File: fp511.go

package info (click to toggle)
golang-github-henrydcase-nobs 0.1%2Bgit20200305.7d891c7-6
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,928 kB
  • sloc: asm: 6,587; makefile: 53; python: 38
file content (290 lines) | stat: -rw-r--r-- 8,213 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
package csidh

import (
	"math/bits"

	"golang.org/x/sys/cpu"
)

// CPU Capabilities. Those flags are referred by assembly code. According to
// https://github.com/golang/go/issues/28230, variables referred from the
// assembly must be in the same package.
// We declare variables not constants, in order to facilitate testing.
var (
	// Signals support for BMI2 (MULX)
	hasBMI2 = cpu.X86.HasBMI2
	// Signals support for ADX and BMI2
	hasADXandBMI2 = cpu.X86.HasBMI2 && cpu.X86.HasADX
)

// Constant time select.
// if pick == 0xFF..FF (out = in1)
// if pick == 0 (out = in2)
// else out is undefined
func ctPick64(which uint64, in1, in2 uint64) uint64 {
	return (in1 & which) | (in2 & ^which)
}

// ctIsNonZero64 returns 0 in case i == 0, otherwise it returns 1.
// Constant-time.
func ctIsNonZero64(i uint64) int {
	// In case i==0 then i-1 will set MSB. Only in such case (i OR ~(i-1))
	// will result in MSB being not set (logical implication: (i-1)=>i is
	// false iff (i-1)==0 and i==non-zero). In every other case MSB is
	// set and hence function returns 1.
	return int((i | (^(i - 1))) >> 63)
}

func mulGeneric(r, x, y *fp) {
	var s fp // keeps intermediate results
	var t1, t2 [9]uint64
	var c, q uint64

	for i := 0; i < numWords-1; i++ {

		q = ((x[i] * y[0]) + s[0]) * pNegInv[0]
		mul576(&t1, &p, q)
		mul576(&t2, y, x[i])

		// x[i]*y + q_i*p
		t1[0], c = bits.Add64(t1[0], t2[0], 0)
		t1[1], c = bits.Add64(t1[1], t2[1], c)
		t1[2], c = bits.Add64(t1[2], t2[2], c)
		t1[3], c = bits.Add64(t1[3], t2[3], c)
		t1[4], c = bits.Add64(t1[4], t2[4], c)
		t1[5], c = bits.Add64(t1[5], t2[5], c)
		t1[6], c = bits.Add64(t1[6], t2[6], c)
		t1[7], c = bits.Add64(t1[7], t2[7], c)
		t1[8], _ = bits.Add64(t1[8], t2[8], c)

		// s = (s + x[i]*y + q_i * p) / R
		_, c = bits.Add64(t1[0], s[0], 0)
		s[0], c = bits.Add64(t1[1], s[1], c)
		s[1], c = bits.Add64(t1[2], s[2], c)
		s[2], c = bits.Add64(t1[3], s[3], c)
		s[3], c = bits.Add64(t1[4], s[4], c)
		s[4], c = bits.Add64(t1[5], s[5], c)
		s[5], c = bits.Add64(t1[6], s[6], c)
		s[6], c = bits.Add64(t1[7], s[7], c)
		s[7], _ = bits.Add64(t1[8], 0, c)
	}

	// last iteration stores result in r
	q = ((x[numWords-1] * y[0]) + s[0]) * pNegInv[0]
	mul576(&t1, &p, q)
	mul576(&t2, y, x[numWords-1])

	t1[0], c = bits.Add64(t1[0], t2[0], c)
	t1[1], c = bits.Add64(t1[1], t2[1], c)
	t1[2], c = bits.Add64(t1[2], t2[2], c)
	t1[3], c = bits.Add64(t1[3], t2[3], c)
	t1[4], c = bits.Add64(t1[4], t2[4], c)
	t1[5], c = bits.Add64(t1[5], t2[5], c)
	t1[6], c = bits.Add64(t1[6], t2[6], c)
	t1[7], c = bits.Add64(t1[7], t2[7], c)
	t1[8], _ = bits.Add64(t1[8], t2[8], c)

	_, c = bits.Add64(t1[0], s[0], 0)
	r[0], c = bits.Add64(t1[1], s[1], c)
	r[1], c = bits.Add64(t1[2], s[2], c)
	r[2], c = bits.Add64(t1[3], s[3], c)
	r[3], c = bits.Add64(t1[4], s[4], c)
	r[4], c = bits.Add64(t1[5], s[5], c)
	r[5], c = bits.Add64(t1[6], s[6], c)
	r[6], c = bits.Add64(t1[7], s[7], c)
	r[7], _ = bits.Add64(t1[8], 0, c)
}

// Returns result of x<y operation.
func isLess(x, y *fp) bool {
	for i := numWords - 1; i >= 0; i-- {
		v, c := bits.Sub64(y[i], x[i], 0)
		if c != 0 {
			return false
		}
		if v != 0 {
			return true
		}
	}
	// x == y
	return false
}

// r = x + y mod p.
func addRdc(r, x, y *fp) {
	var c uint64
	var t fp
	r[0], c = bits.Add64(x[0], y[0], 0)
	r[1], c = bits.Add64(x[1], y[1], c)
	r[2], c = bits.Add64(x[2], y[2], c)
	r[3], c = bits.Add64(x[3], y[3], c)
	r[4], c = bits.Add64(x[4], y[4], c)
	r[5], c = bits.Add64(x[5], y[5], c)
	r[6], c = bits.Add64(x[6], y[6], c)
	r[7], _ = bits.Add64(x[7], y[7], c)

	t[0], c = bits.Sub64(r[0], p[0], 0)
	t[1], c = bits.Sub64(r[1], p[1], c)
	t[2], c = bits.Sub64(r[2], p[2], c)
	t[3], c = bits.Sub64(r[3], p[3], c)
	t[4], c = bits.Sub64(r[4], p[4], c)
	t[5], c = bits.Sub64(r[5], p[5], c)
	t[6], c = bits.Sub64(r[6], p[6], c)
	t[7], c = bits.Sub64(r[7], p[7], c)

	var w = 0 - c
	r[0] = ctPick64(w, r[0], t[0])
	r[1] = ctPick64(w, r[1], t[1])
	r[2] = ctPick64(w, r[2], t[2])
	r[3] = ctPick64(w, r[3], t[3])
	r[4] = ctPick64(w, r[4], t[4])
	r[5] = ctPick64(w, r[5], t[5])
	r[6] = ctPick64(w, r[6], t[6])
	r[7] = ctPick64(w, r[7], t[7])
}

// r = x - y
func sub512(r, x, y *fp) uint64 {
	var c uint64
	r[0], c = bits.Sub64(x[0], y[0], 0)
	r[1], c = bits.Sub64(x[1], y[1], c)
	r[2], c = bits.Sub64(x[2], y[2], c)
	r[3], c = bits.Sub64(x[3], y[3], c)
	r[4], c = bits.Sub64(x[4], y[4], c)
	r[5], c = bits.Sub64(x[5], y[5], c)
	r[6], c = bits.Sub64(x[6], y[6], c)
	r[7], c = bits.Sub64(x[7], y[7], c)
	return c
}

// r = x - y mod p.
func subRdc(r, x, y *fp) {
	var c uint64

	// Same as sub512(r,x,y). Unfortunately
	// compiler is not able to inline it.
	r[0], c = bits.Sub64(x[0], y[0], 0)
	r[1], c = bits.Sub64(x[1], y[1], c)
	r[2], c = bits.Sub64(x[2], y[2], c)
	r[3], c = bits.Sub64(x[3], y[3], c)
	r[4], c = bits.Sub64(x[4], y[4], c)
	r[5], c = bits.Sub64(x[5], y[5], c)
	r[6], c = bits.Sub64(x[6], y[6], c)
	r[7], c = bits.Sub64(x[7], y[7], c)

	// if x<y => r=x-y+p
	var w = 0 - c
	r[0], c = bits.Add64(r[0], ctPick64(w, p[0], 0), 0)
	r[1], c = bits.Add64(r[1], ctPick64(w, p[1], 0), c)
	r[2], c = bits.Add64(r[2], ctPick64(w, p[2], 0), c)
	r[3], c = bits.Add64(r[3], ctPick64(w, p[3], 0), c)
	r[4], c = bits.Add64(r[4], ctPick64(w, p[4], 0), c)
	r[5], c = bits.Add64(r[5], ctPick64(w, p[5], 0), c)
	r[6], c = bits.Add64(r[6], ctPick64(w, p[6], 0), c)
	r[7], _ = bits.Add64(r[7], ctPick64(w, p[7], 0), c)
}

// Fixed-window mod exp for fpBitLen bit value with 4 bit window. Returned
// result is a number in montgomery domain.
// r = b ^ e (mod p).
// Constant time.
func modExpRdcCommon(r, b, e *fp, fpBitLen int) {
	var precomp [16]fp
	var t fp
	var c uint64

	// Precompute step, computes an array of small powers of 'b'. As this
	// algorithm implements 4-bit window, we need 2^4=16 of such values.
	// b^0 = 1, which is equal to R from REDC.
	precomp[0] = one // b ^ 0
	precomp[1] = *b  // b ^ 1
	for i := 2; i < 16; i = i + 2 {
		// TODO: implement fast squering. Then interleaving fast squaring
		// with multiplication should improve performance.
		mulRdc(&precomp[i], &precomp[i/2], &precomp[i/2]) // sqr
		mulRdc(&precomp[i+1], &precomp[i], b)
	}

	*r = one
	for i := fpBitLen/4 - 1; i >= 0; i-- {
		for j := 0; j < 4; j++ {
			mulRdc(r, r, r)
		}
		// note: non resistant to cache SCA
		idx := (e[i/16] >> uint((i%16)*4)) & 15
		mulRdc(r, r, &precomp[idx])
	}

	// if p <= r < 2p then r = r-p
	t[0], c = bits.Sub64(r[0], p[0], 0)
	t[1], c = bits.Sub64(r[1], p[1], c)
	t[2], c = bits.Sub64(r[2], p[2], c)
	t[3], c = bits.Sub64(r[3], p[3], c)
	t[4], c = bits.Sub64(r[4], p[4], c)
	t[5], c = bits.Sub64(r[5], p[5], c)
	t[6], c = bits.Sub64(r[6], p[6], c)
	t[7], c = bits.Sub64(r[7], p[7], c)

	var w = 0 - c
	r[0] = ctPick64(w, r[0], t[0])
	r[1] = ctPick64(w, r[1], t[1])
	r[2] = ctPick64(w, r[2], t[2])
	r[3] = ctPick64(w, r[3], t[3])
	r[4] = ctPick64(w, r[4], t[4])
	r[5] = ctPick64(w, r[5], t[5])
	r[6] = ctPick64(w, r[6], t[6])
	r[7] = ctPick64(w, r[7], t[7])

}

// modExpRdc does modular exponentation of 512-bit number.
// Constant-time.
func modExpRdc512(r, b, e *fp) {
	modExpRdcCommon(r, b, e, 512)
}

// modExpRdc does modular exponentation of 64-bit number.
// Constant-time.
func modExpRdc64(r, b *fp, e uint64) {
	modExpRdcCommon(r, b, &fp{e}, 64)
}

// isNonQuadRes checks whether value v is quadratic residue.
// Implementation uses Fermat's little theorem (or
// Euler's criterion)
//      a^(p-1) == 1, hence
//      (a^2) ((p-1)/2) == 1
// Which means v is a quadratic residue iff v^((p-1)/2) == 1.
// Caller provided v must be in montgomery domain.
// Returns 0 in case v is quadratic residue or 1 in case
// v is quadratic non-residue.
func (v *fp) isNonQuadRes() int {
	var res fp
	var b uint64

	modExpRdc512(&res, v, &pMin1By2)
	for i := range res {
		b |= res[i] ^ one[i]
	}

	return ctIsNonZero64(b)
}

// isZero returns false in case v is equal to 0, otherwise
// true. Constant time.
func (v *fp) isZero() bool {
	var r uint64
	for i := 0; i < numWords; i++ {
		r |= v[i]
	}
	return ctIsNonZero64(r) == 0
}

// equal checks if v is equal to in. Constant time
func (v *fp) equal(in *fp) bool {
	var r uint64
	for i := range v {
		r |= v[i] ^ in[i]
	}
	return ctIsNonZero64(r) == 0
}