1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
|
package csidh
// Implements differential arithmetic in P^1 for montgomery
// curves a mapping: x(P),x(Q),x(P-Q) -> x(P+Q)
// PaQ = P + Q
// This algorithms is correctly defined only for cases when
// P!=inf, Q!=inf, P!=Q and P!=-Q
func xAdd(PaQ, P, Q, PdQ *point) {
var t0, t1, t2, t3 fp
addRdc(&t0, &P.x, &P.z)
subRdc(&t1, &P.x, &P.z)
addRdc(&t2, &Q.x, &Q.z)
subRdc(&t3, &Q.x, &Q.z)
mulRdc(&t0, &t0, &t3)
mulRdc(&t1, &t1, &t2)
addRdc(&t2, &t0, &t1)
subRdc(&t3, &t0, &t1)
mulRdc(&t2, &t2, &t2) // sqr
mulRdc(&t3, &t3, &t3) // sqr
mulRdc(&PaQ.x, &PdQ.z, &t2)
mulRdc(&PaQ.z, &PdQ.x, &t3)
}
// Q = 2*P on a montgomery curve E(x): x^3 + A*x^2 + x
// It is correctly defined for all P != inf
func xDbl(Q, P, A *point) {
var t0, t1, t2 fp
addRdc(&t0, &P.x, &P.z)
mulRdc(&t0, &t0, &t0) // sqr
subRdc(&t1, &P.x, &P.z)
mulRdc(&t1, &t1, &t1) // sqr
subRdc(&t2, &t0, &t1)
mulRdc(&t1, &four, &t1)
mulRdc(&t1, &t1, &A.z)
mulRdc(&Q.x, &t0, &t1)
addRdc(&t0, &A.z, &A.z)
addRdc(&t0, &t0, &A.x)
mulRdc(&t0, &t0, &t2)
addRdc(&t0, &t0, &t1)
mulRdc(&Q.z, &t0, &t2)
}
// PaP = 2*P; PaQ = P+Q
// PaP can override P and PaQ can override Q
func xDblAdd(PaP, PaQ, P, Q, PdQ *point, A24 *coeff) {
var t0, t1, t2 fp
addRdc(&t0, &P.x, &P.z)
subRdc(&t1, &P.x, &P.z)
mulRdc(&PaP.x, &t0, &t0)
subRdc(&t2, &Q.x, &Q.z)
addRdc(&PaQ.x, &Q.x, &Q.z)
mulRdc(&t0, &t0, &t2)
mulRdc(&PaP.z, &t1, &t1)
mulRdc(&t1, &t1, &PaQ.x)
subRdc(&t2, &PaP.x, &PaP.z)
mulRdc(&PaP.z, &PaP.z, &A24.c)
mulRdc(&PaP.x, &PaP.x, &PaP.z)
mulRdc(&PaQ.x, &A24.a, &t2)
subRdc(&PaQ.z, &t0, &t1)
addRdc(&PaP.z, &PaP.z, &PaQ.x)
addRdc(&PaQ.x, &t0, &t1)
mulRdc(&PaP.z, &PaP.z, &t2)
mulRdc(&PaQ.z, &PaQ.z, &PaQ.z)
mulRdc(&PaQ.x, &PaQ.x, &PaQ.x)
mulRdc(&PaQ.z, &PaQ.z, &PdQ.x)
mulRdc(&PaQ.x, &PaQ.x, &PdQ.z)
}
// Swap P1 with P2 in constant time. The 'choice'
// parameter must have a value of either 1 (results
// in swap) or 0 (results in no-swap).
func cswappoint(P1, P2 *point, choice uint8) {
cswap512(&P1.x, &P2.x, choice)
cswap512(&P1.z, &P2.z, choice)
}
// A uniform Montgomery ladder. co is A coefficient of
// x^3 + A*x^2 + x curve. k MUST be > 0
//
// kP = [k]P. xM=x(0 + k*P)
//
// non-constant time.
func xMul512(kP, P *point, co *coeff, k *fp) {
var A24 coeff
var Q point
var j uint
var A = point{x: co.a, z: co.c}
var R = *P
// Precompyte A24 = (A+2C:4C) => (A24.x = A.x+2A.z; A24.z = 4*A.z)
addRdc(&A24.a, &co.c, &co.c)
addRdc(&A24.a, &A24.a, &co.a)
mulRdc(&A24.c, &co.c, &four)
// Skip initial 0 bits.
for j = 511; j > 0; j-- {
// performance hit from making it constant-time is actually
// quite big, so... unsafe branch for now
if uint8(k[j>>6]>>(j&63)&1) != 0 {
break
}
}
xDbl(&Q, P, &A)
prevBit := uint8(1)
for i := j; i > 0; {
i--
bit := uint8(k[i>>6] >> (i & 63) & 1)
swap := prevBit ^ bit
prevBit = bit
cswappoint(&Q, &R, swap)
xDblAdd(&Q, &R, &Q, &R, P, &A24)
}
cswappoint(&Q, &R, uint8(k[0]&1))
*kP = Q
}
func isom(img *point, co *coeff, kern *point, order uint64) {
var t0, t1, t2, S, D fp
var Q, prod point
var coEd coeff
var M = [3]point{*kern}
// Compute twisted Edwards coefficients
// coEd.a = co.a + 2*co.c
// coEd.c = co.a - 2*co.c
// coEd.a*X^2 + Y^2 = 1 + coEd.c*X^2*Y^2
addRdc(&coEd.c, &co.c, &co.c)
addRdc(&coEd.a, &co.a, &coEd.c)
subRdc(&coEd.c, &co.a, &coEd.c)
// Transfer point to twisted Edwards YZ-coordinates
// (X:Z)->(Y:Z) = (X-Z : X+Z)
addRdc(&S, &img.x, &img.z)
subRdc(&D, &img.x, &img.z)
subRdc(&prod.x, &kern.x, &kern.z)
addRdc(&prod.z, &kern.x, &kern.z)
mulRdc(&t1, &prod.x, &S)
mulRdc(&t0, &prod.z, &D)
addRdc(&Q.x, &t0, &t1)
subRdc(&Q.z, &t0, &t1)
xDbl(&M[1], kern, &point{x: co.a, z: co.c})
// TODO: Not constant time.
for i := uint64(1); i < order>>1; i++ {
if i >= 2 {
xAdd(&M[i%3], &M[(i-1)%3], kern, &M[(i-2)%3])
}
subRdc(&t1, &M[i%3].x, &M[i%3].z)
addRdc(&t0, &M[i%3].x, &M[i%3].z)
mulRdc(&prod.x, &prod.x, &t1)
mulRdc(&prod.z, &prod.z, &t0)
mulRdc(&t1, &t1, &S)
mulRdc(&t0, &t0, &D)
addRdc(&t2, &t0, &t1)
mulRdc(&Q.x, &Q.x, &t2)
subRdc(&t2, &t0, &t1)
mulRdc(&Q.z, &Q.z, &t2)
}
mulRdc(&Q.x, &Q.x, &Q.x)
mulRdc(&Q.z, &Q.z, &Q.z)
mulRdc(&img.x, &img.x, &Q.x)
mulRdc(&img.z, &img.z, &Q.z)
// coEd.a^order and coEd.c^order
modExpRdc64(&coEd.a, &coEd.a, order)
modExpRdc64(&coEd.c, &coEd.c, order)
// prod^8
mulRdc(&prod.x, &prod.x, &prod.x)
mulRdc(&prod.x, &prod.x, &prod.x)
mulRdc(&prod.x, &prod.x, &prod.x)
mulRdc(&prod.z, &prod.z, &prod.z)
mulRdc(&prod.z, &prod.z, &prod.z)
mulRdc(&prod.z, &prod.z, &prod.z)
// Compute image curve params
mulRdc(&coEd.c, &coEd.c, &prod.x)
mulRdc(&coEd.a, &coEd.a, &prod.z)
// Convert curve coefficients back to Montgomery
addRdc(&co.a, &coEd.a, &coEd.c)
subRdc(&co.c, &coEd.a, &coEd.c)
addRdc(&co.a, &co.a, &co.a)
}
// evaluates x^3 + Ax^2 + x
func montEval(res, A, x *fp) {
var t fp
*res = *x
mulRdc(res, res, res)
mulRdc(&t, A, x)
addRdc(res, res, &t)
addRdc(res, res, &one)
mulRdc(res, res, x)
}
|