File: curve.go

package info (click to toggle)
golang-github-henrydcase-nobs 0.1%2Bgit20200305.7d891c7-5
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye
  • size: 2,904 kB
  • sloc: asm: 6,587; makefile: 53; python: 38
file content (203 lines) | stat: -rw-r--r-- 5,013 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
package csidh

// Implements differential arithmetic in P^1 for montgomery
// curves a mapping: x(P),x(Q),x(P-Q) -> x(P+Q)
// PaQ = P + Q
// This algorithms is correctly defined only for cases when
// P!=inf, Q!=inf, P!=Q and P!=-Q
func xAdd(PaQ, P, Q, PdQ *point) {
	var t0, t1, t2, t3 fp
	addRdc(&t0, &P.x, &P.z)
	subRdc(&t1, &P.x, &P.z)
	addRdc(&t2, &Q.x, &Q.z)
	subRdc(&t3, &Q.x, &Q.z)
	mulRdc(&t0, &t0, &t3)
	mulRdc(&t1, &t1, &t2)
	addRdc(&t2, &t0, &t1)
	subRdc(&t3, &t0, &t1)
	mulRdc(&t2, &t2, &t2) // sqr
	mulRdc(&t3, &t3, &t3) // sqr
	mulRdc(&PaQ.x, &PdQ.z, &t2)
	mulRdc(&PaQ.z, &PdQ.x, &t3)
}

// Q = 2*P on a montgomery curve E(x): x^3 + A*x^2 + x
// It is correctly defined for all P != inf
func xDbl(Q, P, A *point) {
	var t0, t1, t2 fp
	addRdc(&t0, &P.x, &P.z)
	mulRdc(&t0, &t0, &t0) // sqr
	subRdc(&t1, &P.x, &P.z)
	mulRdc(&t1, &t1, &t1) // sqr
	subRdc(&t2, &t0, &t1)
	mulRdc(&t1, &four, &t1)
	mulRdc(&t1, &t1, &A.z)
	mulRdc(&Q.x, &t0, &t1)
	addRdc(&t0, &A.z, &A.z)
	addRdc(&t0, &t0, &A.x)
	mulRdc(&t0, &t0, &t2)
	addRdc(&t0, &t0, &t1)
	mulRdc(&Q.z, &t0, &t2)
}

// PaP = 2*P; PaQ = P+Q
// PaP can override P and PaQ can override Q
func xDblAdd(PaP, PaQ, P, Q, PdQ *point, A24 *coeff) {
	var t0, t1, t2 fp

	addRdc(&t0, &P.x, &P.z)
	subRdc(&t1, &P.x, &P.z)
	mulRdc(&PaP.x, &t0, &t0)
	subRdc(&t2, &Q.x, &Q.z)
	addRdc(&PaQ.x, &Q.x, &Q.z)
	mulRdc(&t0, &t0, &t2)
	mulRdc(&PaP.z, &t1, &t1)
	mulRdc(&t1, &t1, &PaQ.x)
	subRdc(&t2, &PaP.x, &PaP.z)
	mulRdc(&PaP.z, &PaP.z, &A24.c)
	mulRdc(&PaP.x, &PaP.x, &PaP.z)
	mulRdc(&PaQ.x, &A24.a, &t2)
	subRdc(&PaQ.z, &t0, &t1)
	addRdc(&PaP.z, &PaP.z, &PaQ.x)
	addRdc(&PaQ.x, &t0, &t1)
	mulRdc(&PaP.z, &PaP.z, &t2)
	mulRdc(&PaQ.z, &PaQ.z, &PaQ.z)
	mulRdc(&PaQ.x, &PaQ.x, &PaQ.x)
	mulRdc(&PaQ.z, &PaQ.z, &PdQ.x)
	mulRdc(&PaQ.x, &PaQ.x, &PdQ.z)
}

// Swap P1 with P2 in constant time. The 'choice'
// parameter must have a value of either 1 (results
// in swap) or 0 (results in no-swap).
func cswappoint(P1, P2 *point, choice uint8) {
	cswap512(&P1.x, &P2.x, choice)
	cswap512(&P1.z, &P2.z, choice)
}

// A uniform Montgomery ladder. co is A coefficient of
// x^3 + A*x^2 + x curve. k MUST be > 0
//
// kP = [k]P. xM=x(0 + k*P)
//
// non-constant time.
func xMul512(kP, P *point, co *coeff, k *fp) {
	var A24 coeff
	var Q point
	var j uint
	var A = point{x: co.a, z: co.c}
	var R = *P

	// Precompyte A24 = (A+2C:4C) => (A24.x = A.x+2A.z; A24.z = 4*A.z)
	addRdc(&A24.a, &co.c, &co.c)
	addRdc(&A24.a, &A24.a, &co.a)
	mulRdc(&A24.c, &co.c, &four)

	// Skip initial 0 bits.
	for j = 511; j > 0; j-- {
		// performance hit from making it constant-time is actually
		// quite big, so... unsafe branch for now
		if uint8(k[j>>6]>>(j&63)&1) != 0 {
			break
		}
	}

	xDbl(&Q, P, &A)
	prevBit := uint8(1)
	for i := j; i > 0; {
		i--
		bit := uint8(k[i>>6] >> (i & 63) & 1)
		swap := prevBit ^ bit
		prevBit = bit
		cswappoint(&Q, &R, swap)
		xDblAdd(&Q, &R, &Q, &R, P, &A24)
	}
	cswappoint(&Q, &R, uint8(k[0]&1))
	*kP = Q
}

func isom(img *point, co *coeff, kern *point, order uint64) {
	var t0, t1, t2, S, D fp
	var Q, prod point
	var coEd coeff
	var M = [3]point{*kern}

	// Compute twisted Edwards coefficients
	// coEd.a = co.a + 2*co.c
	// coEd.c = co.a - 2*co.c
	// coEd.a*X^2 + Y^2 = 1 + coEd.c*X^2*Y^2
	addRdc(&coEd.c, &co.c, &co.c)
	addRdc(&coEd.a, &co.a, &coEd.c)
	subRdc(&coEd.c, &co.a, &coEd.c)

	// Transfer point to twisted Edwards YZ-coordinates
	// (X:Z)->(Y:Z) = (X-Z : X+Z)
	addRdc(&S, &img.x, &img.z)
	subRdc(&D, &img.x, &img.z)

	subRdc(&prod.x, &kern.x, &kern.z)
	addRdc(&prod.z, &kern.x, &kern.z)

	mulRdc(&t1, &prod.x, &S)
	mulRdc(&t0, &prod.z, &D)
	addRdc(&Q.x, &t0, &t1)
	subRdc(&Q.z, &t0, &t1)

	xDbl(&M[1], kern, &point{x: co.a, z: co.c})

	// TODO: Not constant time.
	for i := uint64(1); i < order>>1; i++ {
		if i >= 2 {
			xAdd(&M[i%3], &M[(i-1)%3], kern, &M[(i-2)%3])
		}
		subRdc(&t1, &M[i%3].x, &M[i%3].z)
		addRdc(&t0, &M[i%3].x, &M[i%3].z)
		mulRdc(&prod.x, &prod.x, &t1)
		mulRdc(&prod.z, &prod.z, &t0)
		mulRdc(&t1, &t1, &S)
		mulRdc(&t0, &t0, &D)
		addRdc(&t2, &t0, &t1)
		mulRdc(&Q.x, &Q.x, &t2)
		subRdc(&t2, &t0, &t1)
		mulRdc(&Q.z, &Q.z, &t2)

	}

	mulRdc(&Q.x, &Q.x, &Q.x)
	mulRdc(&Q.z, &Q.z, &Q.z)
	mulRdc(&img.x, &img.x, &Q.x)
	mulRdc(&img.z, &img.z, &Q.z)

	// coEd.a^order and coEd.c^order
	modExpRdc64(&coEd.a, &coEd.a, order)
	modExpRdc64(&coEd.c, &coEd.c, order)

	// prod^8
	mulRdc(&prod.x, &prod.x, &prod.x)
	mulRdc(&prod.x, &prod.x, &prod.x)
	mulRdc(&prod.x, &prod.x, &prod.x)
	mulRdc(&prod.z, &prod.z, &prod.z)
	mulRdc(&prod.z, &prod.z, &prod.z)
	mulRdc(&prod.z, &prod.z, &prod.z)

	// Compute image curve params
	mulRdc(&coEd.c, &coEd.c, &prod.x)
	mulRdc(&coEd.a, &coEd.a, &prod.z)

	// Convert curve coefficients back to Montgomery
	addRdc(&co.a, &coEd.a, &coEd.c)
	subRdc(&co.c, &coEd.a, &coEd.c)
	addRdc(&co.a, &co.a, &co.a)
}

// evaluates x^3 + Ax^2 + x
func montEval(res, A, x *fp) {
	var t fp

	*res = *x
	mulRdc(res, res, res)
	mulRdc(&t, A, x)
	addRdc(res, res, &t)
	addRdc(res, res, &one)
	mulRdc(res, res, x)
}