1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
|
package csidh
import (
"math/bits"
"golang.org/x/sys/cpu"
)
// CPU Capabilities. Those flags are referred by assembly code. According to
// https://github.com/golang/go/issues/28230, variables referred from the
// assembly must be in the same package.
// We declare variables not constants, in order to facilitate testing.
var (
// Signals support for BMI2 (MULX)
hasBMI2 = cpu.X86.HasBMI2
// Signals support for ADX and BMI2
hasADXandBMI2 = cpu.X86.HasBMI2 && cpu.X86.HasADX
)
// Constant time select.
// if pick == 0xFF..FF (out = in1)
// if pick == 0 (out = in2)
// else out is undefined
func ctPick64(which uint64, in1, in2 uint64) uint64 {
return (in1 & which) | (in2 & ^which)
}
// ctIsNonZero64 returns 0 in case i == 0, otherwise it returns 1.
// Constant-time.
func ctIsNonZero64(i uint64) int {
// In case i==0 then i-1 will set MSB. Only in such case (i OR ~(i-1))
// will result in MSB being not set (logical implication: (i-1)=>i is
// false iff (i-1)==0 and i==non-zero). In every other case MSB is
// set and hence function returns 1.
return int((i | (^(i - 1))) >> 63)
}
func mulGeneric(r, x, y *fp) {
var s fp // keeps intermediate results
var t1, t2 [9]uint64
var c, q uint64
for i := 0; i < numWords-1; i++ {
q = ((x[i] * y[0]) + s[0]) * pNegInv[0]
mul576(&t1, &p, q)
mul576(&t2, y, x[i])
// x[i]*y + q_i*p
t1[0], c = bits.Add64(t1[0], t2[0], 0)
t1[1], c = bits.Add64(t1[1], t2[1], c)
t1[2], c = bits.Add64(t1[2], t2[2], c)
t1[3], c = bits.Add64(t1[3], t2[3], c)
t1[4], c = bits.Add64(t1[4], t2[4], c)
t1[5], c = bits.Add64(t1[5], t2[5], c)
t1[6], c = bits.Add64(t1[6], t2[6], c)
t1[7], c = bits.Add64(t1[7], t2[7], c)
t1[8], _ = bits.Add64(t1[8], t2[8], c)
// s = (s + x[i]*y + q_i * p) / R
_, c = bits.Add64(t1[0], s[0], 0)
s[0], c = bits.Add64(t1[1], s[1], c)
s[1], c = bits.Add64(t1[2], s[2], c)
s[2], c = bits.Add64(t1[3], s[3], c)
s[3], c = bits.Add64(t1[4], s[4], c)
s[4], c = bits.Add64(t1[5], s[5], c)
s[5], c = bits.Add64(t1[6], s[6], c)
s[6], c = bits.Add64(t1[7], s[7], c)
s[7], _ = bits.Add64(t1[8], 0, c)
}
// last iteration stores result in r
q = ((x[numWords-1] * y[0]) + s[0]) * pNegInv[0]
mul576(&t1, &p, q)
mul576(&t2, y, x[numWords-1])
t1[0], c = bits.Add64(t1[0], t2[0], c)
t1[1], c = bits.Add64(t1[1], t2[1], c)
t1[2], c = bits.Add64(t1[2], t2[2], c)
t1[3], c = bits.Add64(t1[3], t2[3], c)
t1[4], c = bits.Add64(t1[4], t2[4], c)
t1[5], c = bits.Add64(t1[5], t2[5], c)
t1[6], c = bits.Add64(t1[6], t2[6], c)
t1[7], c = bits.Add64(t1[7], t2[7], c)
t1[8], _ = bits.Add64(t1[8], t2[8], c)
_, c = bits.Add64(t1[0], s[0], 0)
r[0], c = bits.Add64(t1[1], s[1], c)
r[1], c = bits.Add64(t1[2], s[2], c)
r[2], c = bits.Add64(t1[3], s[3], c)
r[3], c = bits.Add64(t1[4], s[4], c)
r[4], c = bits.Add64(t1[5], s[5], c)
r[5], c = bits.Add64(t1[6], s[6], c)
r[6], c = bits.Add64(t1[7], s[7], c)
r[7], _ = bits.Add64(t1[8], 0, c)
}
// Returns result of x<y operation.
func isLess(x, y *fp) bool {
for i := numWords - 1; i >= 0; i-- {
v, c := bits.Sub64(y[i], x[i], 0)
if c != 0 {
return false
}
if v != 0 {
return true
}
}
// x == y
return false
}
// r = x + y mod p.
func addRdc(r, x, y *fp) {
var c uint64
var t fp
r[0], c = bits.Add64(x[0], y[0], 0)
r[1], c = bits.Add64(x[1], y[1], c)
r[2], c = bits.Add64(x[2], y[2], c)
r[3], c = bits.Add64(x[3], y[3], c)
r[4], c = bits.Add64(x[4], y[4], c)
r[5], c = bits.Add64(x[5], y[5], c)
r[6], c = bits.Add64(x[6], y[6], c)
r[7], _ = bits.Add64(x[7], y[7], c)
t[0], c = bits.Sub64(r[0], p[0], 0)
t[1], c = bits.Sub64(r[1], p[1], c)
t[2], c = bits.Sub64(r[2], p[2], c)
t[3], c = bits.Sub64(r[3], p[3], c)
t[4], c = bits.Sub64(r[4], p[4], c)
t[5], c = bits.Sub64(r[5], p[5], c)
t[6], c = bits.Sub64(r[6], p[6], c)
t[7], c = bits.Sub64(r[7], p[7], c)
var w = 0 - c
r[0] = ctPick64(w, r[0], t[0])
r[1] = ctPick64(w, r[1], t[1])
r[2] = ctPick64(w, r[2], t[2])
r[3] = ctPick64(w, r[3], t[3])
r[4] = ctPick64(w, r[4], t[4])
r[5] = ctPick64(w, r[5], t[5])
r[6] = ctPick64(w, r[6], t[6])
r[7] = ctPick64(w, r[7], t[7])
}
// r = x - y
func sub512(r, x, y *fp) uint64 {
var c uint64
r[0], c = bits.Sub64(x[0], y[0], 0)
r[1], c = bits.Sub64(x[1], y[1], c)
r[2], c = bits.Sub64(x[2], y[2], c)
r[3], c = bits.Sub64(x[3], y[3], c)
r[4], c = bits.Sub64(x[4], y[4], c)
r[5], c = bits.Sub64(x[5], y[5], c)
r[6], c = bits.Sub64(x[6], y[6], c)
r[7], c = bits.Sub64(x[7], y[7], c)
return c
}
// r = x - y mod p.
func subRdc(r, x, y *fp) {
var c uint64
// Same as sub512(r,x,y). Unfortunately
// compiler is not able to inline it.
r[0], c = bits.Sub64(x[0], y[0], 0)
r[1], c = bits.Sub64(x[1], y[1], c)
r[2], c = bits.Sub64(x[2], y[2], c)
r[3], c = bits.Sub64(x[3], y[3], c)
r[4], c = bits.Sub64(x[4], y[4], c)
r[5], c = bits.Sub64(x[5], y[5], c)
r[6], c = bits.Sub64(x[6], y[6], c)
r[7], c = bits.Sub64(x[7], y[7], c)
// if x<y => r=x-y+p
var w = 0 - c
r[0], c = bits.Add64(r[0], ctPick64(w, p[0], 0), 0)
r[1], c = bits.Add64(r[1], ctPick64(w, p[1], 0), c)
r[2], c = bits.Add64(r[2], ctPick64(w, p[2], 0), c)
r[3], c = bits.Add64(r[3], ctPick64(w, p[3], 0), c)
r[4], c = bits.Add64(r[4], ctPick64(w, p[4], 0), c)
r[5], c = bits.Add64(r[5], ctPick64(w, p[5], 0), c)
r[6], c = bits.Add64(r[6], ctPick64(w, p[6], 0), c)
r[7], _ = bits.Add64(r[7], ctPick64(w, p[7], 0), c)
}
// Fixed-window mod exp for fpBitLen bit value with 4 bit window. Returned
// result is a number in montgomery domain.
// r = b ^ e (mod p).
// Constant time.
func modExpRdcCommon(r, b, e *fp, fpBitLen int) {
var precomp [16]fp
var t fp
var c uint64
// Precompute step, computes an array of small powers of 'b'. As this
// algorithm implements 4-bit window, we need 2^4=16 of such values.
// b^0 = 1, which is equal to R from REDC.
precomp[0] = one // b ^ 0
precomp[1] = *b // b ^ 1
for i := 2; i < 16; i = i + 2 {
// TODO: implement fast squering. Then interleaving fast squaring
// with multiplication should improve performance.
mulRdc(&precomp[i], &precomp[i/2], &precomp[i/2]) // sqr
mulRdc(&precomp[i+1], &precomp[i], b)
}
*r = one
for i := fpBitLen/4 - 1; i >= 0; i-- {
for j := 0; j < 4; j++ {
mulRdc(r, r, r)
}
// note: non resistant to cache SCA
idx := (e[i/16] >> uint((i%16)*4)) & 15
mulRdc(r, r, &precomp[idx])
}
// if p <= r < 2p then r = r-p
t[0], c = bits.Sub64(r[0], p[0], 0)
t[1], c = bits.Sub64(r[1], p[1], c)
t[2], c = bits.Sub64(r[2], p[2], c)
t[3], c = bits.Sub64(r[3], p[3], c)
t[4], c = bits.Sub64(r[4], p[4], c)
t[5], c = bits.Sub64(r[5], p[5], c)
t[6], c = bits.Sub64(r[6], p[6], c)
t[7], c = bits.Sub64(r[7], p[7], c)
var w = 0 - c
r[0] = ctPick64(w, r[0], t[0])
r[1] = ctPick64(w, r[1], t[1])
r[2] = ctPick64(w, r[2], t[2])
r[3] = ctPick64(w, r[3], t[3])
r[4] = ctPick64(w, r[4], t[4])
r[5] = ctPick64(w, r[5], t[5])
r[6] = ctPick64(w, r[6], t[6])
r[7] = ctPick64(w, r[7], t[7])
}
// modExpRdc does modular exponentation of 512-bit number.
// Constant-time.
func modExpRdc512(r, b, e *fp) {
modExpRdcCommon(r, b, e, 512)
}
// modExpRdc does modular exponentation of 64-bit number.
// Constant-time.
func modExpRdc64(r, b *fp, e uint64) {
modExpRdcCommon(r, b, &fp{e}, 64)
}
// isNonQuadRes checks whether value v is quadratic residue.
// Implementation uses Fermat's little theorem (or
// Euler's criterion)
// a^(p-1) == 1, hence
// (a^2) ((p-1)/2) == 1
// Which means v is a quadratic residue iff v^((p-1)/2) == 1.
// Caller provided v must be in montgomery domain.
// Returns 0 in case v is quadratic residue or 1 in case
// v is quadratic non-residue.
func (v *fp) isNonQuadRes() int {
var res fp
var b uint64
modExpRdc512(&res, v, &pMin1By2)
for i := range res {
b |= res[i] ^ one[i]
}
return ctIsNonZero64(b)
}
// isZero returns false in case v is equal to 0, otherwise
// true. Constant time.
func (v *fp) isZero() bool {
var r uint64
for i := 0; i < numWords; i++ {
r |= v[i]
}
return ctIsNonZero64(r) == 0
}
// equal checks if v is equal to in. Constant time
func (v *fp) equal(in *fp) bool {
var r uint64
for i := range v {
r |= v[i] ^ in[i]
}
return ctIsNonZero64(r) == 0
}
|