1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
|
package csidh
import (
"io"
)
// 511-bit number representing prime field element GF(p)
type fp [numWords]uint64
// Represents projective point on elliptic curve E over fp
type point struct {
x fp
z fp
}
// Curve coefficients
type coeff struct {
a fp
c fp
}
type fpRngGen struct {
// working buffer needed to avoid memory allocation
wbuf [64]byte
}
// Defines operations on public key
type PublicKey struct {
fpRngGen
// Montgomery coefficient: represents y^2 = x^3 + Ax^2 + x
a fp
}
// Defines operations on private key
type PrivateKey struct {
fpRngGen
e [PrivateKeySize]int8
}
// randFp generates random element from Fp
func (s *fpRngGen) randFp(v *fp, rng io.Reader) {
mask := uint64(1<<(pbits%limbBitSize)) - 1
for {
*v = fp{}
_, err := io.ReadFull(rng, s.wbuf[:])
if err != nil {
panic("Can't read random number")
}
for i := 0; i < len(s.wbuf); i++ {
j := i / limbByteSize
k := uint(i % 8)
v[j] |= uint64(s.wbuf[i]) << (8 * k)
}
v[len(v)-1] &= mask
if isLess(v, &p) {
return
}
}
}
func cofactorMultiples(p *point, a *coeff, halfL, halfR int, order *fp) (bool, bool) {
var Q point
var r1, d1, r2, d2 bool
if (halfR - halfL) == 1 {
if !p.z.isZero() {
var tmp = fp{primes[halfL]}
xMul512(p, p, a, &tmp)
if !p.z.isZero() {
// order does not divide p+1
return false, true
}
mul512(order, order, primes[halfL])
if sub512(&tmp, &fourSqrtP, order) == 1 {
// order > 4*sqrt(p) -> supersingular
return true, true
}
}
return false, false
}
// perform another recursive step
mid := halfL + ((halfR - halfL + 1) / 2)
var mulL, mulR = fp{1}, fp{1}
for i := halfL; i < mid; i++ {
mul512(&mulR, &mulR, primes[i])
}
for i := mid; i < halfR; i++ {
mul512(&mulL, &mulL, primes[i])
}
xMul512(&Q, p, a, &mulR)
xMul512(p, p, a, &mulL)
r1, d1 = cofactorMultiples(&Q, a, mid, halfR, order)
r2, d2 = cofactorMultiples(p, a, halfL, mid, order)
return r1 || r2, d1 || d2
}
func groupAction(pub *PublicKey, prv *PrivateKey, rng io.Reader) {
var k [2]fp
var e [2][primeCount]uint8
var done = [2]bool{false, false}
var A = coeff{a: pub.a, c: one}
k[0][0] = 4
k[1][0] = 4
for i, v := range primes {
t := (prv.e[uint(i)>>1] << ((uint(i) % 2) * 4)) >> 4
if t > 0 {
e[0][i] = uint8(t)
e[1][i] = 0
mul512(&k[1], &k[1], v)
} else if t < 0 {
e[1][i] = uint8(-t)
e[0][i] = 0
mul512(&k[0], &k[0], v)
} else {
e[0][i] = 0
e[1][i] = 0
mul512(&k[0], &k[0], v)
mul512(&k[1], &k[1], v)
}
}
for {
var P point
var rhs fp
prv.randFp(&P.x, rng)
P.z = one
montEval(&rhs, &A.a, &P.x)
sign := rhs.isNonQuadRes()
if done[sign] {
continue
}
xMul512(&P, &P, &A, &k[sign])
done[sign] = true
for i, v := range primes {
if e[sign][i] != 0 {
var cof = fp{1}
var K point
for j := i + 1; j < len(primes); j++ {
if e[sign][j] != 0 {
mul512(&cof, &cof, primes[j])
}
}
xMul512(&K, &P, &A, &cof)
if !K.z.isZero() {
isom(&P, &A, &K, v)
e[sign][i] = e[sign][i] - 1
if e[sign][i] == 0 {
mul512(&k[sign], &k[sign], primes[i])
}
}
}
done[sign] = done[sign] && (e[sign][i] == 0)
}
modExpRdc512(&A.c, &A.c, &pMin1)
mulRdc(&A.a, &A.a, &A.c)
A.c = one
if done[0] && done[1] {
break
}
}
pub.a = A.a
}
// PrivateKey operations
func (c *PrivateKey) Import(key []byte) bool {
if len(key) < len(c.e) {
return false
}
for i, v := range key {
c.e[i] = int8(v)
}
return true
}
func (c PrivateKey) Export(out []byte) bool {
if len(out) < len(c.e) {
return false
}
for i, v := range c.e {
out[i] = byte(v)
}
return true
}
func GeneratePrivateKey(key *PrivateKey, rng io.Reader) error {
for i := range key.e {
key.e[i] = 0
}
for i := 0; i < len(primes); {
_, err := io.ReadFull(rng, key.wbuf[:])
if err != nil {
return err
}
for j := range key.wbuf {
if int8(key.wbuf[j]) <= expMax && int8(key.wbuf[j]) >= -expMax {
key.e[i>>1] |= int8((key.wbuf[j] & 0xF) << uint((i%2)*4))
i = i + 1
if i == len(primes) {
break
}
}
}
}
return nil
}
// Public key operations
// Assumes key is in Montgomery domain
func (c *PublicKey) Import(key []byte) bool {
if len(key) != numWords*limbByteSize {
return false
}
for i := 0; i < len(key); i++ {
j := i / limbByteSize
k := uint64(i % 8)
c.a[j] |= uint64(key[i]) << (8 * k)
}
return true
}
// Assumes key is exported as encoded in Montgomery domain
func (c *PublicKey) Export(out []byte) bool {
if len(out) != numWords*limbByteSize {
return false
}
for i := 0; i < len(out); i++ {
j := i / limbByteSize
k := uint64(i % 8)
out[i] = byte(c.a[j] >> (8 * k))
}
return true
}
func (c *PublicKey) reset() {
for i := range c.a {
c.a[i] = 0
}
}
func GeneratePublicKey(pub *PublicKey, prv *PrivateKey, rng io.Reader) {
pub.reset()
groupAction(pub, prv, rng)
}
// Validate does public key validation. It returns true if
// a 'pub' is a valid cSIDH public key, otherwise false.
func Validate(pub *PublicKey, rng io.Reader) bool {
// Check if in range
if !isLess(&pub.a, &p) {
return false
}
// j-invariant for montgomery curves is something like
// j = (256*(A^3-3)^3)/(A^2 - 4), so any |A| = 2 is invalid
if pub.a.equal(&two) || pub.a.equal(&twoNeg) {
return false
}
// P must have big enough order to prove supersingularity. The
// probability that this loop will be repeated is negligible.
for {
var P point
var A = point{pub.a, one}
pub.randFp(&P.x, rng)
P.z = one
xDbl(&P, &P, &A)
xDbl(&P, &P, &A)
res, done := cofactorMultiples(&P, &coeff{A.x, A.z}, 0, len(primes), &fp{1})
if done {
return res
}
}
}
// DeriveSecret computes a cSIDH shared secret. If successful, returns true
// and fills 'out' with shared secret. Function returns false in case 'pub' is invalid.
func DeriveSecret(out *[64]byte, pub *PublicKey, prv *PrivateKey, rng io.Reader) bool {
if !Validate(pub, rng) {
return false
}
groupAction(pub, prv, rng)
pub.Export(out[:])
return true
}
|