File: csidh.go

package info (click to toggle)
golang-github-henrydcase-nobs 0.1%2Bgit20200305.7d891c7-5
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye
  • size: 2,904 kB
  • sloc: asm: 6,587; makefile: 53; python: 38
file content (307 lines) | stat: -rw-r--r-- 6,068 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
package csidh

import (
	"io"
)

// 511-bit number representing prime field element GF(p)
type fp [numWords]uint64

// Represents projective point on elliptic curve E over fp
type point struct {
	x fp
	z fp
}

// Curve coefficients
type coeff struct {
	a fp
	c fp
}

type fpRngGen struct {
	// working buffer needed to avoid memory allocation
	wbuf [64]byte
}

// Defines operations on public key
type PublicKey struct {
	fpRngGen
	// Montgomery coefficient: represents y^2 = x^3 + Ax^2 + x
	a fp
}

// Defines operations on private key
type PrivateKey struct {
	fpRngGen
	e [PrivateKeySize]int8
}

// randFp generates random element from Fp
func (s *fpRngGen) randFp(v *fp, rng io.Reader) {
	mask := uint64(1<<(pbits%limbBitSize)) - 1
	for {
		*v = fp{}
		_, err := io.ReadFull(rng, s.wbuf[:])
		if err != nil {
			panic("Can't read random number")
		}

		for i := 0; i < len(s.wbuf); i++ {
			j := i / limbByteSize
			k := uint(i % 8)
			v[j] |= uint64(s.wbuf[i]) << (8 * k)
		}

		v[len(v)-1] &= mask
		if isLess(v, &p) {
			return
		}
	}
}

func cofactorMultiples(p *point, a *coeff, halfL, halfR int, order *fp) (bool, bool) {
	var Q point
	var r1, d1, r2, d2 bool

	if (halfR - halfL) == 1 {
		if !p.z.isZero() {
			var tmp = fp{primes[halfL]}
			xMul512(p, p, a, &tmp)

			if !p.z.isZero() {
				// order does not divide p+1
				return false, true
			}

			mul512(order, order, primes[halfL])
			if sub512(&tmp, &fourSqrtP, order) == 1 {
				// order > 4*sqrt(p) -> supersingular
				return true, true
			}
		}
		return false, false
	}

	// perform another recursive step
	mid := halfL + ((halfR - halfL + 1) / 2)
	var mulL, mulR = fp{1}, fp{1}
	for i := halfL; i < mid; i++ {
		mul512(&mulR, &mulR, primes[i])
	}
	for i := mid; i < halfR; i++ {
		mul512(&mulL, &mulL, primes[i])
	}

	xMul512(&Q, p, a, &mulR)
	xMul512(p, p, a, &mulL)

	r1, d1 = cofactorMultiples(&Q, a, mid, halfR, order)
	r2, d2 = cofactorMultiples(p, a, halfL, mid, order)
	return r1 || r2, d1 || d2
}

func groupAction(pub *PublicKey, prv *PrivateKey, rng io.Reader) {
	var k [2]fp
	var e [2][primeCount]uint8
	var done = [2]bool{false, false}
	var A = coeff{a: pub.a, c: one}

	k[0][0] = 4
	k[1][0] = 4

	for i, v := range primes {
		t := (prv.e[uint(i)>>1] << ((uint(i) % 2) * 4)) >> 4
		if t > 0 {
			e[0][i] = uint8(t)
			e[1][i] = 0
			mul512(&k[1], &k[1], v)
		} else if t < 0 {
			e[1][i] = uint8(-t)
			e[0][i] = 0
			mul512(&k[0], &k[0], v)
		} else {
			e[0][i] = 0
			e[1][i] = 0
			mul512(&k[0], &k[0], v)
			mul512(&k[1], &k[1], v)
		}
	}

	for {
		var P point
		var rhs fp
		prv.randFp(&P.x, rng)
		P.z = one
		montEval(&rhs, &A.a, &P.x)
		sign := rhs.isNonQuadRes()

		if done[sign] {
			continue
		}

		xMul512(&P, &P, &A, &k[sign])
		done[sign] = true

		for i, v := range primes {
			if e[sign][i] != 0 {
				var cof = fp{1}
				var K point

				for j := i + 1; j < len(primes); j++ {
					if e[sign][j] != 0 {
						mul512(&cof, &cof, primes[j])
					}
				}

				xMul512(&K, &P, &A, &cof)
				if !K.z.isZero() {
					isom(&P, &A, &K, v)
					e[sign][i] = e[sign][i] - 1
					if e[sign][i] == 0 {
						mul512(&k[sign], &k[sign], primes[i])
					}
				}
			}
			done[sign] = done[sign] && (e[sign][i] == 0)
		}

		modExpRdc512(&A.c, &A.c, &pMin1)
		mulRdc(&A.a, &A.a, &A.c)
		A.c = one

		if done[0] && done[1] {
			break
		}
	}
	pub.a = A.a
}

// PrivateKey operations

func (c *PrivateKey) Import(key []byte) bool {
	if len(key) < len(c.e) {
		return false
	}
	for i, v := range key {
		c.e[i] = int8(v)
	}
	return true
}

func (c PrivateKey) Export(out []byte) bool {
	if len(out) < len(c.e) {
		return false
	}
	for i, v := range c.e {
		out[i] = byte(v)
	}
	return true
}

func GeneratePrivateKey(key *PrivateKey, rng io.Reader) error {
	for i := range key.e {
		key.e[i] = 0
	}

	for i := 0; i < len(primes); {
		_, err := io.ReadFull(rng, key.wbuf[:])
		if err != nil {
			return err
		}

		for j := range key.wbuf {
			if int8(key.wbuf[j]) <= expMax && int8(key.wbuf[j]) >= -expMax {
				key.e[i>>1] |= int8((key.wbuf[j] & 0xF) << uint((i%2)*4))
				i = i + 1
				if i == len(primes) {
					break
				}
			}
		}
	}
	return nil
}

// Public key operations

// Assumes key is in Montgomery domain
func (c *PublicKey) Import(key []byte) bool {
	if len(key) != numWords*limbByteSize {
		return false
	}
	for i := 0; i < len(key); i++ {
		j := i / limbByteSize
		k := uint64(i % 8)
		c.a[j] |= uint64(key[i]) << (8 * k)
	}
	return true
}

// Assumes key is exported as encoded in Montgomery domain
func (c *PublicKey) Export(out []byte) bool {
	if len(out) != numWords*limbByteSize {
		return false
	}
	for i := 0; i < len(out); i++ {
		j := i / limbByteSize
		k := uint64(i % 8)
		out[i] = byte(c.a[j] >> (8 * k))
	}
	return true
}

func (c *PublicKey) reset() {
	for i := range c.a {
		c.a[i] = 0
	}
}

func GeneratePublicKey(pub *PublicKey, prv *PrivateKey, rng io.Reader) {
	pub.reset()
	groupAction(pub, prv, rng)
}

// Validate does public key validation. It returns true if
// a 'pub' is a valid cSIDH public key, otherwise false.
func Validate(pub *PublicKey, rng io.Reader) bool {
	// Check if in range
	if !isLess(&pub.a, &p) {
		return false
	}

	// j-invariant for montgomery curves is something like
	// j = (256*(A^3-3)^3)/(A^2 - 4), so any |A| = 2 is invalid
	if pub.a.equal(&two) || pub.a.equal(&twoNeg) {
		return false
	}

	// P must have big enough order to prove supersingularity. The
	// probability that this loop will be repeated is negligible.
	for {
		var P point
		var A = point{pub.a, one}

		pub.randFp(&P.x, rng)
		P.z = one

		xDbl(&P, &P, &A)
		xDbl(&P, &P, &A)

		res, done := cofactorMultiples(&P, &coeff{A.x, A.z}, 0, len(primes), &fp{1})
		if done {
			return res
		}
	}
}

// DeriveSecret computes a cSIDH shared secret. If successful, returns true
// and fills 'out' with shared secret. Function returns false in case 'pub' is invalid.
func DeriveSecret(out *[64]byte, pub *PublicKey, prv *PrivateKey, rng io.Reader) bool {
	if !Validate(pub, rng) {
		return false
	}
	groupAction(pub, prv, rng)
	pub.Export(out[:])
	return true
}