRangeGivenBucketIdx(v int64, bucketIdx int32) int64 {
subBucketIdx := h.getSubBucketIdx(v, bucketIdx)
adjustedBucket := bucketIdx
if subBucketIdx >= h.subBucketCount {
adjustedBucket++
}
return int64(1) << uint(h.unitMagnitude+int64(adjustedBucket))
}
func (h *Histogram) valueFromIndex(bucketIdx, subBucketIdx int32) int64 {
return int64(subBucketIdx) << uint(int64(bucketIdx)+h.unitMagnitude)
}
func (h *Histogram) lowestEquivalentValue(v int64) int64 {
bucketIdx := h.getBucketIndex(v)
return h.lowestEquivalentValueGivenBucketIdx(v, bucketIdx)
}
func (h *Histogram) lowestEquivalentValueGivenBucketIdx(v int64, bucketIdx int32) int64 {
subBucketIdx := h.getSubBucketIdx(v, bucketIdx)
return h.valueFromIndex(bucketIdx, subBucketIdx)
}
func (h *Histogram) nextNonEquivalentValue(v int64) int64 {
bucketIdx := h.getBucketIndex(v)
return h.lowestEquivalentValueGivenBucketIdx(v, bucketIdx) + h.sizeOfEquivalentValueRangeGivenBucketIdx(v, bucketIdx)
}
func (h *Histogram) highestEquivalentValue(v int64) int64 {
return h.nextNonEquivalentValue(v) - 1
}
func (h *Histogram) medianEquivalentValue(v int64) int64 {
return h.lowestEquivalentValue(v) + (h.sizeOfEquivalentValueRange(v) >> 1)
}
func (h *Histogram) getCountAtIndex(bucketIdx, subBucketIdx int32) int64 {
return h.counts[h.countsIndex(bucketIdx, subBucketIdx)]
}
func (h *Histogram) getCountAtIndexGivenBucketBaseIdx(bucketBaseIdx, subBucketIdx int32) int64 {
return h.counts[bucketBaseIdx+subBucketIdx-h.subBucketHalfCount]
}
func (h *Histogram) countsIndex(bucketIdx, subBucketIdx int32) int32 {
return h.getBucketBaseIdx(bucketIdx) + subBucketIdx - h.subBucketHalfCount
}
func (h *Histogram) getBucketBaseIdx(bucketIdx int32) int32 {
return (bucketIdx + 1) << uint(h.subBucketHalfCountMagnitude)
}
// return the lowest (and therefore highest precision) bucket index that can represent the value
// Calculates the number of powers of two by which the value is greater than the biggest value that fits in
// bucket 0. This is the bucket index since each successive bucket can hold a value 2x greater.
func (h *Histogram) getBucketIndex(v int64) int32 {
var pow2Ceiling = int64(64 - bits.LeadingZeros64(uint64(v|h.subBucketMask)))
return int32(pow2Ceiling - int64(h.unitMagnitude) -
int64(h.subBucketHalfCountMagnitude+1))
}
// For bucketIndex 0, this is just value, so it may be anywhere in 0 to subBucketCount.
// For other bucketIndex, this will always end up in the top half of subBucketCount: assume that for some bucket
// k > 0, this calculation will yield a value in the bottom half of 0 to subBucketCount. Then, because of how
// buckets overlap, it would have also been in the top half of bucket k-1, and therefore would have
// returned k-1 in getBucketIndex(). Since we would then shift it one fewer bits here, it would be twice as big,
// and therefore in the top half of subBucketCount.
func (h *Histogram) getSubBucketIdx(v int64, idx int32) int32 {
return int32(v >> uint(int64(idx)+int64(h.unitMagnitude)))
}
func (h *Histogram) countsIndexFor(v int64) int {
bucketIdx := h.getBucketIndex(v)
subBucketIdx := h.getSubBucketIdx(v, bucketIdx)
return int(h.countsIndex(bucketIdx, subBucketIdx))
}
func (h *Histogram) getIntegerToDoubleValueConversionRatio() float64 {
return 1.0
}
type iterator struct {
h *Histogram
bucketIdx, subBucketIdx int32
countAtIdx, countToIdx, valueFromIdx int64
highestEquivalentValue int64
}
// nextCountAtIdx does not update the iterator highestEquivalentValue in order to optimize cpu usage.
func (i *iterator) nextCountAtIdx(limit int64) bool {
if i.countToIdx >= limit {
return false
}
// increment bucket
i.subBucketIdx++
if i.subBucketIdx >= i.h.subBucketCount {
i.subBucketIdx = i.h.subBucketHalfCount
i.bucketIdx++
}
if i.bucketIdx >= i.h.bucketCount {
return false
}
i.countAtIdx = i.h.getCountAtIndex(i.bucketIdx, i.subBucketIdx)
i.countToIdx += i.countAtIdx
i.valueFromIdx = i.h.valueFromIndex(i.bucketIdx, i.subBucketIdx)
return true
}
// Returns the next element in the iteration.
func (i *iterator) next() bool {
if !i.nextCountAtIdx(i.h.totalCount) {
return false
}
i.highestEquivalentValue = i.h.highestEquivalentValue(i.valueFromIdx)
return true
}
type rIterator struct {
iterator
countAddedThisStep int64
}
func (r *rIterator) next() bool {
for r.iterator.next() {
if r.countAtIdx != 0 {
r.countAddedThisStep = r.countAtIdx
return true
}
}
return false
}
type pIterator struct {
iterator
seenLastValue bool
ticksPerHalfDistance int32
percentileToIteratorTo float64
percentile float64
}
func (p *pIterator) next() bool {
if !(p.countToIdx < p.h.totalCount) {
if p.seenLastValue {
return false
}
p.seenLastValue = true
p.percentile = 100
return true
}
if p.subBucketIdx == -1 && !p.iterator.next() {
return false
}
var done = false
for !done {
currentPercentile := (100.0 * float64(p.countToIdx)) / float64(p.h.totalCount)
if p.countAtIdx != 0 && p.percentileToIteratorTo <= currentPercentile {
p.percentile = p.percentileToIteratorTo
halfDistance := math.Trunc(math.Pow(2, math.Trunc(math.Log2(100.0/(100.0-p.percentileToIteratorTo)))+1))
percentileReportingTicks := float64(p.ticksPerHalfDistance) * halfDistance
p.percentileToIteratorTo += 100.0 / percentileReportingTicks
return true
}
done = !p.iterator.next()
}
return true
}
// CumulativeDistribution returns an ordered list of brackets of the
// distribution of recorded values.
func (h *Histogram) CumulativeDistributionWithTicks(ticksPerHalfDistance int32) []Bracket {
var result []Bracket
i := h.pIterator(ticksPerHalfDistance)
for i.next() {
result = append(result, Bracket{
Quantile: i.percentile,
Count: i.countToIdx,
ValueAt: int64(i.highestEquivalentValue),
})
}
return result
}
// Output the percentiles distribution in a text format
func (h *Histogram) PercentilesPrint(writer io.Writer, ticksPerHalfDistance int32, valueScale float64) (outputWriter io.Writer, err error) {
outputWriter = writer
dist := h.CumulativeDistributionWithTicks(ticksPerHalfDistance)
_, err = outputWriter.Write([]byte(" Value\tPercentile\tTotalCount\t1/(1-Percentile)\n\n"))
if err != nil {
return
}
for _, slice := range dist {
percentile := slice.Quantile / 100.0
inverted_percentile := 1.0 / (1.0 - percentile)
var inverted_percentile_string = fmt.Sprintf("%12.2f", inverted_percentile)
// Given that other language implementations display inf (instead of Go's +Inf)
// we want to be as close as possible to them
if math.IsInf(inverted_percentile, 1) {
inverted_percentile_string = fmt.Sprintf("%12s", "inf")
}
_, err = outputWriter.Write([]byte(fmt.Sprintf("%12.3f %12f %12d %s\n", float64(slice.ValueAt)/valueScale, percentile, slice.Count, inverted_percentile_string)))
if err != nil {
return
}
}
footer := fmt.Sprintf("#[Mean = %12.3f, StdDeviation = %12.3f]\n#[Max = %12.3f, Total count = %12d]\n#[Buckets = %12d, SubBuckets = %12d]\n",
h.Mean()/valueScale,
h.StdDev()/valueScale,
float64(h.Max())/valueScale,
h.TotalCount(),
h.bucketCount,
h.subBucketCount,
)
_, err = outputWriter.Write([]byte(footer))
return
}
|